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Abstract: We examine whether there has been a decline in the returns from 

Australian public investment in research on broadacre agriculture.  Complementing a 

forthcoming paper by Mullen, we use alternative specifications for the regression 

equation, which employs the log of total factor productivity (TFP) as the dependent 

variable.  The rate of return is computed on an annual basis rather than by using 

multi-year averages.  In contrast to Mullen’s earlier preliminary analysis, we have 

now found some evidence of a decline in the rate of return on public R&D 

investment, lending some support to recently voiced concerns on this matter.
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1. Introduction

The purpose of this paper is to examine whether there has been a decline in the returns 

from Australian public investment in research on broadacre agriculture.  Mullen 

(forthcoming) discusses concerns that such a decline may have occurred (p. 2) and 

provides a preliminary answer (“No”) based on regression analysis (section 4).  The 

present paper presents more extensive analyses of the same data set.

Our starting point is Table 1, which reproduces Mullen’s (forthcoming) Table 5.

Section 2 discusses some of the merits and demerits of the linear and quadratic 
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versions of this model.  Section 3 introduces a novel method for computing annual 

rates of return on public R&D investments, and applies this method to the linear and 

quadratic model versions.  Section 4 discusses three kinds of alternative regression 

models: fractional exponents, a time interaction term, and linear spline models.  The 

last type of model is found to be superior to all others, and the annual return method is 

applied to it.  Section 5 concludes.

2. The linear and quadratic models

Mullen and Cox (1995), Mullen (forthcoming), and Wang (2006), regressed total 

factor productivity (TFP) against a knowledge stock variable, a weather index, 

farmers’ terms of trade and farmers’ education, where all variables were in logs and 

the models were linear.  Mullen (forthcoming) additionally included a regression with 

a quadratic logged knowledge stock term.  The results are reproduced in Table 1.

Table 1: Econometric results and IRRs from the 35 and 16 year lag models (identical 

to Table 5 in Mullen forthcoming)

Period
Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat

Knowledge stock:
Linear 0.16 3.44 0.14 2.58 -1.9 -5.53 -3.05 -1.68 0.25 3.93
quadratic 0.08 5.96 0.13 1.82
Weather 0.04 5.19 0.3 5.48 0.24 5.67 0.3 3.76 0.31 3.84
Education 2.22 3.05 2.35 2.72 3.7 5.36 3.33 2.87 4.42 4.31
Terms of Trade -0.27 -2.52 -0.49 -3.58 -0.29 -2.71 -0.27 -2.09 -0.30 -2.25
R²
D-W
Reset
IRR%

Period
Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat

Knowledge stock:
Linear 0.22 2.22 0.001 0.25 -4.39 -5.45 -13.8 -3.11 0.22 2.49
quadratic 0.17 5.46 0.52 3.16
Weather 0.26 3.22 0.3 5.01 0.24 5.06 0.3 3.75 0.3 3.24
Education 2.11 0.98 2.94 3.24 6.08 6.65 6.89 6.71 6.01 5.34
Terms of Trade -0.27 -1.92 -0.8 -7.24 -0.43 -3.88 -0.3 -2.30 -0.49 -3.72
R²
D-W
Reset
IRR%

10.4
30 0 23 39 21
na 32.4 11.2 5.72

0.92
1.73 1.23 1.69 1.86 1.53
0.83 0.95 0.97 0.94

13

16 year models
1968-1988 1953-2003 1953-2003 1969-2003 1969-2003

17 10 15 16

1.74
na 38.1 3.72 1.93 5.24

2.02 1.13 1.96 1.92

1969-2003

0.95 0.95 0.97 0.94 0.93

35 year models
1953-1988 1953-2003 1953-2003 1969-2003

In these regressions, the knowledge stock variable is constructed as a weighted 

average of past R&D investments, based on 35-year and 16-year trapezoidal lag 
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profiles respectively (see Mullen and Cox 1995, Mullen forthcoming, and Wang 2006 

for details).1  As to the relative performance of these models, Mullen (forthcoming) 

notes: “The RESET test provides some guidance as to whether quadratic or 

interaction terms are missing from the model. Adding a quadratic knowledge stock 

term led to a marked improvement in the properties of both models2 as can be seen in 

Table [1]…  The econometric properties of both the 16 and 35 year quadratic models 

are strong. All coefficients are precisely estimated and have the expected sign 

(expectations about the signs on the knowledge stock variables are discussed further 

below). For the 35 year model, the D-W and RESET statistics and the plot of the 

CUSUM values all suggest few problems with the specification of this model. These 

same specification statistics for the 16 year model suggested that specification 

remains a problem. Non-nested testing of these two models provided clear evidence in 

favour of the 35 year model and supported concerns about the specification of the 16 

year model…”  Additionally, the 16-year model featured a decreasing knowledge 

stock term for some years as opposed to a uniformly increasing knowledge stock in 

the 35-year model (Figure 5 in Mullen forthcoming).  The more natural assumption, 

of course, would be to expect the term to be uniformly increasing.  Furthermore, 

distinguished experts such as Huffman and Evenson (2006) and Alston (personal 

communication) favour the longer lag specification over the shorter one.  All these 

considerations point towards the superiority of the 35-year model.  We will thus in 

this paper focus on it and ignore the 16-year model.

One potential point of concern relates to the possibility of spurious regression due to 

some of the variables exhibiting unit roots (integrated of order one).  A complicating 

factor here is that the other variables do not exhibit unit roots (integrated of order 

zero).  As not all variables are integrated of the same order, our set of variables cannot 

be said to be cointegrated, and some of the cointegration tests – such as the Johansen 

(1988) algorithm – that might allow one to proceed with the regression analysis, are 

unavailable.  Fortunately, the Engle-Granger (1987) test is still available.  Whilst this 

test in the absence of unit roots in some of the variables no longer indicates 

cointegration, it can still be used to allay concerns of spurious regression (Hamilton 

  
1 To obtain a full knowledge stock time series beginning in 1953, a backcasting procedure is used to fill 
in the missing past investment figures.
2 As suggested by Garry Griffith. 
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1994). In this two-step procedure, a regression is run on a vector of time series 

variables, generating a time series of the residuals.  This latter time series is then 

subjected to a standard Dickey-Fuller unit root test.  Engle-Granger tests on the linear 

and quadratic models indicated an absence of a unit root in the residuals of each 

regression, thus validating our usage of these regressions.

We now mention the issue of greatest concern with the quadratic model.  It is actually

not straightforward whether the quadratic 35-year model is preferable to the linear

one, for the quadratic model does suffer from a major flaw: for the first seven years, 

the marginal effect of central importance, namely tβ , defined as the elasticity of TFPt

with respect to Kt,

ln 2 ln  ,
ln

t
t L Q t

t

TFP K
K

β β β
∂

≡ = +
∂

(where Lβ and Qβ denote the linear and quadratic regression coefficients 

respectively), is negative: see Table 2.

Table 2: Marginal effect of ln Kt on ln TFPt in quadratic regression model

 t Beta(t)  t beta(t)  t beta(t)  t beta(t)
1953 -0.088 1966 0.092 1979 0.268 1992 0.384
1954 -0.074 1967 0.107 1980 0.280 1993 0.388
1955 -0.059 1968 0.121 1981 0.292 1994 0.391
1956 -0.045 1969 0.135 1982 0.303 1995 0.394
1957 -0.031 1970 0.149 1983 0.314 1996 0.397
1958 -0.016 1971 0.163 1984 0.324 1997 0.399
1959 -0.003 1972 0.176 1985 0.334 1998 0.401
1960 0.011 1973 0.190 1986 0.343 1999 0.403
1961 0.024 1974 0.204 1987 0.351 2000 0.404
1962 0.037 1975 0.218 1988 0.359 2001 0.406
1963 0.051 1976 0.231 1989 0.366 2002 0.406
1964 0.065 1977 0.244 1990 0.373 2003 0.406
1965 0.078 1978 0.256 1991 0.384
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Clearly, an increase in the knowledge stock ought to have a positive effect on 

productivity. The fact that this marginal effect is negative for the early years is also 

suggestive of a downward bias in the (positive) estimates of this effect for subsequent 

years, at least well into the 1960s. This suggests model misspecification: imposition 

of a quadratic curvature yields a downward-sloping fitted curve for (early and 

therefore) low values of Kt.

3. A procedure for estimating annual rates of return

Mullen (forthcoming), following Mullen and Cox (1995), derives the rate of return on 

public investment in R&D through a three-step procedure which is fairly standard in 

the literature (see references cited in these two papers):

1. Construct the knowledge stock variable as a weighted sum of past R&D 

investments, e.g. (the formula used in Mullen, Mullen and Cox, and in the 

present paper) 
1

ln ln
RL

t j t j
j

K r R −
=

= ∑ , where RL is the maximum lag length (in 

our case, 35), jr are a set of weights that sum to one and comprise the lag 

profile (in our case, a trapezoidal one), and Rt are annual research investments.

2. Regress ln TFPt on ln tK and other explanatory variables, which in the 

simplest (linear) case yields a constant coefficient β but which more 

generally yields a time-variant marginal effect tβ .

3. Compute the internal rate of return (IRR) i by solving the equation 

( ) ( )
( ) ( )0

GM GM
1000

GM 1

RL
j

j
j

r TFP P
TVMP

R i

β

=

≡ =
+

∑ ,

where TMVP (set equal to 1000 due to units used on the right-hand side) 

stands for total value of marginal product, GM( ) stands for “the geometric 

mean of…” and P is a price index.

The logic by which the formula of step 3 is derived is explained in Mullen and Cox 

(1995).  A critical part of this logic is that the purpose of the exercise is to obtain a 

unique rate-of-return estimate, and hence the time-variant terms TFPt, Pt and Rt are 

replaced by their geometric means.



6

One problem with this approach is that it tends to overestimate R relative to TFP –

step 1 indicates that R has a distributed-lag effect on TFP, and as both R and TFP tend 

to grow over time, the relevant value of R used here ought to be lower than its 

geometric mean.  This bias can be corrected by using the geometric mean of an earlier 

time series of R.

A more fundamental problem, and one central to the present paper, is that i itself is 

not time-invariant and has inherently no unique solution.  Note also that the problem 

is compounded for regression models that are not strictly linear, as some averaging 

procedure has to be devised for β as well.  It is more meaningful to compute an IRR 

for each year of investment.  The IRR is then based on a stream of future benefits for 

the investment in that year, using the relevant values of tβ , TFPt, Pt and Rt which are 

weighted by the weights rj:

( )0
1000

1

RL
t j j t j t j

t j
j t t

r TFP P
TMVP

R i

β + + +

=

≡ =
+

∑

This procedure is much more consistent with steps 1 and 2.  If the analyst is interested 

in a unique IRR value characterising the entire data set, it can be obtained by first 

computing annual IRRs and then averaging these geometrically. The time series of ti

generated by our revised time-variant IRR formula serves our present primary 

interest, which is to extract evidence on a possible change in IRR.  Figure 1 and Table 

4 show the annual IRR time series thus obtained.
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This procedure relates R&D investment in any given year to the actual values of 

future TFP and P properly weighted in accordance with the lag profile used.  

Variations based on future K are also affecting the result via the time-variant tβ

term.  For example, the investment in 1953 contributes – assuming that the lag profile 

used is correct – via the future knowledge stock to future TFP through 1987.  Thus, 

the last investment year for which full information on the future flow of benefits is 

available is 1969.  We thus obtain time series of 17 years of IRR for each model, 

which is not quite long enough for formal hypothesis testing but which does allow the 

drawing of preliminary conclusions.

Figure 1 shows a striking contrast between the linear and quadratic regression models.  

Whilst the linear model indicates a fairly dramatic decline in the IRR from over 28% 

for 1953 investments to less than 13% for 1969 investments, the IRR time series 

based on the quadratic model is generally flat, never falling below 14% and never 

exceeding 19%.  However, we know that the linear and quadratic models are both 

flawed.  The linear model completely misses the increasing slope that is highly 

significant in the quadratic model – it is constrained to produce a single β which is 

likely an overestimate (underestimate) of tβ for the early (later) years.  The quadratic 

model, on the other hand, evidently underestimates tβ for the earlier years, as 

discussed in the previous section.  Let us, then, look for alternative model 

specifications.
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4. Alternative regression models

In this section we consider, in turn, fractional exponents, a time interaction term, and 

linear spline models.

The fact that the quadratic model outperforms the linear one in most respects may be 

taken to indicate that there is a significant nonlinear component in the model.  The 

first alternative to look at naturally would be the polynomial approach, i.e., having 

found the quadratic term highly significant when that is the highest order, to also try 

including a cubic term in addition to the lower-order terms, etc., and to stop when the 

highest-order term is insignificant.  However, inclusion of a cubic ln K term in the 

regression yields insignificant quadratic and cubic terms.  This result implies that the 

polynomial approach stops at the quadratic level.

Another approach is to include a single nonlinear term along the linear one.  Why 

should this nonlinear component be quadratic?  One way to examine this is to allow 

for a capital stock term with variable exponent E.  There is no a priori reason why, in 

a regression with a nonlinear term with multiplicative parameter Nβ ,

( )ln ln ln ..........E
L NTFP K Kα β β= + + + , 

E should equal 2.  We attempted to estimate this regression using STATA’s 

‘nonlinear3 least squares’ (Davidson and McKinnon 1993) routine, but this turned out 

to be too sensitive to the specification of the initial parameter value for E.  As an 

alternative, we repeatedly estimated ordinary least squares increasing the exponent 

parameter in the above equation by one decimal point at a time, that is, using E = 1.1, 

1.2, 1.3, ……  The purpose of this exercise was to try and remedy the problem of 

negative and low positive values of the marginal effect tβ for the earlier years in our 

data set in the quadratic OLS regression.  That regression was, of course, replicated 

by setting E = 2.  Estimates for tβ (for t = 1953, 1954, …, 1963) as a function of E

  
3 The usage of the word nonlinear in the term “nonlinear least squares” refers to the regression being 
nonlinear in the parameter E and should not be confused with the usage of the word in the rest of this 
paper.
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are shown in Figure 2. Values of E are depicted on the horizontal axis at tβ = 0.  

Estimates of tβ for E = 2 correspond to those in Table 2.
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Figure 2: Marginal effect as a function of exponent in nonlinear regression term
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These results show that the issue of a negative or small positive marginal effect for 

the earlier years in our data set cannot be resolved by substituting an exponent value 

different from 2.  Even for E = 7, there are still a few negative marginal effect 

statistics left, whilst the marginal effects for the first eleven years (all the ones 

depicted in the graph) are still arguably too low.  Moreover, for the higher values of E

shown in the graph, Lβ becomes insignificant. In summary, the variable-exponent 

approach is not satisfactory as an alternative to the linear and quadratic regression 

models.

Next, consider the possibility of a time interaction term.  This is based on a simple 

idea: in contrast to the linear model, we would like the marginal effect of ln K on ln 

TFP to be time-variant.  Then why not have it directly be a function of time?  This

translates into the equation

( )intln ln ..........LTFP t Kα β β= + + +

which implies that intβ , rather than a separate time trend coefficient (tried 

unsuccessfully before – see Mullen forthcoming and Wang 2006), is a time 
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interaction coefficient.  This variation of the regression model yields a significant 

intβ and an insignificant but negative Lβ .  Using the ‘best estimate’ value for Lβ

instead of zero, which in spite of its insignificance is the statistically preferable 

approach, we obtained values for the marginal effect,

intt L tβ β β= + ,

that were negative for the first 23 years.  This clearly indicates that the time 

interaction approach has to be rejected too.

Finally, we considered a linear spline approach (Greene 2007).  This approach allows 

for structural change to occur in the course of the data set.  It includes multiple linear 

segments (‘bins’) with different slopes, separated by kink points (‘knots’).  The 

regression is conducted under the constraint that at the knots the left-hand and right-

hand limits of the fitted line are equal, i.e. that the function be continuous.  We 

attempted a three-bin spline regression with approximately 30 possible combinations 

of the two knots, but found that consistently the slope parameter in the first bin was 

insignificant.  Furthermore, using three bins for the small number of observations may 

be asking too much of the data.  We thus settled on two bins instead. We considered 

as candidate years for the knot the years. Results are reported in Table 3.

Table 3: Results of two-bin spline regressions

Knot beta1 beta2 R-sq RESET AIC BIC
75 0.0847954 0.3491876 0.972 6.77 -124.3266 -112.7356
76 0.0924833 0.3564951 0.9718 7.02 -124.0772 -112.4862
77 0.1007951 0.3704909 0.9721 6.82 -124.4601 -112.8692
78 0.1107759 0.3868867 0.9718 7.17 -124.0525 -112.4616
79 0.1222749 0.4050378 0.9711 8.23 -122.7413 -111.1503
80 0.1331629 0.4314032 0.9709 8.7 -122.3016 -110.7107
81 0.1415096 0.4683473 0.9717 7.35 -123.7859 -112.1949
82 0.1477874 0.5077437 0.9724 6.21 -125.0773 -113.4863
83 0.1533036 0.5539901 0.9731 5.12 -126.343 -114.7521
84 0.1576375 0.5931646 0.9726 5.57 -125.3746 -113.7837
85 0.1619398 0.643485 0.972 6.09 -124.4154 -112.8244
86 0.1670265 0.7148216 0.972 5.97 -124.4353 -112.8443

The RESET results were satisfactory for all the knots considered, but these are 

essentially t-statistics that are not appropriate for knot selection.  Instead, we consider 
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R-squared, the Akaike Information Criterion (AIC), and the Bayesian Information 

Criterion (BIC) (Greene 2007) for knot selection.  These consistently point to 1983 as 

the knot with the best performing spline.  Moreover, 1983 is the middle year of the 

three consecutive years 1982-1984 that comprise the top-three results in terms of each 

of these criteria.  Thus we selected 1983 as the preferred knot in the linear spline 

approach.  This yielded a time series of IRRs for the years 1953-1969 that is displayed 

in Figure 1. Values are provided in Table 4.

Table 4: IRR time series and means for linear, quadratic and linear spline regressions

Year Quadratic Linear Linear spline

1953 14.33% 28.54% 26.11%
1954 15.24% 27.12% 24.78%
1955 14.81% 23.72% 21.60%
1956 16.60% 24.87% 22.68%
1957 17.79% 24.94% 22.76%
1958 17.99% 23.57% 22.76%
1959 18.10% 22.11% 20.23%
1960 18.43% 21.17% 19.47%
1961 18.45% 19.94% 18.50%
1962 18.28% 18.63% 17.51%
1963 18.10% 17.52% 16.75%
1964 17.23% 15.77% 15.50%
1965 17.31% 15.18% 15.30%
1966 17.48% 14.78% 15.31%
1967 16.42% 13.16% 14.36%
1968 16.52% 12.79% 14.50%
1969 16.63% 12.45% 14.74%

GEO MEAN 16.99% 19.11% 18.63%

The linear spline model avoids the linear model’s upward bias as well as the quadratic 

model’s downward bias in estimating the marginal effect tβ for the earlier years.  

For the last several years in Figure 1 and Table 4, the linear and quadratic models’ 

biases are likely reversed, and the spline model may be avoiding these as well. These 

features are reflected in Figure 1, with the spline-based IRR values being below the 

linear-based ones and above the quadratic-based ones, with these inequalities being 

reversed for the last several years for which IRR estimates are available.  The spline-

based IRR series does show a general decline in IRR, which however is less 
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pronounced than for the linear-based IRR series.  Furthermore, there is a subtle but 

potentially important difference between the spline-based series and the linear series 

for the last three years 1967-1969, where the former exhibits a levelling off or even a 

slight recovery in IRRs whereas the latter exhibits a continued decline.

5. Conclusions

Among the models examined here, all exhibit serious pitfalls except the linear spline 

model, which is therefore the most likely to produce reliable results.  Using the linear 

spline model, there is some evidence of a decline in the rate of return on public 

investment in R&D for investments made in the years from 1953 trough 1969; 

however, there appears to be levelling off or a slight recovery for investments made in 

the last three years of this period.  As we are using a 35-year model with observations 

through 2003, 1969 is the last year for which full information about benefit streams is 

available.  Given the small number of observations and some strong assumptions 

made, particularly with regard to the construction of the knowledge capital stock, 

these results should be treated with caution.
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