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ABSTRACT 
 
Existing econometric models for Australian broadacre agricultural production are few 
and have become dated. This paper estimates a multi-product restricted cost function 
using a unique quasi-micro farm level dataset from the Australian Agricultural and 
Grazing Industries Survey. Both the transcendental logarithmic and normalized quadratic 
functional forms are employed. Heteroskedasticity caused by the particular nature of the 
quasi-micro data is also assessed and accommodated. Allen partial elasticities of input 
substitution and own-and cross-price input demand elasticities are computed. The 
estimated demands for most production factors are inelastic to prices. Hired labour is 
responsive to own price and cropping input prices. 
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1. INTRODUCTION 
 
This paper presents an application of duality methods to Australian broadacre production 
to draw information on input demand decisions. It fills in a notable gap in the literature of 
econometric models for Australian agricultural production with the estimation of multi-
product cost functions using a unique nationwide quasi-micro farm-level dataset. Two 
commonly used functional forms, transcendental logarithmic and normalized quadratic, 
are used for comparison purposes.  
 
The performance of broadacre production in Australia has a strong influence on the 
overall economic performance and the vitality and welfare of a vast rural area that 
supports a significant proportion of the population. The sector has a significant role in 
international trade with the majority of total broadacre agriculture production exported. It 
has also constantly evolved with respect to technology, marketing structure and 
institutional structure to remain internationally competitive.  Therefore, knowledge of the 
underlying production technology and the interrelationships between inputs and outputs 
at a national level are crucial for policy makers to assist in the sector’s future 
development and its competitive position in international markets. 
 
Over the last few decades, in searching for information on technological relationships in 
rural production, international researchers have usually applied the duality approach. In 
this approach, the technological relationships are indirectly extracted through the 
estimation of the cost, revenue or profit functions using input and output prices rather 
than the traditional primal production function using the input and output quantities. This 
methodology assumes farmers to be optimizers, so that they either minimise cost, 
maximise revenue or maximise profit under technological constraints. Prominent 
contributions to this field are Hotelling (1932), Shephard (1953), Diewert (1971), 
Christensen, Jorgenson and Lau (1973), Lau (1974) and McFadden (1978). These 
papers together establish the theoretical duality between the cost, revenue and profit 
functions, usually called the dual objective functions, and the primal production function. 
 
The duality methods have become widely accepted, not just for their sound theoretically-
proven duality but also for several empirical advantages. Firstly, by estimating the 
objective function analysts are not required to impose linear homogeneity among input 
and output quantities so any form of relationship between them can be accommodated. 
Secondly, the variables in econometric models of the objective functions are prices 
rather than quantities, which appear in the primal production function and over which the 
farmers have control, so they fit better the exogeneity assumption for robust econometric 
estimation. Thirdly, the problem of multicollinearity can be alleviated in the estimation of 
the dual functions compared to the primal function because, at a micro level, input 
quantities are more likely to move together than their prices. Moreover, with the objective 
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functions, the measures of economic interest, such as price elasticities, can be derived 
in a relatively simpler fashion. In addition, researchers applying the duality approach can 
make conclusions about various aspects of the underlying technology. A host of theories 
and tests have been developed for examining the structure or characteristics of the 
underlying production technology such as homotheticity, economies of size, 
increasing/decreasing/constant returns to scale, input and output nonjointness and 
separability, and bias in technical change via estimating the dual functions. With these 
relative pros, the applications of duality have gone beyond the boundary of traditional 
production technology with empirical research such as Lawrence (1989) and Kohli 
(1994) in international trades or Halvorsen and Smith (1986) in exploitation of unpriced 
natural resources. 
 
A major development in the history of the duality approach was the introduction of 
flexible functional forms in the early 1970s. These functional forms, such as Generalized 
Leontief, normalized quadratic and transcendental logarithmic (translog), to name a few, 
have enough distinct parameters to accommodate interrelationships between inputs 
and/or outputs without imposing many a priori restrictions on economic behaviour, which 
is  a fundamental advantage over the traditional Cobb-Douglas or CES forms. Their 
introduction greatly assisted the acceptance of the duality approach in empirical 
production research. However, after an initial rush of studies embracing this approach, 
with the use of flexible functional forms, significant empirical issues and problems 
emerged and have remained unresolved. The most formidable challenges in duality 
applications are the aggregation problem, the choice of the dual function (whether it is a 
cost, revenue or profit function) and the choice of functional form. 
 
It has been a common and unquestioned practice to use aggregate, national or state 
average data, normally in time-series form, in dual-based empirical research, which is 
largely due to unavailability of micro/farm-level data. This conduct, however, raises a few 
fundamental issues. Duality theory is concerned with microeconomic rather than 
macroeconomic behaviour and so it is questionable how well aggregate data convey 
information about individual production units. Liu and Shumway (2004), Shumway and 
Davis (2001) and Chambers (1988) stressed that the conditions for consistent 
aggregation across firms are too strict for practical application. To use agent-wise 
aggregate data, it is a requirement that production units use identical production 
technology (Polson and Shumway, 1990). In the context of farming, where the 
technology employed and the operational and climatic conditions are highly 
heterogeneous across farms, the use of aggregate data can result in misleading 
research results and thus erroneous policy interpretations (Morrison Paul, 2001). 
Another limitation of using aggregate data in duality research is estimation bias resulting 
from simultaneity. In a competitive market, firms have control over what input quantities 
to be used but not their prices. At an aggregate level, however, price and quantity are 
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simultaneously determined via demand-supply principles. Moreover, it has been 
suggested that the estimated dual functions’ frequent failure to meet restrictions required 
to portray rational economic behaviour in past studies is attributable to ignorance of 
time-series characteristics of aggregate data (Lim and Shumway, 1997). 
 
As problematic as the issue of data aggregation is the choice of which dual objective 
function to employ. In applying duality methods, researchers have a choice to estimate 
either a cost, revenue or profit function. Theoretically these functions are dual to each 
other and to the production function. There has been no general guidance for making 
this choice and this is an empirical matter being shaped by the researcher’s intuitions 
and purposes, and data availability. The profit function has been favoured over the other 
two functions because in the estimation of this function the input and output prices, not 
just input prices or output prices alone, both appear as exogenous variables in the 
estimation equation(s). This supports the hypothesis that producers take into 
consideration prices on both the producing and selling sides, not just one of them. This, 
however, can become an empirical drawback of estimating the profit function because 
relatively more parameters need to be estimated, putting more pressure on the usually 
small data samples and necessitating potentially improper data aggregation. Another 
shortcoming of the profit function, in comparison to the other two dual functions, is that 
profit is often calculated as the residual difference between the production revenues and 
production costs. This means that the calculated production profit absorbs any 
differences in the revenues expected at the time production decisions are made (when 
costs are incurred) and the revenues realized when outputs are sold. Although care is 
taken in approximating the revenue expectations in the past estimations of the profit 
functions, this intertemporal difference is likely to cause data errors. Meanwhile, the cost 
function has a major advantage over the profit function in allowing for both increasing 
and decreasing returns to scale to be revealed. In the estimation of the profit function it 
is implicitly assumed that the technology under consideration displays decreasing 
returns to scale.  
 
In addition to the choice of which among the three dual functions to estimate, empirical 
researchers also have to make a decision regarding the flexible functional form to use. 
Flexible forms that have been introduced include translog (Christensen et al. , 1973; 
Binswanger,1974a; and Ollinger, MacDonald and Madison, 2005), normalized quadratic 
(Yotopoulos, Lau and Wuu-Long, 1976; Shumway, 1983; and Moschini, 1988), 
Generalized Leontief (Diewert, 1971; Lopez, 1984; and Morrison Paul, 2001), 
Generalized McFadden (Coelli, 1996; and Rask, 1995), Generalized Box-Cox (Berndt 
and Khaled,1979), Fourier (Gallant, 1984) and Generalized Barnett (Barnett and Hahm, 
1994) with the first two being most popular. This wide range of functional forms, while 
fostering the adoption of duality, poses an uneasy task to any empirical study. The 
choice of functional form has a strong influence on parameterized input demand and/or 
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output supply relationships and on the direction and magnitude of the deduced economic 
measures. Despite the fact that flexible functional forms all allow researchers to 
approximate an objective functions of an unknown form, due to their different 
approximating characteristics, they have different empirical applicability. Some functional 
forms can accommodate a wider range of technical and economic interrelationships 
between inputs and/or outputs – e.g. elasticities of substitution and price elasticities. 
Some allow researchers to test for and/or impose parametric restrictions for regularity 
conditions (the conditions that dual functions have to satisfy to portray rational economic 
behaviour) and technological structures. None of them, however, are naturally superior 
compared to the rest.  
 
In the aspect of functional form choice, unlike the choice of the dual function, there have 
been attempts to resolve the issue. Studies, including Blackorby, Primont and Russell 
(1977), Caves and Christensen (1980), Chalfant (1984), Diewert and Wales (1987), 
Thompson and Langworthy (1989), Anderson, Chaisantikulawat, Guan, Kebbeh, Lin and 
Shumway (1996), Ivaldi, Ladoux, Ossard and Simioni (1996), Terrell (1996), Gagne and 
Ouellette (1998) and Fisher, Fleissig and Serletis (2001), analytically and empirically 
evaluate the suitability of different functional forms. Through such studies, some general 
insights into the behaviour of the existing functional forms have been gained but the 
question of which functional form suits best in a particular research application remains, 
a priori, more or less unanswerable. Importantly, Blackorby et al. (1977)’s findings that 
Generalized Leontief and translog are separability-inflexible has made researchers take 
a more cautious view about flexible functional forms. Moreover, Caves and Christensen 
(1980) shows that locally flexible functional forms (Generalized Leontief and translog) 
can have only small regions where regularity conditions are satisfied.  Although no 
functional form displays better overall performance than the others, most studies 
employed one functional form, prevalently the translog or normalized quadratic. Some 
studies, such as Shumway (1983) and Villezca-Becerra and Shumway (1992), respond 
to this issue by using more than one functional form to compare the results from different 
functional forms or to be able to make conclusions about technological structure that is 
not possible with the use of one functional form.  
 
In Australia, published duality-based studies are limited and inconsistent. Significant 
studies are McKay, Lawrence and Vlastuin (1983), Fisher and Wall (1990), Coelli (1996), 
Mullen and Cox (1996) and Ahammad and Islam (2004). Most of these studies estimate 
the profit function. They often use national, zone or state average data for econometric 
estimation with a focus on a particular geographical region or zone, largely due to the 
unavailability of farm-level data of sufficient scope for reliable econometric estimation 
(and concerns about consistent aggregation). Moreover, their findings are significantly 
different from each other due to differences in geographical coverage, data sample and 
functional forms used. For instance, two recent studies published by Ahammad and 
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Islam (2004) and Coelli (1996) estimate profit functions for Western Australian broadacre 
production. Ahammad and Islam (2004) use data across High rainfall, Wheat-sheep and 
Pastoral zones in the state while Coelli (1996) only covers the Wheat-Sheep zone. The 
former employed the normalized quadratic functional form while the latter used a 
Generalized McFadden function. As a result, their findings in terms of the estimated 
price elasticities differ significantly from each other.  
 
Economic and policy inferences at a national level are desirable for future development 
of the agricultural sector in Australia. However, there has been a lack of econometric 
applications for the sector at a national level. Past studies have concentrated on the 
Wheat-Sheep zone, and more narrowly this zone in a particular state. The common 
supportive argument for this is that a lot more dynamics in production decisions are 
present in this zone than in other production zones in Australia. As the name implies 
both livestock and cropping production are feasible in this zone, and farms in this zone 
can be considered as the average or typical farm in Australia. This isolation of the 
Wheat-Sheep zone is also because these studies used state or national averages, which 
calls for the inclusion of homogeneous farms in the sample. However, Australian 
agriculture has developed well enough that there is little spatial isolation of input and 
output markets and technological advances have allowed the broadacre production to 
expand into regions that were previously unfeasible. Therefore, the focus on a particular 
production zone can have serious implications on research findings. Moreover, there is 
little confidence in application of such studies’ findings to the other production zones 
given great diversity in climatic conditions and natural resource endowment in Australia.  
 
The profit function is most often estimated in Australian duality-based studies. For 
Australian farming, however, a cost function is probably more appropriate in portraying 
the farmers’ behaviour. For one thing, farmers usually have long-term managerial plans 
for cultivating and grazing on their lands, such as particular rotation regimes for pest 
control or soil quality conservation. Such regimes can determine what outputs and how 
much of each output can be produced as well as how much capital input, such as land 
and machinery, are committed to the production of each output for a particular season or 
year. For this reason, as an optimizer, a farmer will try to minimize the production cost. 
Another supportive fact for the choice of the cost function over the other objective 
functions is the spreading practice of farmers to lock themselves into future production 
contracts for fixed output quantities and prices. For these reasons, the cost minimization 
paradigm may better reflect the production decision process.  
 
This study contributes to duality-based empirical research in Australian broadacre 
agriculture in light of the aforementioned issues. The main contribution of the paper is to 
provide econometric estimates of key technological relationships and economic 
parameters for Australian broadacre agriculture. These estimates are much needed for 
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forming developmental policies, forecasting future performance and analysing 
effectiveness of research and development and other agricultural policies for the sector. 
What makes this study stand apart from previous studies is the use of a unique dataset 
at a quasi-micro level drawn from the Australian Agricultural and Grazing Industries 
Survey conducted by the Agricultural Bureau of Agricultural and Resource Economics 
over the period 1990-2005 instead of average farms at a national or state level. We are 
able to access average data for “representative” farms for each year in each of the 32 
production regions, for the livestock and cropping industries and for one of three 
production sizes while retaining the confidentiality requirement of the survey*. Thus 
rather than having only one observation for each year and each state or production 
region, as in most previous studies, we have up to 37 data points for each state in each 
year. This is expected to reduce the impact of agent-wise aggregation on research 
results. As all production regions are included in the data sample, the estimated results 
are relevant at the national level. It is also expected that the robustness of the 
econometric estimation results is increased compared to previous studies due to a large 
sample size. At the same time, actions are taken to accommodate econometric issues 
caused by the nature of the quasi-micro data in this study. Since the average data for 
different groups of farms rather than data for individual farms are used for econometric 
estimation, heteroskedasticity arises and has to be corrected for. The cost function is 
chosen over the revenue and profit functions due to its relative relevance in the farming 
context as discussed above. Two commonly used functional forms, translog and 
normalized quadratic, are used and their estimation results are assessed and compared 
to each other. 
 
The remainder of this paper is organized as follows: the theoretical framework for the 
restricted translog and normalized quadratic cost functions is described in Section 2, 
followed by an explanation of the data and specification of estimation variables in 
Section 3. Section 4 covers the empirical estimation results, leading to the conclusion of 
the study in Section 5.  
 
2. THEORETICAL FRAMEWORK FOR THE RESTRICTED COST FUNCTION 
 

2.1. The cost function 
 
The practice of estimating the cost function instead of the production function has 
become common since the late 1970s, following proof of duality between these two 
functions by Shephard (1953) and the invention of flexible functional forms in the early 
1970s. Concisely, this approach allows researchers to draw conclusions about the 
underlying technology through the use of economic variables. The cost function dual to 

                                                 
* The average data is not provided for cells whose farm sample sizes are less than five. 
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the multiple output technology ( , ) 0f X Y = , where 1 2[ ,  ,  ...,  ]nX x x x=  and 

[ ]1 2, ,... mY y y y=  are the input and output sets, is { }( , ) min ' : ( )C W Y W X X V Y= ∈  

where [ ]1 2, ,... nW w w w=  is the input price vector and is the input requirement set. 

This cost function is assumed to satisfy the following conditions:  

( )V Y

 
  is non-negative for  and ( , )C W Y 0W > Y > 0  , 

 is non-decreasing in , ( , )C W Y W
 is continuous and concave in W , ( , )C W Y
 is positively linearly homogeneous in : for all 

, 

( , )C W Y W ( , ) ( ,C tW Y tC W Y= )
0t >

  is non-decreasing in( , )C W Y Y , 

 There is no fixed costs: ( ,0) 0C W = , and 

 is differentiable in W so Shephard’s lemma can be applied to derive the 

cost-minimising input demands. 

( , )C W Y

 
Crucial to applications of the cost function is Shephard’s lemma, which states that when 
the cost function satisfies the aforementioned conditions and ix s are the unique, cost-

minimizing input demands then: 
  

( , )( , )i
i

C W Yx W Y
w

∂
=

∂
 .  ( )1,2,...i n=

When the cost function is differentiable Shephard’s lemma can be applied and the 
regularity conditions of the cost function can be conveniently related to the derived 
demand equations. The requirement that the cost function is non-decreasing in 

(usually referred to as the monotonicity condition) means that the conditional input 

demand 

W
( , )( , )i

i

C W Yx W Y
w

∂
=

∂
 is positive for all 1,2,...i n= . The condition that is 

concave in W (usually referred as the concavity condition) is satisfied if the matrix 

( , )C W Y

2∂ ∂
⎢

∂ ∂
( , ) ( , ) , ( , 1,2,... ),i

j i j

x W Y C W Y i j n
w w w

⎡ ⎤
= =⎥

∂⎢ ⎥⎣ ⎦
is symmetric and negative semidefinite. The 

positive linear homogeneity condition is equivalent to the derived demand 
( , )( , )i

i

C W Yx W Y
w

∂
=

∂
being homogeneous of degree zero inW .  
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In Shephard’s lemma, the derived input demand usually appears in level or quantity. 
When the logarithms of production costs and input prices are used in the cost function, 
applying the Chain rule and then Shephard’s lemma we have  
 

ln ( , ) ( , ) ( , )
ln ( , ) ( , )

i i

i i

C W Y C W Y w x W Y w
w w C W Y C W

∂ ∂
= =

∂ ∂
i

Y
, which is the share of input i in total 

production cost. Thus, input demands are obtained in share form instead of quantity. 
 
In the duality approach, measures of economic relationships between inputs, and 
between inputs and outputs, are straightforwardly derived using estimated parameters of 
the cost function. One of these measures is the output-constrained cross-price elasticity, 

which is defined as: 
( , )

( , )
ji

ij
j i

wx W Y
w x W Y

η ∂
=

∂
 and characterized by and 

1
0

n

ij
j
η

=

=∑

j
ij ji

i

s
s

η η= . 

Another important measure in empirical analysis of producer behaviour is the degree of 
substitutability between production factors. A popular substitution measure is the Allen 
partial elasticity of substitution which, in the cost function approach, is formulated as:  

2 2( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )ij

i j j i i j

j i

C W Y C W Y C W Y C W Y
C W Y C W Y w w x W Y x W Y w w

w w

σ ∂
= =
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂

∂
, holding other input 

prices unchanged. The final formula for these two measures in the cost function 
approach depends on the functional forms to be used. 
 

2.2. The restricted translog cost function 
 
A restricted (or short-run or variable) cost function portrays the case where some of the 
production factors are fixed during a typical production cycle. The fixed inputs will appear 
as exogenous variables beside the output quantities in the econometric representation of 
this function and their costs are excluded from the calculation of the cost that appears on 
the left-hand side. Once the fixed inputs are allowed to vary, which happens over a time 
period longer than a production cycle, the unrestricted or long-run cost function results. 
For the most part, the usual properties of the variable cost function are not affected by 
the fixity of some inputs (Chambers, 1988). 
 
The translog functional form has been widely used, both in Australian and international 
empirical research, since its introduction by Christensen et al. (1973). Its popularity is 
attributable to its ability to allow for greater flexibility in measuring economic relationships 
compared to the traditional functional forms Cobb-Douglas and Leontief and its ability to 
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deliver formulas for price elasticities, elasticities of technical substitutions and scale 
economies in a convenient way. The restricted cost function in the translog form is 
expressed as follows:  
 

0
1 1 1 1 1 1

2

1 1 1 1 1 1

1 1

1 1ln ( , , , ) ln ln ln ln ln ln2 2

1ln ln ln ln ln ln2

ln ln ln

n m n n m m

i i l l ij i j lk l k
i l i j l k

n m n m n v

il i l ti i tl l t tt ih i h
i l i l i h
m v

lh l h h h
l h

C W Y Z T w y w w y y

w y T w T y T T w z

y z z

α α β α β

δ γ φ θ θ ρ

ϕ ψ

= = = = = =

= = = = = =

= =

= + + + +

+ + + + + +

+ +

∑ ∑ ∑∑ ∑∑

∑∑ ∑ ∑ ∑∑

∑∑
1 1 1

1 ln ln2
v v v

hg h g
h h g

z zψ
= = =

+∑ ∑∑
 
 

where [ ]1 2, ,... vZ z z z=  is a vector of fixed inputs and other exogenous variables and T is 

a technological index.  
 
Applying Shephard’s lemma results in a system of cost share equations as follows:  
 

1 1 1

ln ( , , , ) ln ln ln
ln

n m v

i i ij j il l ih h ti
j l hi

C W Y Z T s w y z
w

Tα α δ ρ
= = =

∂
= = + + + +

∂ ∑ ∑ ∑ γ , 

where denotes share of the ith input in total variable cost. To satisfy the regularity 

conditions, parametric restrictions for this cost function, and thus for the system of the 
derived cost shares, are given below:  

is

 
 Equality of cross-partial derivatives (also known as symmetry condition) 

 

ij ji

lk kl

hg gh

α α

β β
ψ ψ

=

=

=

 

 
 Linear homogeneity in input prices 

 

1
1

n

i
i
α

=

=∑  

 

1 1 1 1
0

n n n n

ij il ti ih
j i i i
α δ γ ρ

= = = =

= = = =∑ ∑ ∑ ∑  ( )1,2,...i n=  
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 Monotonicity (or non-decreasing) in input prices 

1 1 1
ln ln ln 0

n m v

i i ij j il l ih h ti
j l h

s w y zα α δ ρ γ
= = =

= + + + + >∑ ∑ ∑ T  for all  1,2,...i n=

 

 Concavity in input prices: ijα⎡ ⎤⎣ ⎦  is negative semidefinite. It has been increasingly 

acknowledged that the imposition of negative semidefiniteness on ijα⎡ ⎤⎣ ⎦  to 

ensure the curvature condition be met can destroy the flexibility of the functional 
form through imposing a priori restrictions on own- and cross-price elasticities, 
particularly in the case of factor price inelasticity that is common in agricultural 
empirical research (Terrell, 1996, and Diewert and Wales, 1987). 

 
The econometric estimation procedure usually entails the estimation of a system of 
derived cost share equations or a system comprising share equations and the cost 
function itself. For the system where only the share equations are included, an equation 
is usually dropped out of the system since the sum of shares equal unity, which causes 
singularity in the covariance matrix. The parameters of this left-out equation can then be 
recovered after the estimation of the cost share system using the parametric restriction 
for linear homogeneity in input prices. The symmetry and homogeneity conditions are 
often imposed during the estimation process while the monotonicity and curvature 
conditions are checked at all observation points after the estimation.  
 
The estimates of parameters are not usually of central interest, other than whether their 
signs are in accordance with economic theory. They, however, enter the formulas of the 
own- and cross-price elasticities and Allen partial elasticities as follows:  
 

 Allen partial elasticity of substitution  
 

2
2

1                    

1 ( )        

ij
ij

i j

ii ii i i
i

i j
s s

s s i
s

α
σ

σ α

= + ≠

= + −

 for all 

 for all
 

 
 Price elasticity of factor demand  

 

                       ij
ij j

i

s i
s
α

η = + ≠ for all j  

1        ii
ii i

i

s i
s
αη = + − for all  
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2.3. The restricted normalized quadratic cost function 

 
The normalized quadratic functional form has been less frequently used than the 
translog form despite some favourable features, which include self-duality (Shumway, 
1983), constant Hessian matrix and demand equations being linear in normalized prices. 

Define  and '( , , , )C W Y Z T [ ]1 2 1' ' , ' ,... 'nW w w w −= as the total variable cost and input 

prices normalized by the price of input nth. The cost function formulated in normalized 
quadratic form is then: 
 

1 1 1
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Applying Shephard’s lemma results in the input demand equation:  
 

1
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Conditions:  
 

 Homogeneity condition is maintained by the normalization process 
 Symmetry: α αij ji=  

 Concavity: matrix of parameters 
1ij n n

α
1− −×

⎡ ⎤⎣ ⎦  is negative semidefinite. This 

condition can be imposed by Cholesky decomposition, which will lead to 

nonlinear estimation. In this procedure, instead of estimating  
1 1ij n n

α
− −×

⎡ ⎤⎣ ⎦  

directly, the negative of the product of a lower triangle matrix and its transpose is 
estimated as: 
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Diewert and Wales (1987) proved that, unlike the case of the translog functional form, 
the flexibility of the normalised quadratic cost function remains when the global concavity 
restriction is imposed. 
 
3. DATA 
 

3.1. The AAGIS Data  
 
The data used for this study is drawn from a unique dataset of broadacre farms across 
Australia over the period from 1990 to 2005. This data is provided by the Australian 
Bureau of Agricultural and Resource Economics (ABARE). It is drawn from the 
Australian Agricultural and Grazing Industries Survey which collects detailed input costs, 
output receipts and quantities, and values and quantities of invested capital of farm 
businesses that have an estimated annual value of agricultural operation of $22,500 or 
more. The surveyed farms fall into 32 production regions. Within each production region, 
they are first categorized into one of two industries, being cropping or livestock. For each 
industry, farms are further categorized into one of three operation sizes, based on total 
cash receipts for the survey year, being greater than $400,000; between $200,000 and 
$400,000; and less than $200,000. Farms within the same region, same industry and of 
the same size form an observational unit or cell. The average of each variable across 
farms within each cell is then drawn and is used in this study provided that the number of 
farms in the cell is equal or greater than five (for confidentiality reasons). 
 
There is a need to use other data in this study either to fill the gaps caused by the lack of 
the information contained in the ABARE dataset or to add more explanatory power to the 
estimation model. These datasets are the annual ABARE price index series on rural 
sector, the Reserve Bank of Australia’s (RBA) report series on monthly interest rates and 
monthly rainfall data at a rainfall-district level provided by the Australian Bureau of 
Meteorology (ABoM). The ABARE price indices are used for the input prices while the 
RBA’s interest rates are used to estimate the service costs of the capital committed in 
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production. An annual rainfall variable is constructed using the ABoM’s average monthly 
rainfall information to increase the econometric model’s explanatory power as rainfall is 
among the most crucial factors in farming. 
 
There are 120 variables in the dataset received from ABARE covering financial costs 
and revenues, quantities and quality characteristics of outputs, financial and physical 
assets, operator’s age and the hours committed to farming activities. Aggregation of all 
production factors and products into a manageable number of variables is necessary 
before econometric estimation can proceed. Aggregation is decided first on what data is 
available and then how best to bring out information that is useful for economic and 
policy assessment.  
 

3.2. Specifications of input, output and other exogenous variables 
 
In this study where the short-term dual functions are estimated, the production factors 
are grouped into variable and fixed inputs. The five aggregate variable inputs are as 
follows: 
 

(1) Contracts, services and materials for Livestock;  
(2) Contracts, services and materials for Cropping;  
(3) Other contracts, services and materials;  
(4) Hired labour; and 
(5) Service cost of livestock capital (Livestock trading).  

 
This aggregation is similar to that in Moschini (1988) and differs from those in all 
previous empirical studies in Australian broadacre production. For instance, Mullen and 
Cox (1996) estimated a translog cost function in which variable inputs were grouped into 
contracts, services, materials, labour, livestock purchases, and use of livestock capital.  
Ahammad and Islam (2004), Coelli (1996) and McKay et al. (1983) grouped all materials 
and services under one category. Such grouping is necessary to conserve the degrees 
of freedom in these studies because they estimated the profit function that involves price 
variables of both inputs and outputs. Despite this, the grouping of production factors that 
are peculiar to different industries, namely livestock grazing and coarse grains cropping, 
into one category implies that some information on production flexibility is lost. The 
differentiation between inputs that are specific to cropping alone and those specific to 
livestock alone can help shed light on how farmers decide between these two, to some 
extent, competing outputs. This aggregation method is also complementary to the format 
of the data available, in which the surveyed farms are divided into the two industries, 
livestock and cropping. Hired labour and service cost of livestock capital are considered 
alone in the model. Unlike the case of other capital, service cost of livestock capital 
enters the model as a variable input rather than a fixed input to recognize that farmers 
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have some freedom to adjust their stock numbers in response to changing market and 
weather conditions within a year-time window. A detailed description of the data 
aggregation process is presented in Appendix A of this paper.  
 
In addition to the variable inputs, two fixed inputs are also included in the estimation 
model. These are: 

 
(1) Service cost of total land, buildings and other fixed improvements, and plant 

and machinery capital (hereafter referred to as Capital) and; 
(2) Total labour committed by the operator and his family (hereafter referred as 

Fixed labour).  
 

In some preceding studies, e.g. Mullen and Cox (1996), Fisher and Wall (1990) and 
Coelli (1996), capital is further categorised into two groups: (a) land, building and fixed 
improvements; and (b) Plant and machinery. This is done to recognise that the nature of 
these two capital groups differ with respect to the way they are utilized in the production 
process and the rate at which they depreciate. In this study, however, such division is 
not feasible because data on individual capital groups are incomplete. Again, the service 
cost rather the total stock of capital enters the estimation equation. Data on total fixed 
labour value is not available and must be calculated from imputed labour cost, hired 
labour cost and total number of weeks worked. This calculation is made on the 
assumption that hired labour, operator’s labour and family members’ labour are paid at 
the same rate.  A further discussion on fixed inputs is included in the appendix. 
 
A summary of the distribution of the major production costs for the financial year 2005 
and a summary of the total annual production cost, five aggregate variable costs, 
imputed fixed labour cost and total capital for the period 1990 – 2005, respectively, are 
presented in Table 1 and Table 2. As shown in these tables, the distributions of all 
production costs, except for fixed labour, are highly skewed to the right due to the nature 
of the quasi-micro data used. Because of this characteristic, we have chosen to evaluate 
statistics such as elasticities at all sample points, and report their median values, rather 
than to evaluate them at mean values as is conventional.  
 
On the output side, the variables are: 
 

(1) Wheat and other grains;  
(2) Beef and other livestock;  
(3) Sheep; and 
(4) Wool.  
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The grouping of wheat with other grains is based on the same argument for dividing 
contracts, materials and services into those for cropping, as opposed to those for 
livestock.  The aggregation of these variables is also discussed in detail in Appendix A. 
 
Table 1: Summary statistics on major production costs for 2005 
 

Production Costs  Mean  Median 
Contracts - cropping 7,496 3,342 
Contracts - livestock 7,110 393 
Crop and pasture chemicals 16,539 3,989 
Fertiliser 24,436 12,888 
Fodder 21,725 6,978 
Fuel, oil and grease 29,707 19,560 
Insurance 9,712 6,752 
Interest paid 29,807 23,125 
Land rent 5,604 2,805 
Lease payments 5,937 2,010 
Livestock materials 11,489 5,711 
Repairs and  maintenance 37,282 25,957 
Seed 4,127 2,288 
Shearing crutching 9,615 5,196 
Total freight 19,310 8,689 

Note: Values are in current dollars. 
 
Table 2: Descriptive statistics of aggregated production costs 
 

  Total 
variable 
cost 

Contracts, 
materials & 
services - 
Livestock 

Contracts, 
materials & 
services - 
Cropping 

Other 
contracts, 
materials & 
services 

Hired 
labour 

Livestock 
trading 

Imputed 
value of 
fixed 
labour 

Value of 
total 
capital - 
Opening 

                  
Mean 338,192 100,337 35,604 152,815 23,438 25,999 40,673 92,110 
Median 196,477 37,708 16,331 106,653 5,787 6,377 39,263 72,339 
Maximum 4,345,199 2,882,933 350,423 1,210,398 505,735 683,960 105,734 676,085 
Minimum 35,790 1,705 - 18,885 - 75 10,429 7,138 
Standard 
Deviation 

403,710 191,073 47,235 138,214 51,169 62,497 12,376 70,938 

Skewness 4 6 2 2 5 5 1 2 
Kurtosis 23 59 9 10 31 38 4 12 
Jarque-
Bera 

30,466 214,976 3,992 4,568 56,122 89,132 169 6,452 

Probability 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Note: Values are in current dollars.  
 
Regarding the construction of aggregate input indices in this study, the nature of the 
dataset used raises an important issue that is inherent in empirical agricultural 
production research that uses microdata, with probable serious consequences in the 
implementation of the econometric estimation and the estimation results. In practice, the 
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aggregation of inputs and outputs is basically the construction of aggregate price and 
quantity indices. Whether they are Tornqvist, Fisher or Stone indices, at least two out of 
the quantity, price and total value series are needed for each component input/output of 
the aggregate indices. Of these three sequences for each input, only the total value 
(expense) is observed. No data on prices actually paid by individual observational units 
(more accurately the average prices for farms within a cell in this case) has been 
observed. This leads to the use of the ABARE national indices of prices paid by 
agricultural producers in place of prices actually paid by the observed production units. 
This substitution is also not straightforward since the ABARE price indices are not 
available for all individual inputs and some are actually aggregate indices for several 
input components. Moreover, this substitution means that the cross-observational 
variations in prices in the same year are removed. While this practice is common and 
acceptable in previous studies in Australian and international empirical research, it may 
have certain implications in this study for economic estimates and interpretations 
because of the quasi-micro nature of the data used.  
 
Another data-related issue in this study is a high proportion of zero values in data 
caused by the nature of the quasi-micro data used. A large number of farm groups (the 
observational cells) do not produce certain outputs, in particular wheat. For such farms, 
the total receipts for the non-produced outputs are zero, and thus their prices, calculated 
as their total receipts divided by their quantities, are unobserved. This leads to a large 
number of missing values for some aggregate price and quantity indices. The strategy 
for dealing with this problem is to replace the missing price index number by the average 
price index number for all other observed farms in the same state during the same year. 
This allows the full sample to be used in the econometric estimation of the share/quantity 
systems. 
 
In addition to the lack of input prices and the large proportion of missing data, this study 
encounters a problem being the inclusion of farm observations that use non-broadacre 
production technologies in the dataset. The presence of such farms in the data may 
have a distorting effect on the research outcome. Thus, a consideration was given to 
excluding farms in regions that may represent technologies that do not fit well with the 
definition of broadacre production. The decision on which regions to be excluded is 
made based on practical industry knowledge possessed by industry partners John D. 
Mullen and Garry Griffith and the inspection of the output mix. The data cells are the 
observational cells in Northern Territory, Tasmania, Cape York and the Queensland Gulf 
region in Queensland, the Kimberley and the Pilbara and the Central Pastoral regions in 
Western Australia, the Coastal region in New South Wales and the North Queensland 
Coastal - Mackay to Cairns region. 
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Beside the input and output variables, other exogenous variables considered in this 
study consist of an industry dummy variable to represent cropping and livestock industry, 
two zone dummy variables to represent three production zones, two size dummy 
variables to represent three production sizes, a time variable as a technological proxy 
and a variable for annual rainfall for each production region. (Note, with the rainfall data 
from ABoM it is possible to create two variables - the average rainfall over the period 
from January to June and that over the July – December period - as in Fisher and Wall 
(1990) instead of one annual rainfall variable. The results of these two alternatives, 
regarding parameter estimates and elasticities, are close to each other. Based on a 
judgement that production response to the timing of rain is not a primary focus of this 
study and to conserve the degrees of freedom, the annual rainfall variable is chosen 
over the set of two half-year rainfall variables in this study). 
 

3.3. A unique feature of the Data – Adjusting for heteroskedasticity 
 
Perhaps the most important problem of this study is the potential heteroskedasticity in 
the econometric modelling due to the use of farm averages within each observational 
cell. Farms are normally assumed to act independently from each other and the error 
terms in econometric models using farm-level data are assumed to be identically and 
independently distributed (i.d.d.) with constant variance. The observed data used for 
econometric estimation in this study are average values and quantities across farms 
within the same production region, within the same industry and belonging to the same 
size category – an observational cell. This, together with the fact that sample size varies 
across the observational cells, implies that the variance of the error terms varies across 
observational units. (More accurately stated, the error terms’ variance decreases as the 
number of farms in the cell increases). This kind of heteroskedasticity is significantly 
more serious in this study than in preceding Australian studies (and international studies 
to the authors’ knowledge) where region, state or national average data are used. 
 
The robust econometric estimation requires some action to correct for heteroskedasticity 
or to alleviate its consequences. In a simple linear regression, the conventional means 
for overcoming this problem is to weight variables by the square root of the sample size 
(Wooldridge, 2006). While it is straightforward to arrive at the conclusion that such 
scaling is necessary for the quantity system derived from the normalized quadratic cost 
function, it is harder to determine whether it is also needed for the share system due to 
the appearance of the shares rather the quantities on the left-hand side of the 
corresponding equations. The following derivation leads to an answer that the share 
system also should be weighted during econometric estimation.  
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If farm-level prices and quantities were observed, the cost share for input i is: 
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where is is the average of cost shares for input i across farms in the cell. In this special 

case, where is  instead of  are used for econometric estimation, weighting by the is
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square root of the sample size  would be needed to account for heteroskedasticity. 
Despite the fact that the assumption that all farms within a cell have the same production 
cost may be unrealistic, the derivation above is to show that there would be some 
correlation between the cell sample size and the variance of the error terms, and that 
weighting is more likely to be appropriate than to ignore the effect. Moreover, the 
surveyed farms are classified into three farm sizes. Therefore, the total production cost 
for farms within a cell can be fairly similar to each other, which reinforces (3). Moreover, 
simple linear regressions actually show that, at least some linear relationships exist 
between the cell sample size and the squared estimated residuals obtained from the 
share system where no weighting is undertaken. So, weighting the share system is 
appropriate to correct heteroskedasticity caused by the nature of the quasi-micro data 
used in this study.   

m

 
4. EMPIRICAL ESTIMATION AND RESULTS 
 
With five variable inputs, four outputs, eight exogenous variables and a time variable as 
described above, the system of cost share equations derived from the translog cost 
function is:  
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After adding an error term to each equation and leaving out the share equation of 
livestock trading input, the system consisting of share equations for Contracts, materials 
and services – livestock (CMS Livestock); Contracts, materials and services – cropping 
(CMS Cropping); Other contracts, materials and services (Other CMS); and Hired labour 
costs is estimated using the full information maximum likelihood (FIML) estimation 
method. The cost function is initially included in the equation system, but the estimation 
fails to give a result. Consequently the cost function is excluded from the system. (This 
exclusion is common in dual applications using the translog functional form). As 
discussed in Section 2.2, when the share system does not include the cost function 
itself, a cost share equation is dropped out of the system before the estimation 
proceeds.  Using FIML, the parameter estimates are invariant to the equation being 
deleted from the system for the translog functional form. Parametric restrictions for 
symmetry and homogeneity conditions are imposed before the econometric estimation 
proceeds. 
 
With respect to the normalized quadratic cost function, any of the five variable costs can 
be chosen to be the normalizing factor or numeraire. Once the numeraire is decided, 
Shephard’s lemma is applied and a system consisting of four quantity demand equations 
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for the remaining inputs is derived. The homogeneity condition is maintained through the 
normalizing process and the symmetry condition is imposed parametrically during the 
FIML estimation.  In this study, all systems with five alternative numeraires are estimated 
and the system with the best estimation results, judged on the basis of the proportion of 
significant own-price coefficients, the proportion of own-price coefficients that have 
correct (negative) signs and the percentage of significant coefficients in the whole 
system, is chosen. The invariance to the equation dropped out of the system does not 
hold for this functional form, implying that different normalizing factors result in different 
estimated relationships for the same input pairs.  
 
Once the share (quantity) system derived from the translog (normalized quadratic) cost 
function is estimated, the coefficient estimates and fitted shares (quantities) are used to 
calculate the Allen partial elasticities of substitution and price elasticities. The standard 
errors of the elasticities are estimated using the bootstrapping method following 
applications of Eakin, McMillen and Buono (1990), Green, Hahn and Rocke (1987), 
Krinsky and Robb (1986) and Freedman and Peters (1984). The bootstrapping method 
is used instead of the easier traditional first-order variance approximation (delta method) 
because the elasticities are nonlinear functions of the estimated coefficients. The 
bootstrapping procedure is described in detail in Appendix B.  
 

4.1. Econometric estimation and coefficient estimates 
 
The estimated coefficients of the two equation systems derived from the two functional 
forms are presented in Table 3 and Table 4. For the estimation result of the translog cost 
share system, 73% (69 out of 95) of the system coefficients are significant at 5% 
significance level and all self-price coefficients ( iiα ) are highly significant. However, only 

the own-price coefficients of the CMS Livestock and Hired labour equations have the 
expected signs. The percentages of negative share predictions (or violations of the 
monotonicity condition) are 4.1%, 14.7%, 0.3%, 21.7% and 13.2% for CMS Livestock; 
CMS Cropping; Other CMS; Hired labour; and Livestock trading inputs respectively.  
 
As shown in Table 4, the overall performance for the quantity system derived from the 
normalized quadratic cost function is not as good as that for the share system. The 
percentage of the significant coefficients is smaller (56%) and one self-price coefficient is 
not significant. The incidence of violating the monotonicity condition is also higher for this 
system compared to the estimated share system.  All self-price coefficients iiα s, 

however, are negative, even without imposition of this constraint. This implies that 
demand for an input decreases if its price increases, which is in accordance with 
economic theory.  
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In regards to nonprice variables, i.e. output quantities, dummy variables, rainfall and time 
trend, the coefficient estimates are generally statistically significant in both share and 
quantity systems. It is notable that beef output is highly significant in all equations of 
either system. Meanwhile, wool is not significant in all translog share equations, and 
similarly sheep is not significant in all but one share equations. These two outputs 
display greater statistical significance in the normalized quadratic quantity system. All 
other nonprice variables are significant in at least three out of five equations in the share 
system. They, except for the dummy variable Size 2, also have explanatory power in at 
least two out of four equations in the quantity system. 
  
Neither of the estimated systems satisfy the concavity condition. To check if the share 

system meets the concavity condition, the matrix ˆ 'A s s s− + , where ,  is 

the  diagonal matrix with its diagonal elements being the fitted shares and  is the 
column vector of the fitted shares, is computed and checked for negative 
semidefiniteness at each observational point (Diewert and Wales, 1987; and Terrell, 
1996). This matrix is not negative semidefinite at almost all data points. For the quantity 
system derived from the normalized quadratic cost function, the estimated matrix 

is not negative semidefinite. The attempt to estimate this system with the 

negative semidefiniteness of 
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⎡ ⎤⎣ ⎦ being imposed using the Cholesky 

factorization procedure as discussed in Section 2.3 fails to give a result. These results 
together indicate that the cost function is not concave in input prices. 
 



Table 3: Estimated parameters for share system derived from translog cost function 

  Share equation 
  CMS Livestock CMS Cropping Other CMS Hired labour Livestock trading 
  Coefficients z-Stat. Coefficients z-Stat. Coefficients z-Stat. Coefficients z-Stat. Coefficients z-Stat. 
Intercept 0.766** 5.62 0.151 1.60 0.161 1.41 0.122** 3.23 -0.2** -3.65 
CMS Livestock price -0.086** -6.88 0.023** 2.98 0.044** 4.51 0.008** 2.88 0.01** 3.01 
CMS Cropping price 0.023** 2.98 0.108** 3.94 -0.234** -10.95 0.105** 4.69 -0.004 -1.14 
Other CMS price 0.044** 4.51 -0.234** -10.95 0.222** 8.85 -0.013 -1.04 -0.019** -5.28 
Hired labour price 0.008** 2.88 0.105** 4.69 -0.013 -1.04 -0.094** -3.38 -0.007** -4.24 
Livestock trading price 0.01** 3.01 -0.004 -1.14 -0.019** -5.28 -0.007** -4.24 0.019** 8.75 
Crops output quantity -0.003** -2.78 0.002** 2.90 0.001 0.72 0.000 -1.12 0.000 1.04 
Sheep output quantity 0.001 0.30 0.002 1.07 0.003 1.57 0.000 -0.13 -0.005** -6.74 
Beef output quantity 0.016** 6.91 -0.016** -14.66 -0.006** -3.36 0.003** 4.29 0.003** 3.47 
Wool output quantity 0.000 -0.14 0.000 0.00 -0.001 -0.35 0.000 0.06 0.001 1.29 
Capital -0.03** -4.61 0.004 0.92 -0.007 -1.22 0.018** 9.60 0.014** 5.21 
Fixed labour -0.041** -3.81 -0.003 -0.36 0.064** 6.39 -0.032** -11.68 0.012** 2.59 
Cropping industry -0.144** -18.84 0.114** 23.98 0.076** 12.76 -0.005** -2.69 -0.041** -13.00 
Wheat Sheep zone 0.003 0.26 0.06** 6.99 -0.013* -1.65 -0.013** -5.43 -0.037** -14.49 
High Rainfall zone -0.003 -0.26 0.083** 9.28 -0.03** -3.49 -0.017** -6.42 -0.033** -10.54 
Size1: > $400,000 0.075** 6.27 0.056** 7.32 -0.123** -12.37 0.019** 5.84 -0.027** -5.53 
Size2: $200,000-$400,000 0.043** 4.58 0.024** 4.27 -0.06** -8.36 0.009** 3.97 -0.015** -5.01 
Annual rainfall 0.007 1.09 -0.004 -0.77 -0.014** -2.80 0.004** 2.12 0.008** 3.55 
Time 0.003** 5.47 0.002** 3.85 -0.005** -9.90 0.001** 3.55 -0.002** -6.21 

 
Note: ** Significant at 5% level 

*  Significant at 10% level 



Table 4: Estimated parameters of quantity system derived from normalized quadratic cost function 

  Input quantity equation 
  CMS-livestock CMS-Cropping Hired labour Livestock trading 
  Coefficients z-Statistic Coefficients z-Statistic Coefficients z-Statistic Coefficients z-Statistic 
Intercept 78,674.9 0.88 -68,632.9** -3.30 527.8 0.06 -6,702.4 -0.99 
CMS Livestock price -125,638.9** -3.30 788.0 0.15 -615.2 -0.27 4,821.9 1.51 
CMS Cropping price 788.0 0.15 -22,975.7 -1.61 37,232.2** 3.51 1,115.0 0.74 
Hired labour -615.2 -0.27 37,232.2** 3.51 -45,803.9** -3.23 -50.0 -0.08 
Livestock trading price 4,821.9 1.51 1,115.0 0.74 -50.0 -0.08 -4,765.5** -5.37 
Crops output quantity 0.017 0.28 0.13** 49.93 0.007** 3.83 -0.006** -2.00 
Sheep output quantity 0.439** 3.11 0.122** 4.98 -0.007 -0.91 -0.029** -2.33 
Beef output quantity 1.031** 55.39 -0.024** -3.71 0.056** 39.94 0.046** 33.58 
Wool output quantity 0.154* 1.77 -0.03* -1.69 0.072** 15.69 -0.004 -0.58 
Capital -0.112 -1.10 0.078** 4.55 0.075** 12.20 0.06** 9.85 
Fixed labour -1.607** -3.14 -0.241** -3.16 -0.342** -11.93 0.156** 4.30 
Cropping industry 3642.9 0.11 8,778.4** 2.85 4,397.9** 3.66 -2,615.5 -1.38 
Wheat Sheep zone 164,010.7** 9.33 12,721.4** 3.19 -1,206.4 -1.07 -14,766.0** -9.42 
High Rainfall zone 133,778.1** 4.96 13,701.1** 3.00 -2,774.3** -2.11 -13,004.8** -8.57 
Size1: > $400,000 25,642.4 0.74 31,415.7** 6.98 6,393.9** 3.60 2,211.1 0.97 
size2: $200,000-$400,000 21,095.7 0.66 7,373.6* 1.74 -182.6 -0.11 -526.0 -0.26 
Annual rainfall -15,653.2 -1.16 5,942.2** 2.74 961.9 0.99 3270.3** 3.37 
Time 127.2 0.07 1,641.6** 6.41 886.5** 4.69 -401.4** -3.18 

 
Note:  ** Significant at 5% level 

*  Significant at 10% level 



4.2. Estimated elasticities ( ijσ and ijη ) 

 
Estimated Allen partial elasticities of substitution (with their bootstrapping standard 
errors) from the two functional forms are shown in Table 5 and Table 6. The two results 
give the same substitution and complementarity relationships for pairs of inputs except 
for the CMS Livestock – Hired labour pair. Almost all inputs are substitutes to each 
other, except for the CMS Cropping – Other CMS and Livestock trading – Hired labour 
pairs. With an exception of the relation between CMS Cropping and Hired labour, the 
degrees of substitution and complementarity are generally small. The computed 
elasticity of substitution between CMS Cropping and Hired labour is very large, 13.6 for 
the translog cost function and 15.6 for the normalized quadratic function. For the CMS 
Livestock – Hired labour pair, the translog cost function indicates that they are 
substitutes while the normalized quadratic function states the opposite.  
 
Table 5: Allen partial elasticities of substitution - Translog functional form a, b 
 

 

  
 

Contracts, 
materials & 
services _ 
Livestock 

Contracts, 
materials & 
services _ 
Cropping 

Other 
contracts, 
materials & 
services 

Hired 
labour 

Livestock 
trading 

Contracts, materials & services _ Livestock .     
       
Contracts, materials & services _ Cropping 1.83 .    
  (0.193)     
Other contracts, materials & services 1.37 -1.38 .   
  (0.068) (0.211)    
Hired labour 1.77 13.60 0.46 .  
  (0.22) (2.311) (0.445)   
Livestock trading 1.83 0.40 0.24 -1.79 . 
  (0.147) (0.235) (0.089) (0.356)  
Note:  a Medians of elasticities evaluated at all observation points 
               b Bootstrapping Standard Errors (1000 trials) are in parentheses  
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Table 6: Allen partial elasticities of substitution - Normalized quadratic functional form a, b 

 

  

Contracts, 
materials & 
services _ 
Livestock 

Contracts, 
materials & 
services _ 
Cropping 

Other 
contracts, 
materials & 
services 

Hired 
labour 

Livestock 
trading 

Contracts, materials & services _ Livestock .     
       
Contracts, materials & services _ Cropping 0.052 .    
  (0.002)     
Other contracts, materials & services 1.651 -0.603 .   
  (0.036) (0.016)    
Hired labour -0.100 15.571 0.573 .  
  (0.003) (0.479) (0.023)   
Livestock trading 1.385 0.818 0.493 -0.072 . 
  (0.042) (0.024) (0.021) (0.003)  
Note:  a Medians of elasticities evaluated at all observation points 
               b Bootstrapping Standard Errors (200 trials) are in parentheses  

 
Table 7 and Table 8 respectively present own- and cross-price elasticities (and their 
bootstrapping standard errors) estimated from the translog and normalized quadratic 
systems. Both results have negative own-price elasticities, which is as expected. Most 
corresponding elasticities in the two tables have the same signs, indicating that the two 
functional forms give the same directions in their estimated responsiveness of input 
demands to price changes.  As shown in the two tables, demands for most inputs are 
inelastic with respect to their own prices and prices of other alternative inputs. Notably, 
demand for Hired labour is highly responsive, but in opposite directions, to its own price 
and CMS Cropping price with magnitudes being greater than two in either functional 
form. This implies that a 1-percent change in these two prices will lead to a greater than 
2-percent change in demand for Hired labour. The elasticity of demand for CMS 
Cropping with respect to Hired labour also ranks high in absolute value compared to 
other elasticity estimates. In addition, two sets of elasticities show that around three 
quarters of the calculated elasticities are statistically significant. An obvious difference 
between the two results is that the own-price elasticity of demand for CMS Livestock 
estimated from the translog function is -1.139 compared to -0.868 from the normalized 
quadratic function.  
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Table 7: Own- and cross-price elasticities - Translog functional form a, b

 

  Price         

Quantity 

Contracts, 
materials & 
services - 
Livestock 

Contracts, 
materials & 
services - 
Cropping 

Other 
contracts, 
materials & 
services 

Hired 
labour 

Livestock 
trading 

Contracts, materials & services _ Livestock -1.139 0.217 0.745 0.075 0.098 
  (0.041) (0.025) (0.033) (0.012) (0.015) 
Contracts, materials & services _ Cropping 0.313 -0.215 -0.728 0.620 0.007 
  (0.031) (0.137) (0.111) (0.109) (0.021) 
Other contracts, materials & services 0.298 -0.312 -0.036 -0.001 -0.004 
  (0.018) (0.041) (0.048) (0.022) (0.007) 
Hired labour 0.409 2.357 0.237 -2.901 -0.098 
  (0.061) (0.43) (0.232) (0.501) (0.026) 
Livestock trading 0.480 0.020 0.118 -0.115 -0.546 
  (0.049) (0.052) (0.047) (0.016) (0.022) 
Note:  a Medians of elasticities evaluated at all observation points 
               b Bootstrapping Standard Errors (1000 trials) are in parentheses  

 
Table 8: Own- and cross-price elasticities - Normalized quadratic functional form 
  Price         

Quantity 

Contracts, 
materials & 
services _ 
Livestock 

Contracts, 
materials & 
services _ 
Cropping 

Other 
contracts, 
materials & 
services 

Hired 
labour 

Livestock 
trading 

Contracts, materials & services _ Livestock -0.868 0.009 0.790 -0.006 0.063 
  (0.065) (0.018) (0.067) (0.01) (0.041) 
Contracts, materials & services _ Cropping 0.013 -0.638 -0.364 0.935 0.042 
  (0.197) (0.197) (0.127) (0.021) (0.059) 
Other contracts, materials & services 0.363 -0.117 -0.334 0.045 0.030 
  (0.076) (0.123) (0.034) (0.012) (0.037) 
Hired labour -0.021 2.006 0.280 -2.300 -0.003 
  (0.334) (0.235) (0.414) (0.024) (0.054) 
Livestock trading 0.407 0.152 0.259 -0.006 -0.887 
  (0.056) (0.06) (0.022) (0.031) (0.077) 
Note:  a Medians of elasticities evaluated at all observation points 
               b Bootstrapping Standard Errors (200 trials) are in parentheses  

 
4.3. Technology Tests 

 
It is possible using the cost function to examine whether the underlying production 
technological structure has certain characteristics such as 
diminishing/constant/increasing returns to scale or nonjointness and separability of 
inputs and outputs. In this study, since the cost function is excluded from the 
share/quantity system, it is not possible to conduct tests for increasing or decreasing 
returns to scale because lkβ s are not estimated. It is, however, possible to test for input 

separability. Subject to homogeneity and symmetry, the parametric restriction test for 
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separability of all inputs using the normalized quadratic functional form is:  
0 ,ij i jα = ∀ ≠  and . This joint equality test is rejected at 5% 

significance level using the Wald statistic. Inspection of the system estimates reveals 
that the equations of CMS Livestock and Livestock trading quantities have insignificant 
coefficients for all other alternative input prices. The joint test for these coefficients being 
equal to zero has a p-value of 0.70, suggesting that demands for CMS Livestock and 
Livestock trading are independent of other input prices.  

 , 1,2,i j n= … 1−

 
 

4.4. Discussion of results 
 
The econometric estimation results are overall robust for the cost function using translog 
and normalized quadratic functional forms. The implied elasticities of substitution and 
price elasticities from the two systems are in line with each other in terms of the direction 
of the pair-wise relationships. A majority of these measures are also statistically 
significant and all own-price elasticities have the expected signs.  The two sets of the 
Allen partial elasticities of substitution are generally small and comparable to those in 
McKay, Lawrence and Vlastuin (1982)’s study of Wheat/sheep zone. (The comparison 
may not be accurate due to differences in geographical coverage, nature of data used, 
functional forms used, and data aggregation in econometric estimation but provides 
some basis for validating the results found in this study). The high degree of substitution 
between Hired labour and CMS Cropping can be explained by the fact that many 
production tasks involved in cropping are not as highly skilled as those involved in 
livestock production (possibly with the help of mechanization in production process) that 
can be substituted for by low skilled hired labour.  
 
Due to differences in geographical coverage, the nature of data used, data aggregation 
methods, the objective function estimated and the functional form used, it is not possible 
to compare the estimated parameterized input equations and the implied elasticities of 
substitution and price elasticities in this study to those in previous studies. However, in 
their estimation of profit functions for Western Australian broadacre production, Coelli 
(1996) and Ahammad and Islam (2004) found that demand for labour (mixture of hired 
labour and other labour sources) is more responsive to its own price and crop prices 
than to the prices of animal products. This finding, to some extent, shares the same 
trend as the results in this study that demand for Hired labour is more elastic to its own 
price and CMS Cropping price than to CMS Livestock, Other CMS and Livestock trading 
prices. Besides, the high demand-price responsiveness between Hired labour and CMS 
Cropping is in agreement with findings on their substitutability measured by the Allen 
partial elasticities. However, it is noteworthy that due to the use of national input price 
indices in the estimation, the resulting price elasticities may be higher than what they 
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should be, especially for the case of Hired labour demand with respect to its own price 
and CMS Cropping price. The data on input quantities are at a quasi-micro farm level 
while price data are at a national level. This mismatch in data implies that for a given 
price change the demand response is greater than it would be if quantities at a state, 
region or national level were used. This will result in higher price elasticities. This effect, 
however, may be offset by the reduction in the effects that data aggregation has on 
parametric and elasticity estimates.  
 
As in many previous studies, the two systems of shares and quantities derived from the 
two functional forms in this study do not satisfy parametric restrictions for the concavity 
condition. The imposition of this condition using Cholesky factorization in the normalized 
quadratic system also did not succeed. This can also be partly explained by the nature 
of the data used for the estimation. In this study, for a given year, input prices are the 
same across observational points but, because of the nature of quasi-micro data, input 
quantities vary greatly. This, in effect, reduces or straightens any curvature present in 
the cost function. Moreover, for the same year-to-year change, the directions in demand 
response are not necessarily the same from an observational cell to another. The price 
changes individual farms face are not the same and are not exactly what is reflected in 
the movements in the national price index numbers. These two insights can help explain 
the failure of the cost function in meeting the concavity condition in this study. 
 
5. CONCLUSION 
 
Technological and economic relationships between production inputs in the Australian 
broadacre sector have been estimated in this paper, using a multi-product restricted cost 
function framework and a unique quasi-micro farm-level data drawn from the AAGIS. 
Issues and problems distinctive to this study, especially heteroskedasticity due to the 
quasi-micro nature of the data, are accommodated. Estimation results from the translog 
and normalized quadratic functional forms are robust with high proportions of significant 
parameters. The Allen partial elasticities of substitution, and own- and cross-price 
elasticities derived from both functional forms have the expected signs. The two 
functional forms are in agreement with each other in terms of the direction of 
relationships between input pairs. 
 
The estimated empirical results and measures in this study are at a national level as all 
broadacre production regions are included in the data. They are useful for social and 
economic assessment, and policy developments for the Australian rural sector as a 
whole. It is found that most production inputs are substitute to each other. The aggregate 
Contracts, materials and services for cropping input is highly substitutable for Hired 
labour and vice versa. Most production inputs are also found to be unresponsive to 
changes in own prices or other input prices. Demand for Hired labour is highly 
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responsive to own price and price of Contracts, materials and services for cropping. 
Moreover, structural tests using the normalized quadratic functional form indicate that 
demands for Contracts, materials and services for livestock and for Livestock trading are 
separable from other input demands. This implies that there is some degree of 
independence between livestock and cropping production in the short run. 
 
Symmetry and homogeneity conditions were imposed during the econometric estimation 
while monotonicity and concavity conditions were checked afterwards. The monotonicity 
condition is violated at a significant percentage of data points, and the concavity 
condition is not satisfied by the estimated cost function, using either functional form. This 
may be attributable to the quasi-micro nature of the data used and the unavailability of 
input prices actually paid by individual observational units. The observed input quantities 
are at a quasi-micro level while the observed prices are at a national level. It should also 
be noted that this mismatch in the data may have inflated the price responses. 
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APPENDIX A: DATA AGGREGATION 
 

A.1.  Inputs 
 
Contracts, Services and Materials for Livestock 
 
Production factors that are aggregated into the Contracts, services and materials for 
livestock (CSM Livestock) index are fodder, livestock materials, livestock purchases, 
contracts for livestock, AI stud herd test, vet fees, agistment expense, stores and rations, 
and shearing and crutching. The corresponding price indices for these production inputs 
sourced from ABARE’s Australian Commodities Statistics – Producer Paid Prices are 
those under the labels: fodder and feedstuffs, chemicals and medicines, contracts, and 
shearing rates. The quantities of these inputs are derived by dividing the individual 
expenses on these inputs by their corresponding ABARE producer paid price index 
numbers. The resulted quantities and the ABARE price indices are then used to 
construct the aggregate CSM Livestock quantity and price indices.  
 
In this construction, there is a need to fully account for the livestock that are actually 
brought into production during each surveyed year. This is done by adding negative 
operating gains and livestock transferred onto the farm during the surveyed year to the 
recorded livestock purchases. While the quantity and value of livestock purchases both 
are observed, only the values of the operating gains and inward transfers are available. 
Therefore, the quantities of these two movements are calculated as their values are 
divided by the corresponding selling prices. 
 
Contracts, Services and Materials for Cropping 
 
For the aggregate price and quantity indices of the Contracts, services and materials for 
cropping (CSM Cropping), the component inputs are seed, fertilizer, crop – pasture 
chemicals, and contracts for cropping. The aggregation process is similar to that 
followed in the aggregation of CSM Livestock. The ABARE Australian Commodities 
Statistics – Producer Paid Prices indices for seed, seedlings and plants, fertilizer, 
chemicals and medicines, and contracts are again used in place of the actual paid 
prices.  
 
Other Contracts, Services and Materials 
 
The Other contracts, services and materials (Other CSM) aggregate indices are 
constructed based on the rest of production inputs except for the hired labour which 
stands on its own in the estimation model. They are fuel, oil and grease, electricity, 
repairs buildings structure, repairs machinery and plant, handling and marketing, total 
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freight, interest paid, rates, insurance, land rent, lease, telephone, other administrative 
items, rates and drain water, accountancy fee,  advisory services, other materials and 
other services. Respectively, the ABARE producer paid price indices used are Fuel and 
Lubricants, Electricity, Maintenance – Structure, Maintenance – Plant and Equipment, 
Selling expenses, Freight outwards, Interest paid, Rates and Taxes, Insurance, Other 
overheads, and Other materials and services. 
 
Hired Labour 
 
Hired labour quantity and price indices are constructed based on the total expense on 
hired labour and the index for wages available from the ABARE Australian Commodities 
Statistics – Producer Price Paid and thus the quantity index can be derived implicitly.  
 
Livestock Trading 
 
The last item in the catalogue of the variable inputs is the Livestock trading. Livestock 
can be thought as a capital item due to the fact that only part of the total stock of 
livestock at the beginning of each production period will be consumed during that period. 
For instance, only those cattle or sheep that reach their final stage of the production 
process will be turned off while others are carried over to the next production cycle. The 
farmers, however, can adjust the levels of livestock on hold within a fairly short time 
period if she/he view such action is profitable or necessary for survival. This renders the 
livestock holdings having the nature of the variable production factors. One way to 
account for these two facets in the nature of livestock held is to estimate the service cost 
of livestock and treat it as a variable input in the estimation model. It is referred to as 
Livestock trading in this study. The service cost is formulated as being equal to the 
opening balance of livestock on hold multiplied by the real interest rate. The quantity of 
the service cost for livestock is assumed to be proportional to the livestock level.  
 
The data on the opening balance of livestock on hold is not available. It is, therefore, 
derived using other available information. In this study, the derivation of this figure is 
based on the estimation of the number of livestock held at the beginning of year and the 
average of livestock purchasing and selling prices. The opening number of livestock is 
equal to the number of livestock at the end of the year plus the number of livestock 
turned off minus the number of livestock purchased or transferred in and minus the 
estimated number of livestock operating gains. The estimated opening number of 
livestock is then multiplied by the average livestock purchasing and selling prices to 
arrive at the opening value of livestock on hold.  
 
The real interest rate is calculated as the nominal interest rate of three-year fixed term 
deposits in retail banking minus the inflation rate. The monthly interest rates for this 



 34 

category of term deposits are available from the RBA website and are averaged to give 
rise to the yearly rate. The two-year moving average of this yearly interest rate series is 
used to calculate the service cost. 
 

A.2. Capital 
  
Total capital 
 
The physical capital used in farm production are incorporated as fixed inputs in the 
estimation model. This is justified by the fact that it usually takes more than one 
production cycle for farmers to adjust the amounts of land, building and other fixed 
improvements as well as plants and machinery to respond to market changes. The 
figures needed for the estimation model is the opening balances of these capital items. 
However, the opening balance of the capital stocks are not included in the ABARE’s 
dataset received and have to be calculated using other available information. The 
following formula: Opening balance = Closing balance + Depreciation - Net capital 
additions - Total imputed capital appreciation, is used in this study for this purpose. 
Ideally, the capital items should be treated separately as individual items because of the 
differences in how they are utilized in farming and the rate at which they depreciate. 
Since there no data on depreciation of individual capital items, one aggregate capital 
variable which is the sum of land, buildings and other fixed improvements, and plants 
and machineries is created. Due to missing data in closing balance of plants and 
machineries, an alternative calculation is proposed where Opening balance of total 
capital = Farm equity closing balance/Equity ratio*100 + Depreciation - Net capital 
additions - Total imputed capital appreciation - Calculated opening livestock capital. With 
this calculated opening balance, the service cost of the capital is estimated as the 
opening balance multiplied by the real interest rate plus the depreciation costs. The 
resulting service cost of capital, together with the price index of capital published in the 
annual ABARE Australian Commodities Statistics, are then used to create the implicit 
index of capital quantity.  
 
Fixed labour 
 
For quantity and price indices of the operator’s and family’s labour, the quantity is the 
total worked weeks adjusted for the estimated number of weeks worked by hired labour. 
Assuming that hired labour and fixed labour receive the same wage, the number of 
weeks worked by the operator and his/her family are the ratio of the total hired labour 
cost over the imputed labour cost multiplied by the total number of weeks worked by all 
labours. The value of this fixed input is the imputed labour cost variable recorded by 
ABARE in the requested dataset. The price index is derived implicitly by dividing the 
imputed labour cost by the quantity index. 
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A.3. Outputs 

 
The construction of quantity and price indices for outputs is less complicated than that of 
the variable and fixed inputs since both value and quantity of individual outputs are 
observed in the dataset. With the available data on value and quantity, the actual price 
received by each observational unit (a group of farms in the same production region, 
same industry and same size category) for each output is derived by dividing the 
corresponding value by the corresponding quantity. With these three price, quantity and 
value variables, the construction of aggregate price and quantity indices is 
straightforward.   
 
Wheat and Other crops 
 
Wheat is grouped with barley, oats, grain legumes, oilseeds, canola, field peas, lupins 
and sorghum under the Wheat and Other grain category. Their values are observed as 
gross receipts in the dataset used.  
 
Sheep 
 
Sheep and Wool outputs are incorporated into the estimation model separately. The 
quantity of sheep is the number of sheep sold, adjusted by the positive sheep inventory 
gain, and the sheep selling price equals the sum of gross receipt for sheep and divided 
by the number of sheep sold. The value of sheep sold plus the value of positive sheep 
inventory gain is the total value of sheep produced. For Wool, total value of wool 
production is equal to the actual wool price received, which is calculated as the gross 
receipt for wool divided by kilograms of wool sold, multiplied by number of kilograms of 
wool actually produced.  
 
Wool 
 
Beef and Other livestock 
 
Beef is grouped with Other livestock sold. There is a need for adjustments in the quantity 
of beef sold due to changes in beef inventory during the surveyed year. The number of 
beef turnoff, which is the sum of the number of beef sold and number of beef transferred 
out, is used instead of number of beef sold. The positive beef inventory (operating) gain 
is added to the value of beef produced (or turned off). The number of beef operating gain 
is approximated by dividing the value of beef operating gain by the average of beef 
purchasing and selling prices. The beef selling price equal gross receipts from beef 
divided by quantity of beef sold. The index of price received for the overall livestock 
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sector from the annual ABARE Australian Commodities Statistics is used for the price 
index of the Other livestock component. 
 
APPENDIX B: ESTIMATING STANDARD ERRORS USING BOOSTRAPPING 
 
Applications of the bootstrapping method to calculate the standard errors of elasticities 
include Eakin et al. (1990), Green et al. (1987), Krinsky and Robb (1986) and Freedman 
and Peters (1984). This study follows the procedure of calculating the standard errors 
described in Eakin et al. (1990), which is as follows:  
 

1. Run the estimation of share/quantity systems using FIML. 
2. Create and save the residuals from the system. 
3. Create a new sample of residuals by drawing randomly with replacement from 

the estimated residuals (bootstrapping). 
4. Create an artificial sample of the dependent variables by adding the newly 

drawn sample of residuals to the fitted values of dependent variables from Step 
1. 

5. Run the estimation of share/quantity systems using FIML using the artificial 
sample of the dependent variables and the actual sample of the independent 
variables. 

6. Calculate and save Allen partial, own-price and cross-price elasticities using the 
estimated parameters and predicted shares/quantities from Step 5. 

7. Save the median of the calculated elasticities 
8. Repeat the procedure described in Step 3 to step 7 (a trial) for a number of 

times – (1000 trials for the share system and 200 trials for the quantity system) 
9. Standard errors of the distribution of the medians of the elasticities repeatedly 

calculated from all the trials are the standard errors of interest. 
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