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ABSTRACT 
 
The Environmental Quality Incentives Program and other voluntary Federal 
conservation programs follow a similar approach for enrollment. Consistent with the 
legislation, agency personnel identify eligibility criteria, suitable conservation 
practices, and a process to score, rank, and select applications for funding. Our 
research outlines a formal multiple criteria decision analysis system that is broadly 
applicable to current Federal conservation programs to score, rank, and enroll 
applications, and distribute program funds. Then, we apply the decision system to 
Indiana’s EQIP program using data from 2005. The incorporation of GLEAMS model 
improved our estimates of water quality impacts by reintroducing the spatial 
heterogeneity.   
 
Keywords: Multiple Criteria Decision Analysis, Federal Conservation Programs, 

Environmental Quality Incentives Program, GLEAMS 
 

 
I. INTRODUCTION 

 
Agricultural activities contribute to numerous environmental and potentially 

harmful health problems. Row crop production and conventional tillage on sloping 

lands degrade soil resources.  One or two crops such as corn and soybeans grown 

over millions of acres in the Midwest significantly reduce biodiversity.  Runoff 

waters from agricultural fields transport eroded soils, nutrients, and chemicals to 

nearby streams where these contaminants degrade aquatic habitats, negatively impact 
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water supply systems, and reduce recreational activities.  Smoke from agricultural 

burning, dust from tillage, and pesticide drift from spraying pollute the air we breathe, 

thus affecting our respiratory system (Feenstra 1997).  

 

To mitigate nonpoint source pollution, improve the environment, and reduce 

potentially adverse health impacts associated with agricultural production, the Federal 

government offers technical, financial, and educational support to farm and ranch 

operators through a diverse set of conservation programs. The Conservation Reserve 

Program (CRP) and the Environmental Quality Incentives Program (EQIP) dominate 

the other programs in terms of program participation, enrolled acres and funding.   

 

Given such high participation rates for voluntary programs, it is clear the 

agricultural community monetarily benefits from them. It also appears that society 

remains committed to these agricultural conservation programs given its continuing 

support for them in the 2007 farm bill.  Long-term societal support for these 

programs, however, depends on assessing positive changes occurring on the land, in 

the air, and in the water and deciding if the beneficial changes are worth the large 

expenditures of Federal funds.   

 

Maps of a conservation program’s resource concerns and applications are useful 

in a preliminarily analysis of a Federal conservation program’s performance and 

identification of potential problems associated with its design.  Figure 1 and Figure 2 

illustrate the aggregated resource concerns and applications from 2004 and 2005 
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Indiana’s EQIP program. The darkest blue areas refer to areas exhibiting the most 

resource concerns; the lightest, the fewest resource concerns.  Once applications are 

overlaid on the maps, it becomes apparent that a substantial number of the 

applications accepted for EQIP funding lie outside of the most environmentally 

sensitive areas, the darkest blue areas. Stated another way, one would expect 

approved applications to more likely be found in the highest resource concern areas, 

especially if conservation practices addressed more than one resource concern.  

 

Many reasons have been given for this disconnect between resource concerns and 

results. First, EQIP is a voluntary, federally-funded program.  A portion of the 

landowners who oppose the use of Federal dollars for these types of activities may 

also farm the highest resource concern areas. A second related reason focuses on 

 
Figure 1: EQIP Applications, 2004 

 
Figure 2: EQIP Applications, 2005 
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problematic, low productive lands where the required application costs of applying 

the needed conservation practices outweigh the land’s income potential. A third 

reason, and one discussed in most of the assessment studies of EQIP and other 

Federal conservation programs, is program design such as not including all the 

objectives, misspecifying objectives, weighting objectives incorrectly, and selecting 

inappropriate criteria and scoring methods for ranking applications (Searchinger and 

Friedman 2003; Friedman and Heimlich 2004; Soil and Water Conservation Society 

and Environmental Defense 2007). Our paper addresses the program design concern 

in the context of adoption of multiple criteria decision analysis procedures, methods, 

and tools to improve the performance of Federal conservation programs.  

 
 

 
II. ASSESSMENTS OF FEDERAL CONSERVATION PROGRAM 

DESIGNS 
 

Many assessment studies have focused on a conservation program’s objectives as 

a means of improving program performance. Federal conservation programs almost 

always include multiple objectives since a separate program for each objective is not 

optimal from the perspective of program administration, implementation costs, 

linkages among the environmental problems and the methods used to address them 

(Cattaneo, Hellerstein et al. 2006). They are critiqued about not having a specific, 

documented rationale for the selection of objectives and the weights assigned to them 

(Bertoni 2006; Hajkowicz and Collins 2007; Shames 2007). 
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Researchers have also criticized that the environmental indicators, which 

determine how well an applicant does with respect to each objective, are not clearly 

defined and appraised (Powell and Wilson 1997). Program managers of the 

Conservation Reserve Program, for example, developed the Environmental Benefit 

Index (EBI).  The EBI assigns points to land parcels converted from agricultural 

crops to grasses or trees based on expected environmental improvements in various 

objectives and the importance of these improvements to the public (Hansen and 

Hellerstein 2006). Ribaudo et al. (2001) discussed the vagueness of the indicators in 

CRP’s Environmental Benefit Index and what they supposedly represented. The 

environmental indicators defined for EQIP by States also carry the same ambiguity. 

 

Points granted for applying conservation practices is another possible design 

problem identified by researchers. Current Federal conservation programs such as 

CRP, EQIP, and Farm and Ranch Land Protection Program (FRPP) utilize an ordinal 

scale to assess the effectiveness of an application in achieving program objectives. 

The Conservation Practice Physical Effects (CPPE) matrix developed by the USDA-

NRCS (2006) summarizes each conservation practice’s impact on environmental and 

natural resource problems according to the qualitative scale that ranges from 

“Significant Increase in the Problem” to “Significant Decrease in the Problem” 

(Lawrence, Stone et al. 1997; United States Department of Agriculture 2002; Natural 

Resources Conservation Service 2006). Indiana, Illinois and North Carolina adopted 

this matrix and converted these qualitative definitions to a quantitative scale in order 
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to assign points and sum them up to compute an overall estimate of potential benefits 

from applying the conservation practices specified in EQIP applications.  

 

Many authors have criticized the conversion of qualitative rankings to points. 

Smith et al. (1987) and Wolman (2006) emphasized that such addition is an improper 

application of ordinal scales since the intervals between the points are meaningless. 

Several authors in the literature also expressed their concern that equal increases in 

points might not have equal increases in value/utility. Additionally, Guikema and 

Milke (1999) discussed the range of points, which is required to be similar among 

attributes to be used directly.  

 

Each program’s decision rule also influences the selection of applications for 

funding and impacts  cost-effectiveness of the program outcomes (Babcock, 

Lakshminarayan et al. 1997; Hajkowicz, Higgins et al. 2007; Soil and Water 

Conservation Society and Environmental Defense 2007). For example, in Babcock et 

al. (1997) study benefit maximization rule would achieve a much higher proportion of 

potential environmental benefits for water erosion and groundwater vulnerability, 

whereas cost minimization should achieve a greater proportion of wind erosion 

benefits.  

 

In summary, previous conservation program assessments, many of which were 

discussed above, have focused  on specific problems or specific components such as 

identifying and weighting competing objectives and quantifying program attributes 
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(Lakshminarayan, Johnson et al. 1995; Lawrence, Stone et al. 1997; Guikema and 

Milke 1999). They also critiqued that the program implementation methods vary from 

state to state and year to year (Ponder, Wiggins et al. 2005; Cattaneo, Hellerstein et 

al. 2006; Johansson and Cattaneo 2006; Soil and Water Conservation Society and 

Environmental Defense 2007). This large body of research leads us to the conclusion 

that the next series of assessments need to examine the broader decision system and 

its associated framework to design a generic multiple criteria decision system which 

is applicable to the majority of the Federal conservation programs. 

 

III. INDIANA EQIP MULTIPLE CRITERIA DECISION ANALYSIS 

SYSTEM 

 

Indiana Environmental Quality Incentives Program decision system is developed 

by following the procedure of multiple criteria decision analysis (MCDA). This 

system first includes identification of the system components, goals, objectives and 

attributes; development of a hierarchic structure; and determination of each 

objective’s relative importance; assessments of value functions; and selection of a 

decision rule. Then, the GLEAMS-NAPRA model is incorporated into the system to 

improve the estimation of changes in water quality indicators and assign measurable, 

quantitative points. A weighted-additive value function method is employed to 

calculate overall scores for the applications. Using the benefit-cost ratios of the 

applications, we score, rank, select, and distribute available program funds.  
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In the literature, it is common and well-accepted to organize goals, objectives and 

attributes in a hierarchical structure (Keeney and Raiffa 1976; Saaty 1980; Zeleny 

1982; Clemen 1996; Kirkwood 1997; Malczewski 1999). As specified in the Farm 

Security and Rural Investment Act of 2002 (Pub. L. No. 107-171 (116 Stat.). 134. 

2002), the goals of EQIP are to promote agricultural production and environmental 

quality as compatible goals. In order to provide directions to State and local levels for 

implementing EQIP to achieve the goals, USDA Natural Resources Conservation 

Service (NRCS) has established the first level objectives, National Priorities as NRCS 

called, as enhancing soil, water and air quality, increasing and protecting wildlife 

habitat by assisting producers in installing and maintaining conservation practices 

(U.S. Department of Agriculture Natural Resources Conservation Service 2002).  

 

The EQIP MCDA system captures the goals identified in the Farm Security and 

Rural Investment Act of 2002 and objectives delineated by NRCS.  The objectives 

hierarchy of the EQIP decision system is shown in Figure 3 below.  

 

PROMOTE AGRICULTURAL PRODUCTION, HUMAN
HEALTH AND ENVIRONMENTAL QUALITY

AIR QUALITY SOIL EROSION SPECIES at RISKWATER QUALITY

 
Figure 3: EQIP MCDA System Objective Hierarchy 

 
 

This analysis focuses on identification and measurement of attributes to serve the 

water quality objective. In the literature, reductions in the amount of pollutants 
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entering water ways and lakes suggest improvements in water quality. The major 

surface and ground water pollutants produced by agricultural activities are sediment, 

nutrients, and pesticides.  

 

Let (i) denotes the program objective where 1 ≤ i ≤ 4 since there are four 

objectives identified in the hierarchy and (j) specifies the attributes identified to 

measure each objective, the decision hierarchy with updated water quality attributes is 

diagrammed in Figure 4.   

 

The decision system includes a single decision maker – the government, which 

determines the eligible applications that maximizes the environmental benefits 

achieved with a given budget for enrollment under certainty. The weighted-additive 

value function for assessing applications is 
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PROMOTE AGRICULTURAL PRODUCTION, HUMAN
HEALTH AND ENVIRONMENTAL QUALITY
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Figure 4: Indiana EQIP Decision System Hierarchy



12 

Simulation models and expert opinions provide outcome scores for attributes 

when eligible conservation practices are implemented. Those scores are represented 

by jlS
 
in the overall value calculation formula. Each attribute’s conversion function 

jf
 
 converts its scores into dimensionless quantities. The dimensionless quantities of 

all attributes for every objective are weighted and linearly summed.  

 

A major criticism of using MCDA is the value that a human attaches to each 

attribute’s points or scales (Smith and Theberge 1987; Feather, Hellerstein et al. 

1999; Guikema and Milke 1999; Ribaudo, Hoag et al. 2001). Value functions indicate 

how satisfaction changes as the levels of an attribute change.  In a value function, 

each impact is defined by a single predicted value. A decision maker’s subjective 

preference about each outcome is integrated into the analysis using iv . The values of 

objectives are also weighted and summed to calculate the perceived improvement in 

overall environmental quality.  

 

Indiana Case Study 

 

For the 2005 Environmental Quality Incentives Program, Indiana’s Natural 

Resources Conservation Service identified 86 eligible conservation practices, also 

known as best management practices (BMPs). Indiana program managers for 2005 

EQIP used the Conservation Practice Physical Effects matrix (USDA Natural 

Resources Conservation Service 2006) to identify impacts and assign scores jlS
 
in 

the value calculation formula. This matrix qualitatively evaluates each practice’s 
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impact on environmental and natural resource problems.  Indiana program managers 

converted the qualitative assessment to quantitative values to score and rank 

applications. Scores do not reflect the locations of applications, site characteristics, 

and other specifications such as soils, slope or precipitation. This means that every 

applicant who selects the same BMP receives the same score.  Additionally, the 

Conservation Practices Physical Effects (CPPE) matrix ignores interactions among 

the proposed BMPs. Below in Table 1, you will find the CPPE scores of the four most 

popular BMPs proposed by non-livestock applicants.  

BMPs 
Nutrients 
in Surface 

Water 

Nutrients in 
Groundwater 

Sediment 
in Surface 

Water 

Pesticides 
in Surface 

Water 

Pesticides in 
Groundwater 

Residue 
Management/No till 1 0 4 5 1 

Filter Strip 5 3 5 3 1 

Nutrient 
Management 5 5 0 0 0 

Pest Management 0 0 2 5 5 

Table 1: CPPE matrix scores for EQIP 2005 water quality attributes 

 

The attributes – nutrients, sediment, and pesticides in surface and ground water – 

to measure changes in water quality are also outputs of Groundwater Loading Effects 

of Agricultural Management Systems - National Agricultural Pesticide Risk Analysis 

(GLEAMS-NAPRA) hydrologic simulation model. Therefore, we substituted CPPE 

scoring with estimates derived from GLEAMS-NAPRA to hopefully improve our 

estimation of water quality impacts of conservation practices.  The integration of 

GLEAMS-NAPRA into the MCDA system provides the opportunity to replace 
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“categorical-converted-to-quantitative” rankings with continuous measurements that 

account for heterogeneous physical conditions, management systems, climate, and 

BMP’s.  

 

The GLEAMS model includes four components – hydrology, erosion, nutrients, 

and pesticides – and incorporates various hydrological processes such as infiltration, 

runoff, soil evaporation, plant transpiration, rainfall/irrigation, snow melt and soil 

water movement within the root zone. GLEAMS simulates the effects of cropping 

systems on surface and ground water quality – edge-of-field and bottom-of-root zone 

loadings of water, sediment, pesticides, and plant nutrients – on a daily basis utilizing 

climate, soil, and management data inputs (Leonard, Knisel et al. 1987). 

 

The National Agricultural Pesticide Risk Analysis (NAPRA) model is utilized 

with GLEAMS to estimate sediment, nutrient, and pesticide loadings to surface and 

ground water.   GLEAMS-NAPRA model performs regional simulations by dividing 

regions into “representative” fields (Lim and Engel 2003). GLEAMS model inputs 

and outputs rely extensively on GIS data and software, but researchers complete all 

the steps manually (Lim 2001). GLEAMS-NAPRA model adds a GIS interface to 

parameterize the model based on STATSGO database soil characteristics, National 

Agricultural Statistics Service 2003 land use, and long-term precipitation data for 

Indiana (Thomas 2006). 
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In this analysis, the GLEAMS-NAPRA model is utilized to estimate statewide 

sediment, nitrate, phosphorus, and pesticides (specifically atrazine) loadings to 

surface and ground water before and after implementation of best management 

practices.  By definition, scenario 1 is the base condition where no best management 

practices have been applied.  The remaining scenarios include the addition of one or 

more of the following four BMPs:  residue management/no-till, filter strip, nutrient 

management, and pest management. No-till is defined as a system for planting crops 

without plowing, using herbicides to control weeds and resulting in reduced soil 

erosion and the preservation of soil nutrients. Filter strips are land areas of either 

planted or indigenous vegetation, situated between a potential, pollutant-source area 

and a surface-water body that receives runoff.  No-BMP fertilizer application rates 

were developed based on 5 years of USDA Cropping Practices Surveys (U.S. 

Department of Agriculture Economic Research Service 1990-1995). Thomas (2006) 

provides details on the method used to obtain applications rates of 222 N kg/ha and 

125 P2O5 kg/ha for Indiana producers. Fertilizer application rates for the nutrient 

management BMP (NRCS practice code 590) were based on Tri-State fertilizer 

recommendations associated with potential crop yields (Vitosh, Johnson et al. 1995).  

Pest management entails use of all suitable methods of pest (insect, weed, rodent, etc) 

control to keep populations below the economic injury level. Totally, we have 

identified 16 scenarios that represent realistic options.  Details of those scenarios are 

summarized in Table 2.   
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Scenario 
Number 

Practices 
Applied 

Tillage 
(Cultivation) 

Fertilizer Rate Atrazine 
Rate 

Filter 
Strip ANHe T3Pf 

1 No-BMPs 
(Base Scenario) 

Conventional 
Tillage 

222 kg/ha 125 kg/ha 2.0 lb/ac No 

2 RMa No-Till 222 kg/ha 125 kg/ha 2.0 lb/ac No 

3 NMb 
Conventional 

Tillage 
tri-state rate tri-state rate 2.0 lb/ac No 

4 FSc 
Conventional 

Tillage 
222 kg/ha 125 kg/ha 2.0 lb/ac Yes 

5 PMd Conventional 
Tillage 

222 kg/ha 125 kg/ha 1.5 lb/ac No 

6 RM+NM No-Till tri-state rate tri-state rate 2.0 lb/ac No 

7 RM+FS No-Till 222 kg/ha 125 kg/ha 2.0 lb/ac Yes 

8 RM+PM No-Till 222 kg/ha 125 kg/ha 1.5 lb/ac No 

9 NM+FS 
Conventional 

Tillage 
tri-state rate tri-state rate 2.0 lb/ac Yes 

10 NM+PM 
Conventional 

Tillage 
tri-state rate tri-state rate 1.5 lb/ac No 

11 FS+PM 
Conventional 

Tillage 222 kg/ha 125 kg/ha 1.5 lb/ac Yes 

12 RM+NM+FS No-Till tri-state rate tri-state rate 2.0 lb/ac Yes 

13 RM+NM+PM No-Till tri-state rate tri-state rate 1.5 lb/ac No 

14 RM+FS+PM No-Till 222 kg/ha 125 kg/ha 1.5 lb/ac Yes 

15 NM+FS+PM 
Conventional 

Tillage 
tri-state rate tri-state rate 1.5 lb/ac Yes 

16 ALL No-Till tri-state rate tri-state rate 1.5 lb/ac Yes 

 
a -  RM:  Residue Management: No-Till (NRCS Practice Code 329A) 

b -  NM:  Nutrient Management (NRCS Practice Code 590) 

c -  PM:  Pest Management (NRCS Practice Code 595) 

d -  FS:  Filter Strip (NRCS Practice Code 393) 

e -  ANH:  Anhydrous Ammonia, representing nitrogen 

f -  T3P:  Superphosphate, representing phosphorus 

Table 2: GLEAMS-NAPRA simulation scenarios 
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The GLEAMS-NAPRA simulation runs of each of the 16 scenarios produce six 

important outcomes relevant to this research: 

• nitrate loading to surface water,  

• phosphorus loading to surface water,  

• nitrate loading to ground water,  

• sediment loading,  

• atrazine loading to surface water and  

• atrazine loading to ground water. 

 

Phosphorous loading to groundwater is not included because phosphorous in the 

soil solution exists as the negatively charged phosphate ion, and phosphate is 

extremely reactive and binds with elements, which are present in all soils at relatively 

high levels. This causes the P to form new chemicals in the soil that bind tightly with 

the soil clay and organic matter (McDonald 2003). 

 

Differences in loadings between the base scenario (scenario 1) and each of the 

remaining BMP scenarios were used to estimate field-scale water quality benefits.  

���������� 
�����
 ��������� � =  ���������� 
�����
 ����� ��� � −  ���������� 
�����
 ������ ��� ����� ���������   

 

For example, consider the comparison between no BMPs (scenario 1) and residue 

management/no-till (scenario 2) and the resulting changes in pollutant loadings for 

nitrate, phosphorus, and atrazine loadings in surface water, sediment loading and 

nitrate and atrazine loadings in ground water.  Changes in nitrate and phosphorus 

loadings are shown in Figure 5.A, Figure 5.B and Figure 5.C.  The maps demonstrate 

that higher nitrate reduction occurs with the application of the residue 
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management/no-till BMP in northern Indiana whereas phosphorus reduction is greater 

in southern Indiana. Though not readily apparent given the complex interactions 

among soils, landscape, precipitation and farming practices, soil and topography of 

the field appear to be the major factors contributing to these results.  

 

Residue management/no-till is highly effective in reducing soil erosion.  Residue 

acts as a protective blanket and slows the flow of runoff, thus reducing sheet and rill 

erosion.  Sediment loadings drop significantly throughout the state as shown in Figure 

5D.   

 

The herbicide atrazine is highly soluble in water.  Because residue 

management/no-till traps and slows the flow of runoff, one would expect the changes 

in atrazine loading shown in Figure 5.E and Figure 5.F.  The reduced loading of 

atrazine to surface water is partially offset by the increased infiltration and loading of 

Atrazine in groundwater.   

 

The changes in nutrient, sediment, and pesticide loadings to surface and ground 

waters shown in Figures 5.A to 5.F illustrate the impacts of one BMP, residue 

management/no-till.  Soil characteristics, slope, precipitation, and farming practices 

contribute to the variation in loadings across the state.  GLEAMS-NAPRA model 

allows us to capture and quantify those impacts. 
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A) B) 

  

Figure 5:Changes in median annual total pollutant loading between No-Till scenario (Scenario 2) and base condition (Scenario 1)  
A) NO3-N loading to surface water kg/ha. B) PO4 loading to surface water kg/ha. 
C) D) 
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Figure 5: Changes in median annual total pollutant loading between No-Till scenario (Scenario 2) and base condition (Scenario 1)  
C) NO3-N loading to ground water kg/ha. D) Sediment loading tons/acre. 
E) F) 
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Figure 5 Changes in median annual total pollutant loading between No-Till scenario (Scenario 2) and base condition (Scenario 1)  
E) Atrazine loading to surface water g/ha. F) Atrazine loading to ground water g/ha. 
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As we stated before, CPPE matrix assigns the same score regardless of where a 

BMP such as residue management/no-till is applied in Indiana.  The maps shown in 

Figure 5 clearly show that the effectiveness of this BMP in reducing nutrient, 

sediment and pesticide loadings depends on soils, landscape, precipitation, and 

farming practices.  The implications of the existing EQIP scoring tool and the MCDA 

system is shown in Figure 6 where 2005 EQIP funded applications are overlaid on the 

nitrate loading to surface water map from Figure 5.A.  Based on the CPPE matrix, all 

of these applications received the same score (1 point in Table 1) for applying this 

BMP.    GLEAMS-NAPRA results, on the other hand, show considerable variation in 

load reduction among applications, especially in the magnified section.    The MCDA 

system incorporates heterogeneity, thus allowing scores to vary according to 

estimated impacts.   

 

Changes in loadings attributable to BMPs are considered the environmental 

benefits and should be incorporated to score calculation in EQIP.  In the next step of 

this analysis, those loading reductions will replace the “categorical-converted-to-

quantitative” scores jlS
 
in the application overall value calculation formula. Every 

application’s overall value will be calculated using these new, measurable attributes.  

Applications will be scored and ranked based on the environmental value they 

provide per public dollar expended, and the highest ranked applications will be 

funded until program funds are expended.  Finally, comparisons will be made 

between the MCDA system and the actual EQIP 2005 program.  We will compare 

changes in the number and type of applications funded, their locations throughout the  
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Figure 6: 2005 Indiana EQIP funded applications and nitrate loading to surface water reductions after implementation of No-
Till scenario (Scenario 2)  
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state, and estimated environmental benefits.  When this analysis has been completed, 

we expect applications selected for funding under the MCDA system will be 

significantly different from the applications actually funded in 2005. We also 

hypothesize that environmental benefits will likely be much higher than the MCDA 

system.   

 
 

IV. CONCLUSION 

 

 Design and assessment of Federal conservation programs following multiple 

criteria decision analysis approach can improve program performance by enrolling 

more cost efficient applications.  Furthermore, common mistakes such as mismatched 

objectives and criteria, spatial homogeneity, unintentional conversion of qualitative 

rankings to points, uniform weighting of sub-level objectives can be minimized.    

Third, an MCDA system facilitates the role and use of simulation models such as the 

GLEAMS-NAPRA model, which allowed us to reintroduce spatial heterogeneity and 

quantitative attributes.  In addition, the GLEAMS-NAPRA model also provides 

government agencies the opportunity to identify problematic nonpoint-source areas 

and possibly change program eligibility requirements or the incentive structure to 

target these areas and entice producers to submit applications.   

  

In summary, the development and use of formal multiple criteria decision analysis 

systems for Federal conservation programs will likely improve program effectiveness. 

It supports a sound and practical framework to assess the conservation programs 
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covering all components of the program design and their impacts on program 

outcomes. Indiana Environmental Quality Incentives Program decision system 

provides a transparent scoring and ranking approach that increases objectivity and 

consistency, and generates results that can be repeatable, reviewable, and easy to 

understand. As shown in this paper, the key elements – spatial databases, decision 

modeling processes, and simulation models –  are available to move from the existing 

informal decision processes to the formal multiple criteria decision systems.   
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