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Abstract

Several spatial econometric approaches are available to model spatially correlated
disturbances in count models, but there are at present no structurally consistent count
models incorporating spatial lag autocorrelation. A two-step, limited information
maximum likelihood estimator is proposed to fill this gap. The estimator is developed
assuming a Poisson distribution, but can be extended to other count distributions. The
small sample properties of the estimator are evaluated with Monte Carlo experiments.
Simulation results suggest that the spatial lag count estimator achieves gains in terms of
bias over the aspatial version as spatial lag autocorrelation and sample size increase. An
empirical example deals with the location choice of single-unit start-up firms in the
manufacturing industry in the US between 2000 and 2004. The empirical results suggest
that in the dynamic process of firm formation, counties dominated by firms exhibiting
(internal) increasing returns to scale are at a relative disadvantage even if localization
economies are present.
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1. Introduction

In this paper, we formulate a two-step estimator for a spatial autoregressive lag model of
counts. The development of this estimator was inspired by the lack of an interpretable
spatial lag process in spatial autoregressive count models, and the pivotal role these
models play in the firm investment location choice literature. Firm location studies
typically focus on plant birth, and start from an enumeration of births observed in
designated geographical areas over some specified time period. Guimaraes et al. (2003,
2004) provided the theoretical foundations behind firm site selection in the context of a
random profit maximization model. They showed that under specific assumptions,
aggregate site selection decisions of firms representing a single sector could be modeled
as discrete counts determined by local or regional factors. Their contribution continues to
motivate the theoretical framework in terms of probabilistic models of many recent
empirical studies of business establishment site selection.

Similar to the classical firm location literature of Weber (1929), optimal firm site
selection is a trade-off between transport costs of inputs to production facilities, and
outputs to product markets. Firms choose least cost sites to maximize profit (w). For
example, firm i chooses location j over k£ competing locations when 7; > ;. From this
relationship, the probability firm i chooses location j is Pr(w; > my) = Pr(z; = 1). The
probability that firm type i selects location j can be estimated as a conditional logit
model, assuming the stochastic components follow a Weibull distribution and are
independent and identically distributed (McFadden, 1974). But as Guimaraes et al. (2003,
2004) demonstrate, the conditional logit model can be estimated by a Poisson
regression,l provided that the empirical analysis focuses on a single sector or firm type.
This fact has provided the conceptual underpinning for a number of empirical studies
explaining firm location events, many of which rely on aggregate cross-sectional data
(e.g., Fotopoulos and Louri, 2000; Henderson and McNamara, 2000; Guimaraes et al.,
2004; Carod and Antolin, 2004; Davis and Schluter, 2005; Carod, 2005; Chong, 2006;
Lambert et al., 2006a,b; Lambert and McNamara, 2009). However, these studies have
rarely addressed the possibility that firm site selection in a given location may be
simultaneously determined with firm location events in neighboring locations. To the
extent that such spatial spillovers proxy localization economies, omitting such
information may lead to biased or inconsistent estimates of the impacts local factors have
on attracting or retaining business investment. In addition, modeling the correlation
between firm investment flows may provide a richer, more detailed picture of the
regional linkages supporting local growth, industry clustering, and economic
development.

The limited empirical research investigating spatial interaction between firm location
events as a global spatial autocorrelation process may be due to the dearth of research on
cross-sectional count lag autoregressive process in general. The theory and application of
spatial econometrics in discrete or limited dependent variable settings is relatively less

! Alternatively, with additional assumptions, other discrete distributions are feasible as well.
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developed compared to the standard cross-sectional and panel data settings, although with
some important exceptions. To the extent that such research exists, it has focused largely
on the limited dependent variable class of estimators. For certain types of discrete spatial
processes, such as binary or multinomial spatial logit or probit models, ordered versions
of these models, or spatial tobit models, the spatial autoregressive lag specification has
received more attention. Estimation is typically based on nonlinear generalized method of
moments (GMM) techniques (Pinske and Slade, 1998; Klier and McMillen 2008),
conditional autoregressive general linear models (Schabenberger and Pierce, 2002), and
Bayesian simulation approaches (LeSage, 2000). Fleming (2004) and LeSage and Pace
(2009, Chapter 10) provide comprehensive reviews of these methods. Previous work
focusing explicitly on spatial dependence in count models includes the Kaiser and Cressie
(1997) count model, conditional autoregressive models incorporating neighborhood
contiguity (Rasmussen, 2004) or direct representation of error processes (Schabenberger
and Pierce, 2002), geographically weighted regression in Fotheringham et al. (2002),
information theoretic approaches as in Bhati (2005), spatial filtering by Griffith (2002,
2003; Haining et al., 2009), and Bayesian hierarchical methods (LeSage et al., 2007,
Flores et al., 2009). However, these established methods for modeling spatial dependence
in count outcomes do not clearly address global spatial autocorrelation arising from
cross-sectional dependence between counts.

This paper attempts to fill this gap, suggesting a count estimator that models the response
variable (or location events) as a function of neighboring counts. For reasons discussed
below, the proposed Spatial Autoregressive Poisson (SAR-Poisson) model we investigate
in a series of Monte Carlo experiments and apply in an empirical example is estimated
using a two-step limited information maximum likelihood (LIML) approach. The SAR-
Poisson model includes a spatially lagged dependent variable as a covariate, and can be
seen as the counterpart of what is usually referred to as the “spatial lag model”. The
proposed estimator meets the double challenge of maintaining the distributional
assumptions required by the probability-based firm location model of Guimaraes et al.
(2003, 2004) as well as theoretical consistency with the linear spatial autoregressive lag
model typically applied in the spatial econometric literature. The latter enables one to
decompose the effects of location determinants into direct, indirect, and induced effects
by way of the “Leontief inverse” or “spatial multiplier”, which provides information that
may be important for understanding regional linkages.

2. Spatial autoregressive lag model of counts

Whittle’s (1954) class of linear spatial process models provides the motivation behind the
SAR-Poisson estimator proposed here. Whittle defined a family of linear spatial process
models whereby an endogenous variable is specified to depend on spatial interactions
between cross-sectional units plus a disturbance term. The interactions are modeled as a
weighted average of neighboring observations. The endogenous variable comprising the
interactions is referred to as the “spatially lagged dependent variable”. The weights,
grouped in a matrix identifying neighbor relations by means of contiguity or distance,
form the distinctive core of the class of spatial process models.



The linear spatial autoregressive lag model, or SAR model, is given by:

() y=pWy+Xp+e,
where y is an N x 1 stochastic variate, X and £ have conformable dimensions for k
exogenous covariates including a constant, 0 is an autoregressive parameter, # an N by

N non-stochastic and a priori defined weights matrix specifying the relationships
between spatial units, and & a vector of independently and identically distributed
disturbances.” The “reduced-form” version of the SAR model reads as:

(2) y=A"'XB+As,
where A=1-pW, I a conformable identity matrix, and 4~' the spatial multiplier or

“Leontief inverse” (Anselin, 2002). The inverted 4 matrix relays feedback/feed-forward
effects of shocks between locations, thereby distinguishing this class of models from
local regression models. Most empirical applications assume a linear relationship
between the response and explanatory variables, but the system is flexible enough to
accommodate nonlinear dynamic spatial processes.” This basic model is generalized to
include count processes below.

The SAR count model suggested here is motivated by previous work on estimating
temporally lagged count processes. Recall the data generating process for a random
variable following a Poisson distribution, with the probability mass function f'and mean u
18,

O R

The expected conditional mean of a random variable following a Poisson distribution is
typically represented by the inverse of the logarithmic canonical link function:
4)  E@)=u=exp(fx,),

where x; is a k£ x 1 vector of covariates containing measurements on observation i = 1, 2,
..., N (Cameron and Trivedi, 1998, 2005). There are a number of methods available to
incorporate temporal lags into the conditional mean function given in (4). Cameron and
Trivedi (1998) provide an extensive review of this work. Two examples include Blundell
et al.’s (1995) exponential feedback model, and Zeger and Qaqish’s (1988) multiplicative
AR model. We focus on these two models as candidate starting points in developing a
SAR-Poisson structural model, as they provide intuitive links to the general linear SAR
specification.

? Details for the SAR model with heteroskedastic errors are described in Anselin (1988, 2006). Whittle’s
SAR model was popularized and extended by Cliff and Ord (1981), who further developed models in
which the disturbances follow a spatial autoregressive process. The count regression formulation of the
error process model is not considered here. See Rasmussen (2004), Schabenberger and Pierce (2002), and
Lambert et al. (2006a) for conditional spatially autoregressive error models of count processes.

3 One should note that a polynomial expansion of the inverse in the reduced form shows that the SAR
model is actually nonlinear in the parameters.



The exponential feedback model for time-series data is given by:

5) /'lz:exp(pyz—l-’_ﬂ’xt)'
The model can be estimated with maximum likelihood, eventually with hetero-
skedasticity and autocorrelation consistent standard errors (Cameron and Trivedi, 1998).

An intuitive extension of the exponential feedback model to the count version of the SAR
process model is:

N
(6) ﬂi:exp(pzwgyj"'ﬂlxija

J#l
where wy; is the ij-th element of the spatial weights matrix W. This is in fact the
specification used by Kaiser and Cressie (1997) and Griffith (2003), which leads to the
conditional autoregressive (CAR) Poisson model with spatial dependence between
counts.* However, the extent to which global feedback between locations is explicitly
modeled is not clear in this specification. The algebraic equivalent of the Leontief
inverse, which distinguishes spatial autoregressive lag models from their aspatial
counterparts, is intractable. The usefulness of this particular specification to model global
interactions between spatial neighbors is therefore rather limited. Cameron and Trivedi
(1998) arrive at a similar conclusion, questioning the usefulness and applicability of the
exponential feedback-type models in the context of modeling lagged time series counts.

The distinguishing feature of the SAR count process must lay in the specification of the
expected mean of counts at location i as a function of its j neighbors. Again, work in
modeling temporally lagged counts serves as a useful starting point. A more plausible
autoregressive model for temporally lagged count responses specifies a multiplicative
relationship between a predetermined count and future outcomes (Zeger and Qaqish,
1988), as in:

(7) E(y[):ﬂl =eXp(ﬂ'xz)yt/il'
Cameron and Trivedi (1998) suggest two approaches to overcome the obvious problem of

zero counts on the right-hand side of this equation. Both approaches entail transforming
the lagged count variable. The first approach adds a small, pre-fixed constant to the

lagged outcome variable for zero-values ofy, ;. As a result, y,; in equation (7) is

replaced by y,, = max{c, .1}, 0 < ¢ < 1. The second approach is similar, but estimates

the value of the constant ¢ simultaneously with the other model parameters. Effectively,
this approach is based on the following model:

(8) = exp(ﬂ'x, +plny,  +c'd, ), with

- :{y” Y.,>0 {O y.,>0

9 dd = ,
) Yia 1y =0

an !
1 yt—l :0

* The conditional autoregressive (CAR) Poisson model is notorious in that the model can only
accommodate autoregressive processes with negative feedback. To overcome this limitation, Kaiser and
Cressie (1997) suggested a Winsorized version, which allows for positive conditional autocorrelation.
Griffith (2003) extended their model using spatial filters.
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where the constant ¢ is derived from the unrestricted estimate ¢ = plnc as
c=exp(c**/ p). This model can be estimated using maximum likelihood or quasi-

maximum likelihood techniques assuming a Poisson distribution (Greene, 2003, p. 188).

The situation is more complicated when outcomes are simultaneously determined as a
single realization, as is typically observed in cross-sectional data with spatial dependence.
The spatial analogue of the above multiplicative autoregressive time series model for
count data is:

N
(100  E(p)=pn :exp(ﬂ,xi)HE(yj)pWﬁ-

J#i
This result is similar to the case of binary lagged dependent variables, where the latent
variable is a function of the simultaneous realization of its neighbors. As before, the
elements of the weights matrix w;; are a priori determined exogenous constants, usually
scaled over j to sum to unity for each i. Moving the multiplicative component inside the
exponential term leads to the structural model:

N
(11) ﬂi:exp(PZ%ﬂﬂrﬂ'%J-
J#i
Expressing equation (11) compactly in matrix notation and including all spatial units
leads to the reduced form of the conditional mean function:

(12)  u™ =exp(4'XpB),
where 4" is the i-th row of the spatial multiplier term.

The usual aspatial Poisson marginal effects estimator dg, /0x, = B, exp(fB'x,) can

be extended to the spatial Poisson count specification of (12). The marginal effects
representing the change in the expected value at location i following a change in

covariate x; in one or more locations j are derived as:
SAR

ou.
(13) =4 exp(4 X P,
ik
Because of the autoregressive nature of the model, the total marginal effects can be
decomposed into direct and indirect effects (LeSage and Pace, 2009) as:

(14) {aulﬂzsAR + Zayl SARJﬂk’

j#l

where a' (al.;l) refers to diagonal (off-diagonal) elements of the estimated spatial

multiplier matrix A Average marginal effects can be calculated in different ways

(Cameron and Trivedi, 1998, p. 80), but one can aggregate over i and divide by N,
arriving at:

a SAR

(15 H

ox,

ﬂkz -1 SAR
zz i

]¢l

direct



O S B LN ~1, SAR
(1) —— ==k a,; u;".
axk indirect N ’ZZI: ]Z; ’ !

Further research into the computation and interpretation of the marginal effects in a SAR
Poisson model is warranted given their highly nonlinear nature.

Elasticities are slightly easier to calculate and interpret since the exponential term
in (13) referring to the expected value cancels out, which leads to:

SAR -1
(17) M =4 xkﬂk’
which, due to the autoregressive nature of the model, can be decomposed into the “own”

elasticity and “cross” elasticities. Sample-wide averages of these elasticities are estimated
as:

SAR _&N -1
(18) 77,(‘ = Zaﬂxik,and

J#EI

ﬂ N N
_ Ik E E -1
= a. x., .
cross N ik

i=1 j#i

19 7"

3. Estimation of the SAR-Poisson count model

Below we derive the Full Information Maximum Likelihood (FIML) and a two-step,
Limited Information Maximum Likelihood (LIML) estimator for the proposed SAR-
Poisson model. Alternative approaches might include estimating this model using
weighted nonlinear least squares or general method of moment-type estimators (Cameron
and Trivedi, 1998; see also Hays and Franzese, 2009 for a recent exposition). These
estimators may be flexible in terms of accommodating various types of cross-sectional
lag autoregressive processes, but it is not clear whether the theoretical links with the
random profit maximization framework frequently applied in location studies are
maintained.’

3.1 Full Information Maximum Likelihood Estimation of the SAR-Poisson model
The necessary and sufficient conditionals of the FIML approach are derived to provide a
reference point for the LIML estimator developed below. Derivation of the SAR-Poisson

FIML estimator begins with the Poisson probability density function:
()" exp(—p ')
R

i

with z*** = exp(4;' X B) . The log-likelihood function is:

> The moment conditions of the FIML estimator could be used in the weighted nonlinear least squares or
general method of moments estimation framework, but the underlying error distribution ensuring the
theoretical link between the probability-based random profit maximization model and observed firm
behavior may be compromised if the choice of spectral weights is incorrect. In the case of the usual Poisson
estimator, the optimal weighting scheme for general method of moments estimator would be the Hessian of
the maximum likelihood estimator (Cameron and Trivedi, 2005). In this case, general method of moments
results are identical to full information maximum likelihood estimates. Other weighting schemes are
suboptimal, and the extent to which the data generating process is still Poisson is unclear.
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(22) InL=yA'Xp-u >y,
with the necessary conditions:

(23) OlnL =X4"'(y-p**) =0, and

OlnL o
(24) ?=ﬂXD[y—ﬂSAR]=0,

with D = A"'WA™". The Hessian of the system is:

2
es) ﬁg‘ pf —_XUQAX, with O = diaglu"],
2
(26) aaﬁl’g L pxDoA X [y "1 DX , and
0
0’InlL

(27) o =2B'XA"'WD[y - 1> - B XDQODX S .
While analytic expressions for the necessary and sufficient conditions of the FIML
estimator may be derived, numerical solutions using a variety of algorithms were difficult
to obtain consistently. The wusual optimization algorithms were too frequently
unsuccessful with respect to generating negative semi-definite Hessians over an adequate
number of Monte Carlo replications to infer any meaningful conclusions. For this reason,
we focus explicitly on the two-step SAR-Poisson LIML estimator developed below.

3.2 Two-step LIML estimation of the SAR-Poisson model

There are numerous examples of nonlinear models where endogenous parameters are
estimated using two-step limited information procedures (see the examples in Murphy
and Topel, 1985; Greene, 2003, p. 508; Cameron and Trivedi, 2005). A two-step, limited
information maximum likelihood approach to estimate the SAR count model is proposed
here. If the FIML numerical search algorithms had succeeded, then the problem of
adjusting the count variable to accommodate the right-hand side logarithmic
transformation in the structural equation would not be an issue. However, resorting to the
LIML estimator requires some attention to the problem of zero counts, and
transformation of the count variable for it to be consistent with a global autoregressive
spatial process. Below, the SAR-Poisson LIML estimator using a Murphy-Topel (1985)
covariance adjustment is developed first, assuming a suitable solution to the zero count
problem has been made.

The first step naturally entails replacing the lagged, log-transformed counts in the
neighborhood of y; with their predicted values. Anselin (1988) and Kelejian and Prucha
(1999) provide some guidance with respect to consistent estimation of the endogenous
lagged variable Wy in the linear class of SAR estimators, and that approach is adopted

here. Let the function g( y;) represent the logged-transformed values approximating

neighboring counts. While it is not necessary to make any rigorous distributional
assumptions about the first-stage linear predictor, it is useful to formulate the problem



with reference to a log-likelihood function to define notation used in deriving the second-
stage covariance adjustment used later. Denote the log-likelihood function of the (linear)
first-stage estimator as:

8 mL=3 (W g(s)0:s)
i=1

with the gradient vector & = Q'v;, v,a residual vector, f; the normal probability density
function, and ¢ a vector of parameters that maximizes L;. Given a set of appropriately

defined instrumental variables, typically O = [X, WX, WWX], regressing the instruments
on the transformation yields the vector of predicted values:

(29) 05, with 6=0(0'0)"'Q'W -g(»)).

The corresponding vector of residuals is estimated as o, :W-g(y;‘.)—Qﬁ. A

heteroskedasticity-robust covariance estimator, V;(5) = (Q’Q)_1 Q’QQ(Q'Q)_1 , may be

applied to obtain the first-stage standard errors needed to adjust the second-stage
covariance matrix (see below). The diagonal elements of () are the squares of the
residuals from the first-stage regression, with off-diagonal elements of zero.

In the second step, the first-stage predicted values enter the Poisson probability density
function as:
exp(B'x,+p-5'0,)" exp(—exp(B'x, +p-5'Q,))

B0)  f(yIxW.50:8.0)= o :

with the corresponding log-likelihood function:
N
(Bl)  InL, =)y (Bx+p-08)-exp(Bx,+p-05)-Iny,
i=1

and gradient A, = [X , Qé‘]l v, based on the residual vectorv,; = y; — exp( Bx.—p-6 ’Ql-).

This procedure is essentially a Poisson regression with an endogenous covariate. Given
consistent estimation of J, the usual necessary and sufficient conditions may be used in a
variety of algorithms to maximize the log likelihood function of (31). In this application,
we used the Newton-Raphson algorithm.

Because the predicted values of the transformed variables are used in the regression,
standard errors of the second-stage parameters that maximize the likelihood function
must be adjusted. It can be shown that the second-stage estimators are consistent if a
rather undemanding set of regularity conditions are met for models (28) and (31)
(Cameron and Trivedi, 2005). The distribution of the parameters in (31) is consistent and
asymptotically normal with covariance:

(32) WV, =V, +V[CHC' =RV C' - CVR'|V,,
where V), is the asymptotic covariance matrix of the log-likelihood equation L, (Murphy

and Topel, 1985). The C and R matrices in (32) adjust the second-stage covariance matrix
V> by including the covariance between the first-stage gradients and the second-stage



likelihood function. Greene (2003, p. 510) provides their general form. Here, the
derivations relevant to the LIML SAR-Poisson estimator are provided:

N
(33) R=E OlnL, Ol ’L1 _ thh;” "
o(B.p.c) 08" ) 5
OlnL, JOlnL N
34 C:E 2 2 | "0 h | ’
( ) La(ﬁ’pac) 85’ J ;p 2i 21Ql

A negative binomial count model can be specified in the second stage with some
modifications.

3.3 The problem of zero counts

In practice, the lagged, expected value of the count variable must be replaced by a
transformation of the sample information. We outline three plausible transformations: (a)
addition of an ad hoc constant ¢, (b) estimation of the constant using lagged dummy
variables, and (c¢) an inverse hyperbolic sine transformation. The appeal of methods (b)
and (c) is that they are data driven solutions, whilst the appeal of solution (a) is that it
does not require more rigorous estimation procedures.

The first approach transforms neighboring counts using a pre-determined constant,
leading to y; = max{c, y;}, 0 < ¢ < 1. While this procedure succeeds in eliminating the

problematic zeros, it may introduce some degree of bias into the estimation procedure. In
the Monte Carlo experiments that follow, c is set to 0.5.

The second option is to estimate the constant ¢ simultaneously with the structural
parameters, as in the case of the time series analogue (see Cameron and Trivedi, 1998).
This approach leads to the following SAR-Poisson model:

(35)  p=exp(pW,-g(y))+cW,d+p'x,) , with

Cy, y.>0 1 ify =0
G0 yy=1 VT andd =
y,=0 0 otherwise

where W;_ refers to the i-th row of the weights matrix. Clearly, the first two elements in
the linear predictors W-g( y_’;) and Wd are endogenous. While this data-driven approach

may be preferable to the ad hoc approach of adding a constant in terms of a priori
judgment, there are additional computational difficulties that may arise. First, because of
the bounded nature of Wd, an appropriate estimator that generates predicted values of Wd
in the [0, 1] interval must be selected (e.g., probit or logit regressions). Second, inclusion
of the Wd variable along with W-g(y*) may introduce collinearity, which could
complicate inference and possibly introduce bias. In fact, in a limited number of Monte
Carlo trials (not reported here), this appeared to be the case.

A third option, which we evaluate in the Monte Carlo trials that follow, is to transform

the neighboring counts using the inverse hyperbolic sine (IHS) transformation. Burbidge
et al. (1988) give the concentrated log likelithood expression for this procedure. Pence

9



(2006) and El-Osta et al. (2007) provide recent applications. The advantage of this data-
driven procedure is that it is more parsimonious as compared to the second approach
above in terms of parameterization. In this approach, the IHS transformation function is
parameterized as:

37) g(yj.,@):sinh*l(eyj):(eyj+1/1+92yj.)/9,

where 6 > 0 is a scaling parameter. As 6 = 0, sinhfl(eyj) approaches y;, and as 0>, y;
approaches 0. Pre- and post-multiplying the symmetric and idempotent “hat” matrix, M =
I - O(Q'0)'Q" (Hoaglin and Welsch, 1978) by the spatial lag operator, W’MW, helps
concentrate the THS log-likelihood function as:

N
(38) Ly = (constant)—%ln[g(y,é?)'W'MWg(y, 6)]—%Zln[l+¢92 y
i=1
Maximization of (38) can be accomplished by performing, for example, an appropriate
search over the transformation parameter 6. Given 6, the IHS-transformed counts are
used to generate the first-stage predicted values as in (29).

4. Experimental design

The small sample properties of the proposed SAR-Poisson estimator are investigated in
this section. The estimator is based on limited information maximum likelihood with an
adjusted Murphy-Topel covariance estimator, and is compared to the usual aspatial
maximum likelihood based Poisson estimator in a Monte Carlo experiment. For the
Poisson maximum likelihood estimator, the heteroskedasticity-robust quasi-ML
covariance estimator is used, which attends to problems arising from overdispersion
(Wooldridge, 2002, p. 653).

The experimental design closely follows the format frequently applied in the analysis of
spatial regression models and model selection procedures (e.g., in Florax et al., 2003;
Kelejian and Prucha, 2007; Fingleton and LeGallo, 2008). Random dependent variates

were generated as ¥, ~ Poisson (1), with 1> =exp(4'X,)) and A=1-p W,

1

where the “true” or population values of the parameters were all set to 0.1 and p, takes

on values of 0.0, 0.2, 0.4, 0.6, and 0.8. The sample sizes in the experiments included N =
100, 256, 484, 729, and 1024. The design matrix X included a constant (x), and two
continuous random variables. The first (x;) was generated randomly from the [0,2]
uniform distribution. The second (x;) was randomly generated from the normal
distribution, N(1, 2). The design matrix was held constant across 1,000 replications as
well as across the different experiments.

Three spatial weighting matrices were used in the simulations. First, a length N vector of
random coordinates was generated from the uniform distribution. The coordinates were
then used to construct a contiguity matrix () using a Delaunay algorithm with the
xy2cont.m function in the MATLAB® Spatial Econometric Toolbox (http://www.spatial-
econometrics.com). The average number of neighbors ranged between 5.68 (for N = 100)
and 5.96 (for N = 1,024). The second weight matrix (#>) was an inverse distance matrix,
utilizing the Euclidian distance between contiguous neighbors identified in the first

10



matrix. The third matrix (W3) was a queen contiguity matrix, based on an N by N evenly
spaced grid corresponding with the sample size under evaluation. For this contiguity
matrix the average number of neighbors ranged between 7.27 (for N = 100) and 7.63 (for
N = 1,024). All matrices were row-standardized such that the sum of the row elements
across columns was one.

In the experiments the LIML SAR-Poisson estimator is implemented using the pre-
defined transform ¢ = 0.5 and the IHS transformation. Four outcome measures for the
experiments are used to investigate the small sample behavior of the estimator. For the
spatial autoregressive parameter, a Likelithood Ratio (LR) test of the null hypothesis
p =0, and a Wald statistic with the null hypothesis p = p, are used. Both tests are -
variates with one degree of freedom. The advantage of the Wald statistic is that it uses
covariance information, which helps discern the effectiveness of the Murphy-Topel
covariance estimator relative to the aspatial ML estimator. For each combination of p, ,
weights matrix and sample size, the frequency that the null hypothesis is rejected is
reported. The nominal Type I error rate is set at 5%.

In terms of power the frequency that the two-step SAR estimator is preferred over the
ML estimator is expected to increase as indicated by more frequent rejections of the null
hypothesis with increasing sample size and stronger spatial autocorrelation. When

p, =0.0, it is expected that the number of times the null hypothesis is rejected should
fall around the nominal 5% level.

The root mean squared error (RMSE) of the aspatial ML and the two-step SAR-Poisson
model were estimated at each replication for the coefficients associated with the x, and x3
variables. For the mth Monte Carlo replicate and kth covariate the RMSE was estimated

as RMSE,, = \/ Bias; + Var(,@’km) , with the bias estimated as the difference between the

true parameter value and the estimated parameters. The average of the RMSE’s compares
the relative precision of the aspatial ML and the two-step estimator under each scenario,
while the average of the bias provides a measure of accuracy.

5. Monte Carlo results

Table 1 reports the results of the Likelihood Ratio and Wald tests, for power and size
respectively, with respect to the spatial autoregressive parameter under the null
hypothesis of no spatial autoregressive lag correlation. In general, the rejection rate
pattern of the LR test corresponds with what would be expected: rejection frequencies
monotonically increase as sample size and autoregressive spatial lag levels increase. The
power results for the LR tests estimated with both transformation procedures were similar
in terms of rejection frequencies. The size of the test is close to the 5% nominal level in
most cases, although the rejection frequency appears slightly higher for the contiguity
neighborhood definitions. The power of the LR test against the null hypothesis is rather
weak. Relatively large sample sizes (> 729) and strong autocorrelation (> 0.6) are
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required for higher rejection frequencies. The inverse distance matrix specification (W)
appears to slightly outperform the others in terms of detecting lag autocorrelation.

Turning to the size tests, the estimators employing the ad hoc constant of ¢ = 0.50 appears
to perform well, as the null hypothesis of p = p, was not rejected at least 95% of the time.
However, at the highest AR levels, this pattern is slightly compromised. The SAR-
Poisson estimator employing the IHS transformation performed poorly with respect to
size at higher AR levels, but results were comparable with the ad hoc estimator at lower
AR levels.®

<< Tables 1, 2 and 3 about here >>

Tables 2 and 3 summarize the Monte Carlo results for the RMSE and bias of the second
and third covariates. In general, the aspatial ML estimator performed quite well relative
to its spatial analogues. Neighborhood definition and the underlying distribution of the
covariate appear to play some role with respect to RMSE performance of the SAR-
Poisson estimator employing the ad hoc transformation, yet notable differences were only
observed under the largest sample sizes (Table 2). For the normally distributed covariate,
only for the largest sample sizes and highest autocorrelation levels was the RMSE of the
spatial estimator lower than the aspatial ML results. Neighborhood and distributional
definitions do not seem to be a factor in terms of RMSE for the SAR-Poisson model
employing the [HS transformation. Only at the highest AR levels and largest sample sizes
was the RMSE of this estimator lower than the aspatial ML estimates for the covariate
parameters. On the other hand, the bias of the spatial estimators was generally lower than
the aspatial ML estimator as sample size and autocorrelation levels were increased (Table
3).

Overall, the properties of the SAR-Poisson estimator are difficult to generalize. On the
one hand, it remains a difficult task to detect AR-lag processes, given the test statistics
used here. On the other hand, size tests suggest that the estimator performs relatively well
in terms of correctly estimating the simulated AR levels. The RMSE results evaluating
the precision of the AR estimator are encouraging as well, performing as one might
expect: as sample size and autocorrelation levels increase, the overall RMSE decreased.
In general, the Monte Carlo results are not too different form Klier and McMillen’s
(2008) investigation of the linearized spatial lag logit model.” They found that at higher
AR levels, the linearized logit estimator associated with covariates had problems with
respect to precision and accuracy. They concluded that the linearized logit estimator
might be helpful in testing for spatial effects without biasing results towards rejecting the
null of p = 0. A similar conclusion may be drawn here, in terms of confidence regarding
AR lag parameters in empirical applications.

® The rejection frequencies of a Wald statistic testing the null hypothesis p = 0 performed similarly, but
these results are not shown for reasons of space. They are available from the authors upon request.

7 Klier and McMillen’s (2008) linearization is attractive in that it applies a second order approximation of
linear dependent variable models. By linearizing the selection model, computational issues that may arise
from the repeated inversion of large n by n matrices are avoided.

12



<< Table 4 about here >>

6. Empirical Application

Given the satisfactory performance of the two-step SAR-Poisson estimator, we go on to
demonstrate the usefulness of the estimator with an empirical example. The example is
concerned with firm birth at the county level (N = 3,078) in the lower 48 United States
during the period 2000-2004. Clearly, firm birth, defined as cumulative new single-unit
start-ups during the abovementioned time period (U.S. Census Bureau, Company
Statistics Division, 2008), are discrete nonnegative counts. Guimaraes et al. (2003) show
how the conditional logit model reduces to a Poisson specification when location
decisions are modeled as discrete-choice events, and only a single sector is considered. In
this example, we focus on the manufacturing sector (NAICS 31-33). Manufacturing
firms select sites based on company objectives potentially taking into account location
factors related to agglomeration economies, market structure, the labor market, the
availability of infrastructure, and fiscal policy characteristics. Below, we briefly describe
these factors and the operationalizations we used.

Agglomeration economies may have a positive impact on firm birth, for instance because
of knowledge spillovers between firms in similar market conditions when groups of firms
in the same sector locate near each other (Glaeser and Kohlhase, 2004). Urbanization
externalities may be associated with firms of different sectors co-locating. These types of
effects are included in our model by means of the manufacturing share of employment
(msemp), total establishment density (#fdens), and the percentage of manufacturing
establishments with less than 10 (pelt10) and more than 100 employees (pem?100).*

The location literature finds that market structure is often the most important factor in
location decisions of firms (Blair and Premus, 1987; Crone, 1997). Proximity to demand
markets reduces transportation costs of inputs used in production as well as final output.
Demand markets may also harbor a relatively larger stock of creative individuals capable
of solving difficult supply issues or combining old ideas in novel ways, which may
stimulate firm birth (Wojan and McGranahan, 2007). We use median household income
(mhhi), population (pop), and the share of workers in creative occupations (cclass) to
proxy market structure.’

Labor availability and labor cost are also important factors in location decisions
(Schmenner et al., 1987; Henderson and McNamara, 2000). Finding skilled workers is
more likely in locations with higher levels of educational attainment (Woodward, 1992;
Coughlin and Segev, 2000). Low wages, labor availability, and an abundance of skilled

¥ Sector-specific employment data are from the U.S. Department of Transportation commuting patterns
compiled by Research and Innovative Technology Administration (RITA), Bureau of Transportation
Statistics. County Business Patterns data were used to calculate tfdens, pelt10, and pemt100.

? Pop and mhhi are scaled to be in thousands. The creative class share of employment was constructed by
McGranahan and Wojan (2007) and is available at http://www.ers.usda.gov/Data/CreativeClassCodes/. The
data for mhhi and pop are from County Business Patterns.
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workers are expected to attract manufacturing investment. Average wage per job
(awage), net flows of wages per commuter (netflow), unemployment rates (uer), and the
percentage of adults with an associate’s degree (pedas) measure cost, relative
demand/supply of labor, labor availability, and skill of labor, respectively."

Infrastructure contributes to regional economic development by improving connections to
other regions, which is important for some manufacturing firms (Smith et al., 1978;
Bartik, 1989). Maintaining infrastructure ensures that site accessibility is available in the
future. Available land is also an important location factor (Carlson, 2000). Public road
density (proad), interstate highway miles (interst), and government expenditures on
highways per capita (hwypc) measure access, extent, and infrastructure quality.!’ The
percentage of farmland to total county area measures available land (aviand)."?

Fiscal policy may impact the cost of conducting business in a region. Local governments
walk a fine line between generating sufficient revenue to provide public goods and
services, and supporting a favorable business climate (Gabe and Bell, 2004). Taxes may
deter manufacturing investment (Wheat, 1986; Bartik, 1989), but local spending may
constitute a benefit (Goetz, 1997). Obtaining detailed tax information at the county level
is difficult. We use a composite measure of tax burden called the state tax business
climate index (bci) (Hodge et al., 2003)." Higher index values indicate more favorable
business climates. Government expenditures on education per capita (educpc) measure
the level of public good services provided by local governments.'

Dummy variables identifying counties as belonging to metropolitan (metro) or
micropolitan (micro) areas, as defined by the U.S. Office of Management and Budget
(U.S. Census Bureau, 2008), are included as well. Non-core counties are the reference

group.
<< Tables 5 and 6 around here >>

Table 5 provides the estimation results using the aspatial Poisson model. Table 6 shows
the results for the SAR-Poisson estimator using a row-standardized inverse distance

10 Awage, netflow, uer, and pedas are taken from the Bureau of Economic Analysis Regional Economic
Accounts, Bureau of Labor Statistics, and U.S. Census Bureau, 2000 Decennial Census, respectively.
Awage and netflow are scaled to be in thousands of dollars.

" Data on public road density and interstate miles are from the U.S. Department of Transportation (2000).
Highway expenditures, scaled to hundreds, include federal, state, and local sources, which are measured
using the U.S. Census Bureau, 1997 Census of Governments.

'2 This measure was calculated using a GIS database provided by ESRI in ArcGIS 9.2.

" The tax business climate index is only available at the state level starting from 2002. While a measure in
2000 would be preferable, the measures reported in subsequent years show that the index remains stable
across time.

4 Education expenditures include federal, state, and local sources, and they are measured using the 1997
Census of Governments. Educpc are scaled in hundreds of dollars.
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matrix, utilizing the Euclidian distance between the eight nearest neighbors.'> We include
results using an exogenously defined transformation constant ¢, and a version in which
the IHS transformation parameter 6 is estimated. The results are very similar, and in our
discussion, we predominantly attend to the former version. Each of the models explained
about 80% of the variation in establishment birth. The autoregressive coefficient is
statistically significant, although rather small, suggesting that start-ups in neighboring
counties are important. Likelihood Ratio tests of p = 0 (¢ = fixed at 0.5, LR = 2246, df =
1) and p = 6 =0 (LR = 2280, df = 2) were rejected at the 1% level, suggesting the SAR-
Poisson specifications are preferred over the aspatial model.

Counties endowed with agglomeration economies, larger populations, and more persons
employed in creative occupations were more likely to attract firm investment. Labor
availability and skilled labor were also positive and statistically significant. Infrastructure
factors were positive and statistically significant with the exception of available land,
which had a negative effect on location activity across all models. The business tax
climate index and government education expenditures per capita were positive and
statistically significant location determinants.

The elasticities in Tables 5 and 6 are of similar magnitude, but they are slightly larger for
the SAR-Poisson estimator due to spatial spillovers mediated through the spatial
multiplier. The largest positive elasticities with respect to manufacturing establishment
births are from local agglomeration, creative class employment, and educational
attainment. Focusing on the pre-fixed constant transformation specification of the SAR-
Poisson model, a one-percent increase in each of these measures increases the percentage
of county level births by 0.484, 1.129, and 0.778%, respectively. A one-percent increase
in the number of manufacturing establishments with more than 100 employees reduces
the number of establishment births by 1.711%. This finding suggests that counties with
higher shares of firms exhibiting internal economies of scale represent a significant
barrier to new manufacturing establishments. In the dynamic process of firm formation,
counties dominated by firms exhibiting (internal) increasing returns to scale are at a
relative disadvantage even if localization economies are present.

7. Conclusions

Recent increases in data availability of business establishment site selection decisions
have allowed researchers to model location determinants of manufacturing activity at
lower levels of spatial aggregation. However, few studies have attempted to explicitly
model the spatial lag processes coincident with establishment site selection, perhaps
because research incorporating endogenous spatial lag processes into count regressions
has been limited. To fill this gap, a structurally consistent spatial lag count regression
model that accommodates global spatial spillovers was proposed.

' Results were robust against alternative definitions of the spatial weight matrix including first-order queen
contiguity, inverse distance, and differences in & for k-nearest neighbors. The “hybrid” matrix selected is a
compromise between a between a spatial weight matrix based on contiguity and a full distance matrix.
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The approach suggested here applied a two-step limited information maximum likelihood
procedure to estimate count models with a spatially lagged dependent variable. Standard
errors of the second-stage regression were adjusted using the Murphy-Topel covariance
estimator. Small sample properties of the SAR-Poisson model were investigated with a
Monte Carlo experiment under the assumption of different neighborhood structures. In
terms of minimizing bias that may arise from AR lag processes, the proposed estimator
appeared to perform reasonably well. However, in terms of RMSE, there appeared to be
little gain over a conventional aspatial Poisson estimator. The power of the specification
test used to detected AR levels was rather weak, but size tests suggest that the estimator
performs well in terms of pinpointing the location of the autoregressive parameter. These
results may not be too surprising given the two-stage estimator applied here, where gains
in consistency comes at the cost of efficiency. With respect to the attending to zero
counts of the lagged dependent variable, the Type I errors of the SAR-Poisson model
with the lagged outcome variable transformed with the inverse hyperbolic sine method
were excessive. While the pre-fixed constant transformation is ad hoc, it outperformed
the data driven method. The inverse hyperbolic sine transformation is not recommended.
Given these results, we recommend using the Wald statistic in empirical settings to verify
the significance of the autoregressive parameter. Future directions might consider general
moment estimators, or linearized versions of the SAR-Poisson model, as Klier and
McMillen (2008) suggested for logit and probit autoregressive process models.

An empirical example estimated the impact of local determinants of manufacturing
location decisions in the lower 48 United States, 20002004, as a discrete Poisson
process. The SAR-Poisson models were preferred according to goodness of fit measures
and likelihood ratio tests, suggesting that the likelihood of attracting a manufacturing
establishment was dependent on the location activities of establishments in neighboring
counties. Under the SAR-Poisson specification, the -elasticities of the location
determinants may be decomposed into direct and indirect effects providing a richer
geographic understanding of location determinants and how neighboring resources may
influence firm birth in certain locations. Such a perspective could have important policy
implications with respect to leveraging or moderating externalities arising from
neighborhood scale economies.
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Table 1. Rejection probability for the null hypotheses Hy: p =0 and Hy: p = p,

Method 1: ad hoc constant, ¢ = 0.50

Likelihood Ratio test, Hy: p =0

W w, 78
po 100 256 484 729 1024 100 256 484 729 1024 100 256 484 729 1024
0.0 0.06 0.08 0.07 0.05 0.06 0.06 0.07 0.07 0.05 0.05 0.07 0.08 0.08 0.07 0.06
0.2 0.08 0.11 0.11 0.13 0.14 0.06 0.10 0.10 0.10 0.14 0.08 0.09 0.11 0.11 0.12
04 0.13 020 0.24 037 049 0.10 0.19 0.19 040 0.57 0.09 0.17 0.22 0.30 0.32
0.6 030 050 0.66 090 097 033 056 0.56 094 0.99 0.15 0.51 0.56 0.83 0.88
0.8 09 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00

Wald test, Hy: p = p,

W1 WZ W3
po 100 256 484 729 1024 100 256 484 729 1024 100 256 484 729 1024
0.0 0.07 0.06 0.06 0.05 0.05 0.05 0.06 0.04 0.04 0.04 0.07 0.07 0.06 0.06 0.05
0.2 0.04 0.04 0.04 0.04 0.05 0.03 0.04 0.03 0.03 0.04 0.05 0.04 0.04 0.04 0.04
04 0.03 0.03 0.02 0.02 0.03 0.03 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.03
0.6 0.02 0.01 0.02 0.00 0.02 0.03 0.02 0.02 0.02 0.01 0.03 0.01 0.01 0.01 0.01
0.8 0.05 0.02 0.04 0.07 0.08 0.08 0.03 0.06 0.12 0.13 0.04 0.04 0.03 0.06 0.09

Method 2: first-stage regression, IHS transformation of neighboring counts

Likelihood Ratio test, Hy: p =0

W1 WZ W3
po 100 256 484 729 1024 100 256 484 729 1024 100 256 484 729 1024
0.0 0.06 0.08 0.07 0.05 0.06 0.05 0.07 0.07 0.05 0.05 0.07 0.08 0.08 0.07 0.06
0.2 0.08 0.10 0.11 0.13 0.14 0.06 0.10 0.10 0.10 0.14 0.08 0.09 0.11 0.11 0.12
04 0.13 0.19 025 037 049 0.10 0.19 0.19 039 0.57 0.09 0.17 0.22 0.30 0.32
0.6 030 051 0.66 0.89 096 035 0.56 0.56 094 0.99 0.16 0.51 0.56 0.83 0.89
08 096 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.51 1.00 1.00 1.00 1.00

Wald test, Hy: p = p,

W1 WZ W3
po 100 256 484 729 1024 100 256 484 729 1024 100 256 484 729 1024
0.0 0.06 0.06 0.06 0.05 0.05 0.05 0.06 0.04 0.04 0.04 0.06 0.07 0.06 0.06 0.05
0.2 0.04 0.04 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.04 0.05 0.03 0.04 0.04 0.03
04 0.03 0.02 0.02 0.02 0.02 0.05 0.03 0.03 0.04 0.04 0.03 0.02 0.02 0.02 0.03
0.6 0.18 0.09 0.11 020 032 024 0.17 0.18 032 047 0.07 0.14 0.10 0.22 0.26
0.8 096 100 1.00 1.00 1.00 096 1.00 1.00 1.00 1.00 0.86 1.00 1.00 1.00 1.00

Notes: Shaded entries denote cases where the null hypothesis was rejected for the likelihood ratio test and
accepted for the Wald test at the five percent level.
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Table 2. RMSE: Aspatial Poisson ML and SAR-Poisson LIML £, / estimators

Aspatial §, - ML B - SAR-Poisson LIML " B - SAR-Poisson LIML ¥
W W W
pin| 100 256 484 729 1024 100 256 484 729 1024 100 256 484 729 1024
0.0 [0.206 0.124 0.092 0.075 0.062 0.220 0.128 0.094 0.076 0.063 0.220 0.128 0.094 0.076 0.063
0.2]0.196 0.120 0.087 0.073 0.060 0.210 0.123 0.089 0.075 0.061 0.209 0.123 0.089 0.075 0.061
0.4]0.187 0.110 0.081 0.068 0.056 0.198 0.114 0.082 0.070 0.057 0.198 0.114 0.083 0.070 0.057
0.6[0.161 0.098 0.072 0.064 0.051 0.171 0.100 0.074 0.064 0.051 0.172 0.101 0.075 0.064 0.052
0.8(0.121 0.068 0.049 0.068 0.042 0.124 0.070 0.050 0.045 0.036 0.125 0.071 0.051 0.045 0.036
W, W, W,
0.0 [0.206 0.124 0.092 0.075 0.062 0.224 0.129 0.093 0.076 0.063 0.227 0.129 0.098 0.073 0.064
0.2]0.196 0.120 0.087 0.073 0.061 0.209 0.124 0.088 0.074 0.061 0.218 0.124 0.093 0.070 0.061
0.4(0.187 0.110 0.081 0.068 0.057 0.198 0.114 0.083 0.070 0.058 0.202 0.117 0.091 0.067 0.058
0.6]0.163 0.097 0.072 0.067 0.053 0.173 0.101 0.075 0.064 0.052 0.183 0.103 0.081 0.061 0.053
0.8(0.129 0.072 0.050 0.082 0.055 0.130 0.071 0.051 0.046 0.037 0.135 0.073 0.057 0.044 0.037
W; /8 /8
0.00.206 0.124 0.087 0.075 0.062 0.223 0.129 0.094 0.076 0.063 0.232 0.123 0.095 0.074 0.063
0.2(0.197 0.120 0.080 0.073 0.060 0.214 0.124 0.088 0.073 0.061 0.224 0.119 0.092 0.072 0.060
0.4(0.187 0.110 0.071 0.067 0.056 0.203 0.114 0.082 0.068 0.057 0.212 0.111 0.086 0.067 0.058
0.6]0.162 0.098 0.048 0.061 0.050 0.176 0.101 0.073 0.061 0.051 0.185 0.097 0.076 0.060 0.052
0.8[0.120 0.068 0.075 0.045 0.039 0.124 0.070 0.049 0.043 0.036 0.131 0.066 0.055 0.042 0.037

Aspatial 3 - ML /3, - SAR-Poisson LIML /3, - SAR-Poisson LIML %
100 256 484 729 1024 100 256 484 729 1024 100 256 484 729 1024
p/n W, W W

0.0{0.052 0.036 0.026 0.021 0.018 0.058 0.038 0.027 0.022 0.019 0.058 0.038 0.027 0.022 0.019
0.2 0.050 0.034 0.026 0.021 0.018 0.056 0.036 0.027 0.021 0.018 0.056 0.036 0.027 0.021 0.018
0.410.047 0.032 0.024 0.020 0.017 0.052 0.035 0.025 0.020 0.018 0.052 0.035 0.025 0.020 0.018
0.6(0.043 0.029 0.022 0.020 0.018 0.048 0.030 0.022 0.018 0.016 0.048 0.031 0.022 0.019 0.016
0.8[0.046 0.026 0.025 0.028 0.027 0.036 0.022 0.016 0.014 0.011 0.037 0.023 0.016 0.014 0.011
W, w, w,

0.0(0.052 0.036 0.026 0.021 0.018 0.058 0.038 0.027 0.022 0.019 0.070 0.037 0.026 0.022 0.019
0.20.050 0.034 0.026 0.021 0.018 0.055 0.036 0.026 0.021 0.018 0.068 0.035 0.026 0.021 0.018
0.410.047 0.032 0.024 0.020 0.017 0.051 0.035 0.025 0.021 0.018 0.064 0.034 0.026 0.020 0.018
0.6(0.043 0.030 0.023 0.021 0.019 0.048 0.031 0.023 0.019 0.016 0.058 0.030 0.023 0.019 0.017
0.8(0.052 0.034 0.032 0.034 0.036 0.037 0.023 0.017 0.014 0.012 0.044 0.023 0.017 0.013 0.013
78 ws ws

0.0{0.052 0.036 0.026 0.021 0.018 0.058 0.039 0.027 0.022 0.019 0.061 0.040 0.028 0.022 0.019
0.210.050 0.034 0.026 0.021 0.018 0.055 0.037 0.026 0.021 0.018 0.059 0.038 0.027 0.021 0.018
0.410.046 0.032 0.024 0.020 0.017 0.052 0.035 0.024 0.020 0.017 0.056 0.036 0.026 0.019 0.017
0.6(0.042 0.031 0.021 0.019 0.015 0.046 0.031 0.022 0.018 0.015 0.049 0.032 0.023 0.018 0.015
0.8(0.031 0.034 0.019 0.023 0.017 0.034 0.022 0.015 0.013 0.011 0.036 0.023 0.017 0.013 0.011

Notes: Shaded entries denote cases where the RMSE of the SAR-Poisson estimators (center and right-most
columns) were less than the aspatial ML Poisson estimator. Root mean squared errors (RMSE) are

estimated as 4/ Bias® + Var(p) for each Monte Carlo replicate, with the bias estimated as ﬂo - ,8 ; the

difference between the true parameter value and its estimate. Entries are averaged over 1,000 simulations.
Y'To account for zeros in the first stage estimation, neighboring counts were transformed using the inverse
hyperbolic sine estimation procedure of Burbidge et al. (1988). ¥ The ad hoc constant ¢ = 0.5 was added to
neighboring counts of zero to facilitate the first-stage regression.

22



Table 3. Bias: Aspatial Poisson ML and SAR-Poisson LIML f, /% estimators

p/n

0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

p/n
0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

Aspatial g, - ML

B - SAR-Poisson LIML
W,

S - SAR-Poisson LIML ¥
W,

100
-0.007
-0.007
-0.003
0.008
0.030

256

-0.002 0.000
-0.003 0.000

-0.001
0.001
0.015

i

484 729 1024
0.002 -0.002
0.003 0.000
0.008 0.003
0.015 0.010
0.034 0.025

0.004
0.010
0.024

100 256 484 729 1024
-0.011-0.004-0.002-0.001 -0.004
-0.014-0.005-0.003-0.001 -0.003
-0.013-0.004-0.002 0.000 -0.003
-0.008-0.005 0.000 0.000 -0.002
-0.004-0.001 0.000 0.002 0.000

100 256 484 729 1024
-0.011-0.004-0.002-0.001 -0.004
-0.014-0.005-0.003-0.001 -0.003
-0.013-0.004-0.002 0.000 -0.003
-0.009 -0.005 0.000 0.000 -0.003
-0.005 0.000 0.001 0.002 -0.002

-0.007
-0.007
-0.004
0.011
0.045

-0.002 0.000

-0.001
0.003
0.011
0.037

W,

0.002 -0.002
0.003 0.000
0.007 0.006
0.016 0.017
0.036 0.041

0.001
0.006
0.015
0.035

W,
-0.012-0.006-0.003 0.000 -0.004
-0.013-0.007-0.003 0.000 -0.003
-0.013-0.006-0.001 0.001 -0.003
-0.005-0.005 0.001 0.002 -0.002
0.000 -0.003 0.002 0.002 -0.001

W,
-0.011-0.006-0.003 0.000 -0.004
-0.012-0.007-0.003 0.000 -0.003
-0.013-0.006-0.001 0.001 -0.003
-0.005-0.005 0.001 0.002 -0.002
-0.001 0.000 0.002 0.000 -0.004

-0.007
-0.010
-0.015
-0.019
-0.029

W;

-0.002-0.002 0.002 -0.002

-0.001
0.000
0.003
0.005

-0.002 0.002 -0.002
-0.003 0.004 0.000
-0.004 0.010 0.004

0.002 0.027 0.016

W
-0.001-0.004 0.000 0.000 -0.004
-0.004-0.002-0.001 0.000 -0.003
-0.008-0.002-0.001 0.000 -0.003
-0.005-0.001 0.000 0.001 -0.003
-0.006 0.001 0.000 -0.001 -0.002

w;
0.000 -0.004 0.000 0.000 -0.004
-0.003-0.002-0.001 0.000 -0.003
-0.007-0.002-0.001 0.000 -0.003
-0.006-0.001 0.000 0.001 -0.003
-0.007-0.001 0.000 0.001 -0.002

100

Aspatial £, - ML

256

484 729 1024

/> - SAR-Poisson LIML "
100 256 484 729 1024

/3, - SAR-Poisson LIML #
100 256 484 729 1024

-0.002
0.000
0.005
0.015
0.037

0.001
0.001
0.003
0.008
0.021

W

0.001 -0.001-0.001
0.001 -0.001 0.000
0.002 0.001 0.002
0.005 0.005 0.007
0.013 0.015 0.019

W
-0.006-0.002-0.001 -0.002 -0.002
-0.007-0.003-0.001 -0.002 -0.002
-0.006-0.002-0.001-0.002-0.001
-0.004-0.001 0.000 -0.001-0.001
-0.001 0.002 0.001 0.000 -0.001

W
-0.007-0.002-0.001 -0.002 -0.002
-0.007-0.003-0.001-0.002 -0.002
-0.007-0.002-0.001-0.002-0.001
-0.004-0.001-0.001-0.001-0.001
-0.002 0.001 0.001 -0.001-0.001

-0.002
0.000
0.004
0.016
0.045

0.001
0.001
0.004
0.010
0.026

W,

0.001 -0.001 -0.001
0.001 -0.001 0.000
0.003 0.002 0.003
0.007 0.009 0.011
0.019 0.023 0.029

W,
-0.006-0.002-0.001 -0.003 -0.002
-0.006-0.003 -0.002-0.003 -0.002
-0.005-0.002-0.001-0.002-0.001
-0.001 0.000 0.000 -0.001-0.001
0.001 0.002 0.001 0.000 -0.001

W,
-0.007-0.002-0.001 -0.003 -0.002
-0.006-0.003-0.002-0.003 -0.002
-0.005-0.002-0.001-0.002-0.001
-0.001 0.000 0.000 -0.001-0.001
0.001 0.001 0.001 -0.001-0.002

-0.002
-0.002
-0.001
0.001

0.006

0.001
0.003
0.008
0.016
0.035

W;

0.001 -0.001 -0.001
0.002 -0.001 0.000
0.004 0.002 0.002
0.007 0.007 0.006
0.015 0.018 0.015

W
-0.005-0.004 -0.002 -0.003 -0.002
-0.005-0.003-0.002-0.003 -0.002
-0.006-0.001-0.001-0.002-0.001
-0.005 0.000 0.000 -0.001-0.001
-0.002-0.001 0.000 0.000 0.000

w;
-0.005-0.004-0.002 -0.003 -0.002
-0.005-0.003-0.002-0.003 -0.002
-0.006-0.001-0.001-0.002-0.001
-0.004 0.000 0.000 -0.001-0.001
-0.002 0.000 0.000 0.000 0.000

Notes: Bias was estimated as ﬂo — B ; the difference between the true parameter value and its estimate.

Entries are calculated as the average of 1,000 simulations.
1/ To account for zeros in the first stage estimation, neighboring counts were transformed using the inverse
hyperbolic sine estimation procedure of Burbidge et al. (1988).
2/ The ad hoc constant of ¢ = 0.5 was added to neighboring counts of zero to facilitate first stage.
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Table 4. Root mean squared error of the AR estimator

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

ad hoc constant, ¢ = 0.5

first-stage IHS estimator

100 256 484 729 1024 100 256 484 729 1024
W, /4
1.440 1.049 0.831 0.660 0.550 2.167 1.109 0.761 0.572 0.476
1.208 0.894 0.724 0559 0463 1.446 0.783 0.603 0.460 0.379
0919 0.696 0.564 0.428 0.348 0818 0.539 0436 0325 0.261
0.587 0.443 0364 0263 0.212 0459 0343 0294 0.242 0.222
0264 0.193 0.167 0.130 0.107 0.564 0.509 0.525 0.536 0.534
W, W,
1.211  0.895 0.718 0541 0456 1.867 0934 0.647 0473 0.398
1.040 0.763 0.623 0467 0.389 1.278 0.659 0.515 0.391 0.323
0.804 0.604 0487 0362 0299 0.707 0475 0379 0.288 0.232
0.495 0377 0312 0227 0.184 0422 0323 0.278 0.235 0.215
0.217 0.169 0.150 0.122 0.101 0.556 0.516 0.528 0.518 0.516
Ws ws
1.575 1.086 0947 0.728 0.655 2489 1.150 0.865 0.633 0.569
1.433 0914 0.803 0.601 0.549 1.773 0.795 0.666 0.494 0.451
1.227 0.673 0.615 0443 0411 1.088 0.525 0.478 0.339 0.313
0915 0393 0391 0263 0.248 0.698 0.333 0316 0.253 0.249
0488 0.167 0.182 0.125 0.129 0.641 0.527 0.535 0.536 0.548
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Table 5. Single-Unit Manufacturing Establishment
Births (2000-2004), Aspatial Poisson ML Results

Poisson ML
Variable Coefficients S.E.f Elasticities'"
constant —0.934%** 0.281
msemp 0.031*** 0.004 0.464
peltl0 —0.002 0.002 -0.116
pemt100 —0.029%** 0.004 -0.321
tfdens 0.006 0.010 0.0003
mhhi 0.020 0.009 0.017
pop 0.002%** 0.0005 0.021
cclass 0.048*** 0.013 0.852
uer 0.073%** 0.022 0.310
pedas 0.130%** 0.021 0.762
awage 0.019%** 0.007 0.456
netflow 0.002 0.002 0.015
proad 0.103%** 0.018 0.193
interst 0.007*** 0.001 0.109
avland —0.009%** 0.001 -0.272
bei 0.080** 0.037 0.480
educpce 0.004* 0.002 0.051
hwypc —0.030 0.019 —0.069
metro 1.265%** 0.092 0.387
micro 0.572%** 0.063 0.099

Log Likelihood  —32,248
Pseudo R’ 0.805

N =3078; *** ** * represent statistical significance at the 1%, 5%,
10% level, respectively. ' Heteroskedasticity robust standard errors.
" Elasticities represent the average effects across all observations.
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Table 6. Single—Unit Manufacturing Establishment Births (2000-2004), Two-Step LIML SAR-Poisson Results

Variable
constant
P
msemp
peltl0
pemt100
tfdens
mhhi
pop
cclass
uer
pedas
awage
netflow
proad
interst
avland
bei
educpce
hwypc
metro
micro

c

0

Log Likelihood
Pseudo R’

SAR-Poisson IHS transformation

SAR-Poisson ad hoc constant, ¢ = 0.5 Elasticities'"

Coefficients S_ET Direct Indirect Coefficients

—0.914%** 0.288 —1.020%**
0.181%** 0.062 0.145%**
0.026%** 0.004 0.399 0.085 0.026%**

—-0.003 0.002 -0.132 —-0.028 -0.003

—0.027%** 0.004 —-1.409 -0.302 —0.027%**
0.001 0.010 0.010 0.001 0.001

-0.012 0.008 -0.425 —-0.091 -0.012
0.003%** 0.0004 0.019 0.004 0.002%**
0.054%%** 0.013 0.930 0.199 0.054%**
0.048** 0.024 0.207 0.044 0.047%*
0.117%** 0.019 0.641 0.137 0.117%**
0.019** 0.008 0.462 0.099 0.019%*
0.001 0.002 0.011 0.002 0.001
0.082%** 0.017 0.152 0.032 0.082%**
0.006%** 0.001 0.089 0.019 0.006%**

—0.006*** 0.001 -0.189 -0.041 —0.006***
0.113%** 0.032 0.079 0.017 0.114%**
0.004** 0.002 0.049 0.011 0.004**

—0.034* 0.020 -0.061 —-0.013 —0.034*
1.182%** 0.096 0.410 0.088 1.184%**
0.545%** 0.059 0.118 0.025 0.547%**
0.5 fixed

0.781%**

-31,125 -31,108

0.812 0.812

&T
0.279
0.049
0.004
0.002
0.004
0.010
0.008
0.0004
0.013
0.024
0.018
0.008
0.002
0.017
0.001
0.001
0.032
0.002
0.020
0.095
0.059

0.046

Elasticities'"
Direct Indirect
0.400 0.066
-0.132 -0.022
-1.401 -0.231
0.005 0.001
-0.424 -0.070
0.019 0.003
0.930 0.153
0.205 0.034
0.670 0.111
0.461 0.076
0.011 0.002
0.151 0.025
0.088 0.015
—0.189 —-0.031
0.080 0.013
0.049 0.008
-0.061 -0.010
0.410 0.068
0.119 0.020

N =3078; *** ** * represent statistical significance at the 1%, 5%, and 10% level, respectively. T Heteroskedasticity robust standard errors.

Elasticities represent the average effects across all observations.
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