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Abstract 
 

Modern farming in Australia is no longer simple. Farms are large, multi-enterprise 

businesses underpinned by expensive capital investments, changing production 

technologies, volatile markets and pervasive regulation.  The complexity of modern 

broadacre farming leads to the question: what is the nature of the relationship between 

farm business complexity and farm profitability? This study uses bioeconomic farm 

modelling and employs eight measures of complexity to examine the profitability and 

complexity of a wide range of broadacre farming systems in Australia.  Rank order 

correlations between farm profitability and each measure of complexity show inconsistent 

relationships, although the most profitable farming systems are found to be reasonably 

complex on several criteria.  Among the set of highly profitable systems are found some 

characterised by less complexity.  Using the farmer’s annual hours worked as a measure 

of complexity that affects current farm management, the trade-off between profit and this 

measure of complexity is found not to be large. A case is outlined where the farmer’s 

annual hours worked could be reduced by 9 percent for a 3 percent reduction in farm 

profit.  If farmers’ workloads are proving problematic now and in the future, then 

agricultural R&D, service delivery and policy development will need to focus much more on 

being highly attractive to time-poor farm managers.  

 
Key words: complexity, farm modelling; management; profitability 
 
 
 
 
1. Introduction  
 
Business complexity is seen as one of the world’s top ten business problems (Business Change 

Forum 2008) as it complicates business management and creates integration problems and 

inefficiencies due to the number and variety of goals and business units (Lissack and Gunz 1999; 

Performance Management 2009).  Excessive complexity drives up operating costs and hampers 

business growth (Enz and Potter 1998; Gottfredson and Aspinall 2005; Jagersma 2008).  As 

product variety expands, the complexity of operations increases, leading to a rise in the need for 

support activity, which can then decrease the overall profit margin of the enterprise (Enz and Potter 

1998).   

 

In a global survey of over 900 executives (Gottfredson and Aspinall 2005) nearly 70 percent 

admitted excessive complexity was raising their firm’s costs and hindering their profit growth. The 
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same survey showed that some businesses in manufacturing, retail, services and fast food had 

benefited greatly from simplifying their operations.  Another survey of 65 managers of 20 global 

companies (Jagersma 2008) found that the complexity of operations and structures added over 25 

percent to business costs and that simplification or reconfiguration to reduce complexity could 

importantly affect these firms’ global competitiveness.   

 

Conversely, however, Gottfredson and Schwedel (2008) argue that being too simple also can 

hinder business growth through ineffective risk management and an inability to capitalise on 

different consumer tastes.  These authors explain how some degree of complexity is essential for 

managing risk and maintaining flexibility.  Closs et al. (2008) note how product portfolio complexity 

creates a range of difficulties yet also can increase sales through product differentiation.  

 

Aside from its impact at the firm level, complexity also affects individual choice (Hu 2006; 

Masatlioglu and Ok 2005; Boxall et al. 2009).  Individuals change their decision making strategies 

in response to choice context and the complexity of the choice environment (Payne et al. 1988; 

Holling 2001; Swait and Adamowicz 2001).  In adoption literature complexity of an innovation 

generally negatively affects its uptake (Fliegel and Kivlin 1962; Rogers 1995 and 2003; Batz et al. 

1999; Pannell et al. 2006).  System complexity also poses challenges for researchers (Ho and 

Sculli 1995; Hobday et al. 2000; Limburg et al. 2002; Schiere et al. 2004; Reeson and Dunstall 

2009; Ekboir 2009) and extension staff (van Keulen and Schiere 2004; Price et al. 2009).   

 

Turning to the specific case of broadacre farming in Australia, McGuckian (2006) notes that it is a 

difficult system to manage and a difficult environment in which to make decisions.  He later reports 

key findings from a detailed interview-based survey of 50 mixed enterprise farms across Australia 

and concludes that “Mixed farming systems are complex and require a high level of skill to run 

profitably.” (p. 5, McGuckian 2007).  This view is echoed by Price and Goode (2009) who review 

research centred on Australian mixed enterprise farming and conclude that the “research showed 

that making decisions for a mixed farm is a complex and demanding process.” (p.19).  Similar 

views are stated by Kemp et al. (2003) who suggest that in Australia “The complexity of 

management has increased” (p.1) and that “Future farm managers will be operating in an 

increasingly complex bio-business and biophysical environment.” (p.9).  Lewis et al. (2006) 

comment how farm management involves the consideration of a “complex mix of many factors that 

can be broadly categorized as being of a human, technical, economic, financial, risk, institutional 

and social nature.” (p.333).  Chavas (2008) more generally notes that “Agro-ecosystems are 

complex processes.” (p366). 
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Pannell (1999) argues that a more complex farming system has an increasing number of elements 

and interactions that become more difficult to understand and manage and therefore there is more 

chance of problems occurring.  Ewing and Flugge (2004) and Robertson et al. (2009) point out that 

crop-livestock integration in Australian agriculture has benefits, but also challenges.   Lewis et al. 

(2006) comment that the more complex the farming system, the more understanding and 

management skill is required.  Cattle and White (2007) describe how larger, more diversified and 

complex broadacre farms in Western Australia are less technically efficient and Fraser (1990) 

shows that numerical solutions to farm management problems become necessary in the face of a 

complex combination of enterprise diversification, product complementarity and risk aversion.  

Chavas (2008) uses the language and tools of production economics to suggest that the complex 

challenge in agricultural production is to jointly consider the ramifications of economies of scale, 

specialization, diversification, technical progress and risk. 

 

Most researchers, such as those already named, describe agricultural systems and their 

management as complex, but usually they do not define the term complexity.  Where definitions 

are provided (e.g. Simon 1981) a complex system is commonly defined as one that comprises 

numerous parts that interact to yield outcomes not easily predicted.  The advice of Meier (2008) is 

that complexity is best defined in the framework of a specific application.  This advice is heeded in 

this study.  Metrics of complexity are used that suggest complexity is greatest where there are 

many enterprises, many activities and many interactions present in the farming system, with the 

resultant workload for the farmer being large.  These metrics are described in a later sub-section. 

 

The complexity of broadacre farm business management in Australia is affected by a range of 

trends and changes (Kingwell 2002a; Kingwell and Pannell 2005; Price and Goode 2009).  Firstly, 

broadacre farms are becoming fewer and larger (Productivity Commission 2005).  ABARE farm 

survey data for Australia’s wheat-sheep zone from 1988/9 to 2007/8 show a 29 percent decline in 

the number of farms and a 48 percent increase in average farm size.  Carroll (2005) predicts that 

by 2020 less than 100,000 farms will remain in Australia.  Larger farms have an increased 

likelihood of needing to manage a greater diversity of land management units that can complicate 

spatial and enterprise management.  Fewer neighbours can mean a socially less vibrant grower 

community, fuelling volunteer burn-out (Rockloff 2003), heightening the requirement for self-

reliance and making the life of farming socially less attractive.   

 

Secondly, deregulation of grain marketing (McCorriston and MacLaren 2007; DAFWA 2009) 

means farmers are now responsible for marketing their product as well as producing it.  In practice 

this can entail a farmer becoming knowledgeable about grain marketing, or at least knowledgeable 

about which firms offer sound, cost-effective marketing advice. 
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Thirdly, farmers’ enterprise management choices, although more and varied, are also constrained 

by the needs and actions of a greater range of stakeholders with diverse interests in quality 

assurance (Kingwell 2003; O’Keefe 2004), occupation health and safety, marketing (Cary et al. 

2004; Bushell and MacAuley 2007), animal welfare (Kingwell 2002b; Thornber 2007) and 

environmental protection (Han et al. 2006; Carruthers 2006; Pahl and Sharp 2007).  The traditional 

production focus of farming now additionally is required to encompass these concerns (Lyson 

2002).  Ketelaar-de Lauwere et al. (2002) comment how aside from these stakeholder 

requirements farmers face other issues such the failing attractiveness of the sector as an employer 

and uncertainties surrounding agricultural supply chains.  They say: “All these developments have 

made modern agricultural entrepreneurship increasingly complex. It is open to question whether 

and how farmers are able to deal with such complexity.” (p. 1). 

 
Adding to the complexity of mixed enterprise farming systems and their management are 

demographic changes such as smaller family sizes and more family members working off-farm 

(Productivity Commission 2005), which reduces the supply of both family labour and other regional 

full time farm workers (Tonts 2005).  It can make division or specialisation of farm family labour 

less possible.  Increased reliance on hired casual labour adds to the costs of labour search, 

training and supervision or leads some farmers to adopt an enterprise mix less dependent on 

labour.   

 

Finding and retaining farm labour can be difficult.  A survey of WA farmers (Rabobank 2007) 

reported that of the 69 percent of farmers who required additional labour over the previous 12 

months, 14 percent said it was impossible to find labour. A further 62 percent said they had 

experienced some difficultly attracting adequate labour. To overcome this labour shortage, 41% of 

the survey participants said they had increased their own working hours.  Yet this management 

workload falls on an ageing farmer population.  In 2008 only 16 per cent of Australia’s farmer 

population was less than 45 years old and the average age was 57.  By contrast, 25 years 

previously in 1983, 40 per cent of the farmer population was less than 45 years old 

(Mallawaarachchi et al. 2009).   

 

The increase in business complexity, combined with scarcity of family and skilled farm labour, 

places additional demand on farmers’ time and skills.  For example, an ABS (2002) survey of 

20,000 Australian farms reported that almost 60% of all farms nominated time-pressures as a main 

reason for limiting their response to salinity problems.  Also, based admittedly on a small sample of 

face-to-face interviews with 50 broadacre farmers across Australia, McGuckian (2006) reported 

that many were looking for ways to make life simpler and easier, at a time when the Rabobank 

(2007) survey findings suggest many farmers’ workloads were increasing.  
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Given these trends and influences on farm management, the question arises: Are the returns 

associated with running a complex set of enterprises sufficient to justify the greater demands on a 

farmer’s time and skill?   The fact that McGuckian (2006) found so many farmers in his small 

sample keen to opt for a simpler life suggests that current returns to complexity insufficiently 

compensate or reward these farmers.  He found for example as did Rabobank (2007) that many 

farmers were reluctant to employ labour due to the difficulty of finding skilled labour and the need 

to comply with occupational health and safety regulations. Many farmers preferred to reduce labour 

required on their farm through enterprise choice or work more hours themselves.  

 
Aside from interview-based studies to reveal farmers’ management intentions and perceptions of 

their management tasks, there has been little research formally investigating the relationship 

between profitability and broadacre farm business complexity.  This lack of knowledge is the 

principal motivation for this paper.   

 

This paper is structured as follows.  The next section provides descriptions of measures of 

business complexity. Then the modelling framework and analysis to explore the relationship 

between business complexity and profitability is outlined.  The presentation and discussion of 

modelling results follows and last, a conclusion. 

 

2. Measures of Business Complexity 
 

Early definitions and measures of organisation complexity by Child (1972) and Duncan (1972) refer 

to complexity as (a) the number of factors in the decision environment and (b) the dissimilarity or 

heterogeneity among them.  Tung (1979) extended their work by differentiating between factors 

internal or external to the business. She developed a complexity index that drew on the key 

internal and external key factors that affected a CEO’s decision-making.  This index can be 

expressed as: 

∑
=

=
n

i
ji n).WC(I

1

2   [ ]21,j∈  

where Ci is the ith key factor perceived by the CEO as affecting their business decision-making 

and Wj is the weighting of the factor, such that if it is external (j=2) to the firm its weighting is 2 

whereas if it is internal (j=1) the weighting is unity.  Hence if there were three key factors 

nominated, with two of these being external to the firm, then I would equal 45= (1+2+2)*32.   

 

Dess and Beard (1984) drew on the theoretical work of Aldrich (1979) to measure business 

complexity.  They comment firstly that: “managers facing a more complex (i.e. heterogeneous) 
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environment will perceive greater uncertainty and have greater information-processing 

requirements than managers facing a simple environment.” (p.56) and secondly that “organizations 

competing in industries that require many different inputs or that produce many different outputs 

should find resource acquisition or disposal of output more complex than organizations competing 

in industries with fewer different inputs and outputs.” (p.57).  They found that as businesses 

expand spatially and diversify into new markets and produce additional product lines that the 

business management and administration becomes more complex.  

 

Kotha and Orne (1989) characterised complexity using a product line paradigm whereby the 

ingredients of complexity were the number of different products produced, the complexity of the 

products (i.e. the number of components), and the range of product volumes.  Boyd (1990) 

considered business complexity as a function of competitive diversity and used a Herfindahl index, 

H as a measure of competitive diversity, where the index considered n firms with the ith firm having 

a market share of si such that: 

∑
=

=
n

i
isH

1

2  

This approach, however, was criticised by Sharfman and Dean (1991) who argued that these 

measures failed to capture the complexity of an environment that arose from high levels of 

technical or scientific sophistication that also characterised some environments.  

 
Miller and Chen (1996) measured complexity as simply the number of enterprises within a system.  

Delaney et al. (1997) argued for the use of firm size as a measure of complexity, making reference 

to the increased numbers of products and markets that are often associated with organisational 

scale. However, firm size alone is a controversial measure of complexity, as a firm may increase in 

size yet not increase the diversity of their product line and markets. 

 

Grant et al. (2000) measured business complexity with the metrics of the number of lines of 

business and the number of geographical regions in which firms operated.  Hence, their 

assessment of complexity yielded the most simple firm being one with a single line of business 

operating in only one region.  Setzekorn et al. (2000) extended this measure of complexity to also 

include volatility.  Volatility was measured by suppliers' delivery unreliability; the size of forecasting 

errors, the frequency of late changes in due dates of deliveries; the frequency of late changes to 

engineering and design tasks; and duration of a production plan and its frequency of revision. 

 

Flood (1987), Sharfman and Dean (1991) and later, Cannon and John (2007) reviewed the 

measurement of organisational complexity and concluded that that there are three main aspects to 

organisational or environmental complexity: 

(i) number of environmental components with which a firm must interact. 
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(ii) heterogeneity or dissimilarity among these components.  

(iii) technical knowledge required to interact effectively with these components. 

 

Applying their nomenclature to agricultural production would suggest that its complexity would 

depend on the number of environments or components that require management, their 

heterogeneity and the level of technical knowledge required for their proper management.   

 

Hendrickson et al. (2008) ranked agricultural systems according to their management complexity.  

Their hierarchy started with a basic agricultural production system that comprised no more than 

two enterprises with a minimal flow of resources and production focused on delivering a single 

consistent commodity.  Next were diverse agricultural production systems that contained three or 

more species of crop or livestock. Interactions between crop and livestock were limited and the 

enterprises were managed in a pre-determined manner.  The most complex agricultural system 

they considered was an integrated agricultural production system.  This involved multiple 

enterprises managed dynamically, interacting synergistically in space and/or time.  When 

Hendrickson et al. (2008) applied their hierarchy to broadacre farming systems in Australia, these 

systems were judged as displaying the highest level of complexity among all the agricultural 

systems they considered. 

   

In summary, the literature on measurement of complexity provides no single widely accepted 

measure of complexity.  Each study often has several different measures of complexity and so to 

be consistent with this literature in this study several measures of farming system complexity are 

used: 

 

• Diversity of revenue sources 

∑
=

=
n

i i
i )

r
ln(rR

1

1
   (1) 

Underpinning this entropy-type index is the assumption is that the more revenue sources 

and the more equal their shares (ri) of total farm revenue the more diversified yet complex is 

the faming system to manage. In equation (1) and similar subsequent equations it is 

customary (Theil 1972) to define: 

01
=)

r
ln(r

i
i    if 0=ir   

• Diversity of land use 

∑
=

=
n

i i
i )

s
ln(sU

1

1
   (2) 
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Here the assumption is that the greater the array of i land uses and the more equal their 

shares (si) of the farm’s area, the more diversified yet complex is the faming system to 

manage.  Land use refers to the area allocated to each type of crop and pasture. 

 

• Number and land share of rotations 

∑
=

=
m

i i
i )

n
ln(nS

1

1
   (3) 

This assumes that the greater the number of rotations across the farm’s m land 

management units and the more equal their shares (ni) of the farm’s area the more 

complex is the farming system to manage.  

 

• Number of rotations 

∑
=

=
m

i
iuN

1
  (4) 

where ui is the number of selected rotations on land management unit i and there are  m 

land management units on the farm.  The more rotations that underpin the farming system 

the greater is the assumed task of farm management. 

 

• Number of unique rotations  

∑
=

=
m

i
idD

1
  (5) 

where di is the number of unique rotations on land management unit i and there are  m land 

management units on the farm.  So the more land managements units and the more unique 

are the rotations on those land management units, the more challenging or complex is the 

management of the faming system.  The measure in equation (4) may over-state farming 

system complexity because a land use such as permanent pasture if selected on 4 land 

management units would count as 4 rotations whereas under equation (5) they would count 

as a single unique rotation. 

 

• Diversity of expenditure 

∑
=

=
n

i i
i )

e
ln(eE

1

1
   (6) 

Here the assumption is that the greater the range of types of expenditure (fuel, fodder, 

fertiliser, chemicals, animal purchases, hired labour, etc) and the more equal their shares of 

farm total expenditure then the more complex is the task of managing all the expenditures 

associated with the farming system.  
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• Farmer’s average monthly labour and its variability 

))m(V)m(E(b)m(EL ++= 2   (7) 

where E(m) is the average hours worked each month by the farmer; 

V(m) is the variance of the monthly hours worked by the farmer; 

b is a curvature parameter (= 0.000005), set such that L is a lesser number as E(m) and 

V(m) diminish and that for any E(m), L increases as V(m) increases.  Each type of farming 

system will have a unique pattern of monthly demand for the farmer’s labour (L).  The 

assumption is that the more complex a farming system the greater are its management 

requirements as reflected in the average monthly hours worked and the variance of the 

workload across the farm year. 

 

• Annual hours worked by the farmer 

∑
=

=
12

1i
ihF   (8) 

where according to the nature of the farming system, the farmer is required to work hi hours 

in month i and annually works for F hours. 

 

These 8 measures are the complexity metrics used in this study. 

 

3. A Model of Mixed Enterprise Farming 
 

The agricultural model employed in this study of farm business complexity is the whole-farm 

bioeconomic model known as MIDAS (Model of an Integrated Dryland Agricultural System; 

Kingwell and Pannell 1987).  Being a main developer and user of this model (Kingwell 1996; 

Kingwell 2002b; O’Connell et al. 2006; Kopke et al. 2008; Gibson et al. 2008; Bathgate et al. 2009) 

provides knowledge and insights regarding its utility to portray important aspects of the complexity, 

management and profitability of a broadacre mixed enterprise farming system. 

 

The MIDAS model has been used to assess and explore the profitability of a wide range of 

innovations, the impacts of various policy changes and the responsiveness of broadacre farm profit 

to a wide range of influences.  Most recently Robertson et al. (2009) have used MIDAS to derive 

relationships between NRM targets and farm profitability.  However, the responsiveness of farm 

profit to changes in system complexity is yet to be addressed. 

 

Originally a single model, MIDAS is now a portfolio of representative farms for different agro-

ecological zones across Australia.  Each model is a traditional steady-state mathematical 



  

   
 

10

programming model of a representative farm that describes in more detail than is often the case 

with such models, the biology, interactions and within-year enterprise management requirements 

of a broad range of enterprise options.   

 

The particular version of MIDAS used in this study is representative of a farm in the central 

agricultural region of Western Australia (see Figure 1).  This region comprises about 6.4 million 

hectares of which 3.5 million is cropped and 2.9 million is grazed.  Annual average rainfall in the 

region is 350mm to 450mm, with 75% of this falling in the growing season between May and 

October.  Summer rainfall is highly variable, whilst winter rainfall is much more reliable, making the 

region most suited to annual crops and pastures.  The region displays the lowest coefficients of 

variation in wheat yields (see Fig 4.5 in NLWRA 2001; Schut et al. 2009) across Australian shires 

and displays the lowest coefficients of variation in wheat prices (Scoccimarro 1996). 

 

(Figure 1 about here) 

 

The major crops grown in the region include wheat (Triticum aestivum L.), barley (Hordeum 

vulgare L.), lupins (Lupinus angustifolius L.) and canola (Brassica campestris L).  Merino sheep are 

by far the dominant livestock enterprise and they graze mainly annual pasture, although small 

areas of perennial pastures are grown (Kingwell et al. 2003).  Wool production was the traditional 

focus of the sheep enterprise, by value of production, although a rapid shift in the relative 

importance shipper and prime lamb production has occurred over the last several years due to 

improved prices (Bathgate et al. 2009). 

 

The soils of the region are derived from an ancient landscape, resulting in highly weathered, highly 

leached, infertile, coarse textured soils with poor structure.  Soil acidity affects a large proportion of 

the soils in the region. 

 

The MIDAS model that describes a representative farm of the region is a steady-state, linear 

programming model with a tableau of 1835 columns (activities) and 746 rows (constraints).   Its 

database is contained in a 60MB Excel® file and Visual Basic routines draw on Lindo® as the 

solver.  The model’s objective function is profit maximisation, subject to managerial, resource and 

environmental constraints (Bathgate and Pannell 2002; Robertson et al. 2009).  Profit is defined as 

net cash returns minus non-cash costs (e.g. depreciation) minus the opportunity cost of capital, 

exclusive of land.  MIDAS is based on an average season and assumes product and input price 

certainty.   
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Key components of the model 

The standard model includes: 

(i) Crop/ pasture rotations; up to 60 different rotation options for each of eight land 

management units (LMU).   The LMUs are listed in Table 1.  The rotational options 

include wheat, barley, oats, field peas, faba beans, chick peas, canola, lupins, perennial 

pasture and mixed swards of annual pasture.  Each rotation has specific crop yields, 

pasture growth and input levels.  For example, pulse crops and legume pastures reduce 

the carryover of cereal diseases and fix soil nitrogen.  This affects potential cereal yield 

and optimum nitrogen rate.  The number of continuous years of crop affects the ability of 

pastures to regenerate naturally and thus the number of livestock that can be grazed 

profitably. 

 

(Table 1 about here) 

  

(ii) Machinery.  A complement of typical cropping machinery is represented that allows crop 

and pasture sowing usually within four weeks of the growing season’s opening rains.  

Yield penalties for late sowing are included in the model. 

(iii) Grain, wool and livestock selling.  Selling activities in the model link the physical output 

of the model with the cashflow and objective function. 

(iv) Pasture production. The production year is divided into 10 periods of varying length 

depending on the growth rate of pasture.  There are 5 periods of growth and 5 periods of 

senescence and pasture decline.  Germination depends on the LMU and crop/pasture 

sequence.  Growth rate in each period is a function of feed on offer (kg of dry matter per 

ha), and is approximated by linear segments.  Feed on offer is a function of feed on offer 

at the beginning of the period, the amount of pasture grazed by livestock during the 

period and the rate of physical deterioration and trampling by livestock.  Pasture quality 

and quantity decline rapidly after senescence (Periods 6–10).  Conservation constraints 

prevent over-grazing of pastures and crop residues.  Further detail on the representation 

of pasture production is found in O’Connell et al. (2006). 

(v) Livestock production. The nutritional demands and grazing abilities of several classes of 

sheep throughout the production year are described.  Alternative sources of 

supplementary feed are available to ensure adequate supply of energy over the dry 

summer and autumn period.  Crop residues provide an additional source of feed for 

livestock during the summer drought.  The quality and quantity of stubble available for 

grazing deteriorates with time and with grazing.  Sheep preferentially graze the high 

quality components of the stubble so the quality of stubble declines as it is grazed.  

Conservation constraints limit the total amount of dry matter available for grazing. 
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Merino and merino-cross livestock options are included.  The sheep flock is self-

replacing and one or some combination of three livestock enterprises can be selected; a 

wool enterprise, a merino prime lamb enterprise and/or a cross-bred prime lamb 

enterprise.  Forty six classes of sheep are described. They differ in age, time of sale and 

gender.  Ewes are culled after five or six years. Death rates, annual wool growth and 

hauter are a function of the liveweight of each sheep class.  Liveweight and age of ewes 

also affects lambing rates.  Liveweights of animals are a function of the availability and 

quality of feed. The relationships used to estimate production of livestock are outlined in 

Young (1995). 

(vi) Finance.  Income and expenditure associated with each activity are described in a bi-

monthly cashflow.  Overheads and depreciation are subtracted from the net cashflow to 

calculate farm profit. 

 

To describe different sorts of farming systems, often in previous studies (e.g. Pannell 1987; Flugge 

and Schilizzi 2005) constraints were imposed on the proportion of the farm allocated to crops.  

Such an approach however shows the profit response to the area of crop rather than the response 

to system complexity.  To represent different sorts of farming systems and provide measures of 

their complexity the following approach was used.  

 

Firstly, binary switches were created for each enterprise such that the enterprise could be excluded 

or included in the farming system.  Secondly, to overcome the possibility that impractically small 

areas of some enterprises could be selected, minimum area requirements of 50 hectares for each 

enterprise (if switched on for forced inclusion) were added.  Hence, the smallest feasible land 

allocation to an enterprise (if included) was 2.5 per cent of the farm’s area.  Using these switches 

different types of farming systems could be explicitly considered.   

 

The model was altered to include labour requirements during the year for each enterprise, as 

described by Rose and Kingwell (2009) and Rose (forthcoming), and three options of labour 

availability were included: the farmer plus one casual labourer for seeding and harvest; the farmer 

plus a permanent worker, and the farmer plus hiring casual labour at any time.  This explicit 

treatment of labour arose from the need to investigate the time demands a farmer faces when 

managing different types of farming systems.   
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Modelling Scenarios 

The relationship between the complexity of farming systems and their steady-state profitability was 

investigated by considering a range of farming systems and finding their optimal steady-state 

profitability.  The range of farming systems covered 3*3*3*63 = 1701 scenarios involving: 

(i) three labour supply options as described previously, 

(ii) three sheep enterprise options; a self-replacing merino flock run primarily for wool and 

shipper production, a self-replacing merino flock specialising in merino prime lamb 

production and a self-replacing merino flock specialising in cross-bred lamb production 

whereby a portion of the merino ewe flock is mated to a terminal meat breed. 

(iii) three price and cost scenarios:  actual costs and prices for the years 2007, 2009 and 

averages over the period 2005 to 2009 are considered.  The relative price and cost 

conditions in 2007 favoured grain production whilst in 2009 sheep production was 

favoured.  A medium term average is based on costs and prices in the period 2005 to 

2009. 

(iv) 63 combinations of enterprises.  The broadacre mixed enterprise farm as modelled was 

assumed to always produce some wheat and annual pasture.  Aside from these two 

given land uses there were up to 6 other enterprise options typically selected in optimal 

farm plans: barley, lupins, canola, lucerne, oats and an alternative legume selected 

from faba beans, field peas or chickpeas.  From one to six of these enterprise options 

were selected to complement the wheat and annual pasture enterprises.  Denoting e as 

the number of enterprise options selected from the set of 6 enterprises where 

[ ]621 ,..,,e∈  and noting Ne as the number of unique combinations, then 
)!e(!e

!Ne −
=

6
6

 

and ∑
=

=
6

1

63
e

eN . 

 

For each of the 1701 scenarios the MIDAS model was solved to determine optimal farm profit 

under each scenario.  Among these scenarios a sub-set of highly profitable scenarios was also 

subject to further sensitivity analysis through constraining the farming system to different sizes of 

cropping programs to reveal the nature of near optimal solutions. Then post-optimisation, 

characteristics of the farm plans were used to calculate the eight measures of farm complexity.  

This approach provided the data on farm profitability and farming system complexity. 

 

The next section presents key modelling results.  An examination of the 1701 scenarios, 

complemented by additional sensitivity analysis, revealed similar findings in each of the three cost 

and price scenarios.  Hence to economise on space, only results for the scenario of price and cost 

averages over the period 2005 to 2009 are presented.  
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4. Results and Discussion 
 

The set of most profitable farming systems in the averaged cost and price conditions of the period 

2005 to 2009 (and in the other price and cost scenarios) never included solely wool-orientated 

sheep flocks nor permanent labour.  The most profitable farming systems relied on casual labour 

available either at crop establishment and harvest, or being available at any time of the year.  

Furthermore in the most profitable farming systems the sheep flock was structured to produce 

either Merino prime lambs or cross-bred lambs where a portion of the Merino ewe flock was mated 

to a terminal meat breed sire. 

 

The more than 600 farming system scenarios examined for the averaged cost and price conditions 

of the period 2005 to 2009 generated a large array of farming system profitability and measures of 

complexity (Figures 2&3).  Most of the farming systems yielded profits far from the maximum 

possible profit.  These less profitable farming systems represent allocative inefficiency as greater 

profit could be generated if restrictions on enterprise selection and labour use were relaxed and 

alteration in enterprise and input selection was allowed. 

 

(Figure 2&3 about here) 

 

The scatter of observations in Figures 2&3 suggests no clear relationship between farming system 

profitability and the various measures of complexity.  This implies no simple or consistent trade-off 

between farm profit and system complexity.  However, the flatness of the profit frontiers in Figures 

2&3 suggests that it may be feasible for a farming system to be both highly profitable yet not 

unduly complex.  Moreover, in practice most farm managers would not seriously consider the 

majority of the markedly inferior farming systems and would be more interested in the 

characteristics of the more highly profitable farming systems.  Many of the data points in Figures 

2&3 due to their very low relative profitability would not appeal to many farmers in the study region.   

 

To examine further the relationship between farming system profitability and complexity a sub-set 

of farming systems that generate profit within 15 percent of the globally most profitable farming 

system is selected for further comparison.  This set of more profitable farming systems is more 

likely to be of interest to most farmers than the other far less profitable farming systems in the 

feasible set.  This sample restriction limits data consideration in Figures 2&3 to points with annual 

farm profit above $95K.  Although this restricts the spread of profit, nonetheless a wide range in 

complexity measures is still observed.  The question then arises as to the nature of the trade-off 

between farm profit and the various measures of complexity in this restricted dataset.  Of particular 
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importance are the rank order correlations for farm profit versus the various complexity metrics, 

and the significance and stability of those correlations.    

 

Figure 4 displays firstly the rank order correlations between farm profit and each of the complexity 

metrics for a range of sample sizes.  To interpret the signs of the correlation coefficients it requires 

noting that the profit rankings are in descending order, highest profit (first rank) to lowest whilst all 

complexity rankings are in ascending order (least complex is first rank).  Secondly, the t statistics 

for the tests of significance of the various rank order correlation coefficients are presented for a 

range of sample sizes.  The sample size is the number of farming systems included in the analysis, 

with the systems ranked by their profitability.  Hence as the sample size increases, farming 

systems yielding increasingly less profit are included.  For example, farming systems entering the 

sample when sample size is 80 are almost 10 per cent less profitable than the globally optimum 

farming system. 

 

(Figure 4 about here) 

 

The results in Figure 4 suggest that when the sample size is above 80 then the correlation 

coefficients are relatively stable and are almost always significantly different from zero.  When the 

sample size is above 80 then significant positive rank correlations exist between profit and the 

complexity metrics of the number of rotations (and land share of rotations), the number of unique 

rotations and the index based on the mean and variance of the farmer’s monthly hours of labour 

(equation 7).  Conversely, significant negative rank correlations exist between farm profit and the 

other complexity metrics of revenue, expenditure, farmer’s annual labour and enterprise land use.  

The interpretation of these results, informed by inspection of relevant data points in Figures 2&3, is 

that highly profitable farming systems tend to be characterised by a limited range of rotations that 

support several different yet complementary enterprises with many resultant sources of 

expenditure and revenue, and their combination and management requires a large annual time 

commitment from the farmer, especially at seeding and harvest (Rose and Kingwell 2009).   

 

High (low) farm profit is associated with a greater (lesser) number and diversity of enterprises and 

a more (less) even allocation of land resources to the various enterprises.  For example, highly 

profitable farming systems typically include cereals, annual pastures, canola, alternate legumes 

and a small area of lucerne.  Often these farming systems have between half to three-quarters of 

the farm’s arable area allocated to crops, with wheat being the dominant crop.  The crop 

dominance of these farming systems means peak labour demand occurs at seeding and harvest 

and is accommodated through use of casual labour rather than permanent labour and the farmer’s 

preparedness to work long hours during these periods.  In spite of the lesser demand on the 
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farmer’s time in other months, the total annual workload is considerable ― the main tasks of farm 

management require a time commitment of more than 45 hours per week   Running several crop 

enterprises across a range of land management units, whilst simultaneously incorporating a sheep 

enterprise focused on cross-bred or Merino prime lamb production, requires a large time 

commitment by the farmer.   Hence on the metrics of the farmer’s annual labour, land use or 

enterprise diversity, and revenue and expenditure diversity, highly profitable farming systems are 

complex.  

 

By contrast, using the metrics of the farmer’s average monthly labour plus its variability and 

number of rotations (and unique rotations) suggests that highly profitable farming systems are 

relatively simple to manage.  Across the 8 land management units considered by MIDAS (see 

Table 1) highly profitable farming systems usually contain 9 to 12 rotations of which 3 to 7 

represent unique rotation combinations.  Hence highly profitable systems have a restricted number 

of rotations and in that numerical sense appear simple to manage, although several enterprises 

are imbedded in the set of rotations.  Moreover, in highly profitable crop dominant farming systems 

in many months of the year the farmer’s workload is less than occurs in grazing dominant systems 

in which many more sheep require constant management (Rose forthcoming). 

 

The suite of measures of complexity yield inconsistent assessments of farm business complexity.  

By some measures such as the number of rotations (including unique rotations) highly profitable 

farming systems are fairly simple, where often a single best land use exists for each land 

management unit.  However, other metrics such as the farmer’s annual workload and the 

multiplicity of revenue and expenditure sources suggest that highly profitable farming systems are 

complex or at least time-consuming to manage, involving a multiplicity of tasks and different 

enterprises.  

 

By using this study’s measures of complexity it is feasible to reduce the complexity of the farming 

system (e.g. reducing the farmer’s annual labour requirement or reducing the number of 

enterprises), but this entails a reduction in farm profit.  For example, the farming system could shift 

to greater crop dominance allowing a reduction in the sheep population and thereby lessening the 

farmer’s annual workload.  However, this shift in land use toward crop-only farming systems 

eventually entails growing crops on less suitable land management units and forgoing sheep 

enterprise profits and some complementarities between pastures and crops (Pannell 1987).  

Inspection of the relevant data points in Figures 2&3 shows a reduction in profit occurs when a 

highly crop dominant farming system is selected.  The modelling results suggest that the synergy 

between the relative profitability of wheat production and complementary crop and sheep 

production generates high profit, although it requires a farmer to work long hours each year, 
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especially during seeding and harvest.  In addition the many and varied sources of revenue and 

expenditure make the system complex to manage. 

 

(Table 2 about here)  

 

The modelling results and rank correlation findings (see also Table 2) indicate that when judged by 

all metrics of complexity there is no overall highly profitable very simple farming system.  

Depending on which measure(s) of complexity is employed, it is feasible to simplify a farming 

system, but typically this incurs a reduction in farm profit.  The extent of the reduction in profit, 

however, may not be large as evidenced by the flatness of the profit frontiers shown in Figures 

2&3.  The profit foregone by shifting to a less complex farming system can be less than 5 per cent.  

However, in some cases, depending on the magnitude and nature of the shift, the profit reduction 

can also be far greater.  Furthermore, some shifts which would be deemed a simplification 

according to some measures of complexity only make the system more complex according to 

some other measures of complexity.  Therein is the farm management dilemma: in broadacre 

mixed enterprise farming what feature of complexity poses sufficient difficulty or challenge to 

farmers that they would be interested to know how best to simplify their farm business?  The 

anecdotal evidence is that it is the farmer’s annual workload resulting from all the tasks associated 

with managing a large mixed enterprise business that is proving problematic, especially given the 

ageing of the farmer population and the difficulty of finding skilled farm labour. 

 

The trends of larger farms with more land management units, fewer neighbours and less available 

family labour pose a management challenge for an ageing population of farmers.  In broadacre 

regions of Australia, the observed shift into cropping and away from wool production over the last 

two decades is likely due in part to the attractiveness of labour-saving crop technologies, greater 

economies of size in cropping, drought impacts and difficulties in finding and retaining sheep 

labour in some regions.  As an indicator of the rapid shift away from wool production, in 2008-09 

the number of sheep and lambs in Australia was 71.6 million head, the lowest number since 1905.  

 

If the large annual workload of the farmer is proving problematic, yet is one outcome of running a 

highly profitable farm business then the modelling results presented here suggest that farmers can 

reduce their annual workload by running a different farming system.  However, this will incur some 

reduction in profit. For example, based on inspection of data points in Figures 2&3, exclusion of 

lucerne and its replacement by annual pasture (in combination with other minor changes to 

enterprises) leads to a 3 percent decline in farm profit yet a 9 percent reduction in the annual work 

hours of the farmer.  The reduced workload mostly stems from no longer needing to establish and 

spray out lucerne stands and to repetitiously move and monitor sheep mobs on and off the lucerne 
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stands. How the relative importance of lucerne is linked to labour availability also has recently been 

investigated by Doole et al. (2009). Their findings are consistent with those reported here and of 

McGukian (2006) who reported that “Some farmers would be happy to run sheep at a small loss if 

they provided a benefit to the cropping enterprise – if they could be run simply and easily.” (p. 3).  

 

The workload and time pressures on broadacre farmers have implications for the development of 

technologies and policies relevant to farmers.  Technologies or policies that increase the workload 

or time pressures on farmers are likely to be poorly received or adopted, unless they offer 

substantial benefits (or losses avoided).  Increasingly, service and product suppliers will compete 

for the farmer’s time as well as their pocket.  The on-going challenge for technology and policy 

developers is to ensure their product or service is attractive to time-poor farm managers.   

 

Farmers are more likely to be interested in labour-saving technologies and the cost-effective 

provision of a service by a contractor in periods when they are time-pressed.  By illustration, larger 

machinery can boost labour productivity at seeding and harvest; direct drill technology can reduce 

the time farmers would otherwise spend on tractors at seeding; and GM crop technologies are 

destined, at least in the short to medium term, to facilitate weed management.  Modern design of 

farm equipment and machinery, combined with vehicle and communication improvements deliver 

lifestyle benefits of safety, comfort and ease of access to information.  So farm management is not 

inexorably linked to complexity and a burdensome workload.  That said, the trend toward larger 

farms with more land management units and the likelihood of particular rotations or land use 

sequences being best suited to each land management unit, when combined with changing crop 

management technology, does suggest that the task of managing a broadacre farm is likely to 

remain a pressing challenge. 

  

The difficulty in finding or creating highly profitable farming systems that are not unduly complex 

and burdensome to manage is not too dissimilar from the task reported by Robertson et al. (2009) 

who sought to identify profitable farming systems that generated manifold environmental benefits. 

As in this study they found some relatively flat trade-off functions where a wide range of similarly 

profitable but different farming systems could generate equivalent environmental outcomes.  

However, some types of environmental improvement incurred large reductions in farm profit.  Also 

there were examples of simultaneous gains in some environmental indicators and farm profit.  In 

short they found no single highly profitable farming system that delivered the entire suite of 

environmental improvements.  In a similar way this study finds there is no highly profitable farming 

system that can be judged as simple according to all the measures of complexity. 
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5. Conclusion 
 

Although several authors (e.g. McGuckian 2006; Hendrickson et al. 2008; Chavas 2008) 

acknowledge the complexity of agricultural production and journals such as Agricultural Systems 

are devoted to exploring the issues and problems that surround complex agricultural systems, 

nonetheless the study of the economic returns to complexity in agricultural systems remains largely 

neglected.  Hence, the focus of this paper is to describe and measure complexity in broadacre 

farming systems in Australia and explore the relationship between complexity and farm profitability.  

Farm modelling is used to examine the returns to business and production complexity for 

broadacre mixed enterprise farming in an agricultural region of Australia. 

 
The literature reports no widely accepted single measure of complexity to apply to agricultural 

businesses and production systems.  Accordingly this study reports eight different measures of 

complexity and uses farm modelling to relate these measures to the profitability of a wide range of 

feasible broadacre farming systems in a major agricultural region of Australia. A sub-set of the 

more profitable farming systems is subject to further examination and rank correlations of profit 

versus each measure of complexity are calculated for these farming systems.   

 

Drawing on the large set of feasible farming systems, rather than the sub-set of the more profitable 

systems, results show no consistent relationship between farming system profitability and all the 

measures of complexity.  This implies there is no simple or consistent trade-off between farm profit 

and the various measures of system complexity when a large set of feasible systems is 

considered.  Even when drawing on a sub-set of the more profitable systems, the measures of 

complexity yield different assessments of farm business complexity. 

 

The metrics of the farmer’s annual labour, land use or enterprise diversity, and revenue and 

expenditure diversity suggest profitable farming systems are complex and time-consuming to 

manage. By contrast, using the metrics of the mean and variance of the farmer’s monthly labour, 

number of rotations and number of unique rotations suggests that highly profitable farming systems 

are not complex to manage.   

 

Depending on which measure(s) of complexity is employed, it is feasible to simplify a farming 

system.  However, some shifts which would be deemed a simplification according to some 

measures of complexity only make the system more complex according to some other measures of 

complexity.   

 

Results in this study highlight a question for broadacre farm management: Which measure or 

feature of complexity poses such a challenge to the farmer that they would consider simplifying 
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their farm business?  Positing that the farmer’s annual workload is proving problematic, especially 

given the ageing of Australia’s farmer population and difficulties in employing skilled farm labour, 

an example of a different farming system is presented that incurs a 3 percent decline in farm profit 

yet reduces the farmer’s annual work hours by 9 percent.  In this case there is a slight negative 

trade-off between farm profit and this measure of complexity. 

 

If the large annual workload of broadacre farmers is proving problematic, yet is one outcome of 

running a highly profitable farm business then there are important implications for technology and 

policy developers and service providers.  Technologies, policies or services that increase the 

workload or time pressures on farmers are likely to be poorly received or adopted, unless they offer 

substantial benefits.  The challenge for technology and policy developers and service providers is 

to ensure their product or service is highly attractive to time-poor farm managers.  Designing 

services, products and farming systems that explicitly account for the time pressures farm 

managers face will be a feature of future broadacre agricultural R,D&E in Australia. 
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Figure 1 The region represented by the MIDAS Central Wheatbelt Model 
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Figure 2  Land use and rotational indicators of farm business complexity based on averages of price and cost conditions over the period 

2005 to 2009.  The point of maximum farm profit is denoted by the small square. 
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Figure 3  Revenue, expenditure and labour use indicators of farm business complexity based on averages of price and cost conditions over the 

period 2005 to 2009.  The point of maximum farm profit is denoted by the small square. 
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Figure 4  Rank correlations between profit and each complexity metric, the relevant t statistics for the rank correlations and their values as sample 

size increases.  The horizontal dotted line is the level at which the t-statistic indicates a significant difference at the 5% level. Bracketed 
numbers in the legend refer to equations that describe each measure of complexity. 
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Table 1  Description of land management units (LMU) in the MIDAS model of the central agricultural region 
 

LMU Area of LMU in 
the farm model 

(ha) 

Short description Soil characteristics 

1 140 Deep pale sand Loose, white and pale yellow sands which are commonly over 2 metres deep with grey topsoil.  Poor 
moisture and nutrient availability generates very poor crop and pasture growth. 

2 210 Deep yellow sand Yellow sandy soils that are commonly over 2 metres deep with brown topsoil.  Cereal yields are 
limited by poor moisture and nutrient availability. 

3 350 Yellow gradational loamy 
sand 

Often containing large percentages of ironstone gravel and producing high cereal, lupin and pasture 
yields in most years.  Not subject to waterlogging.  

4 210 
Sandy loam over clay A soil downslope from LMU 1; on slopes of 2 to 8%.  Hardsetting, heavier, grey to brownish soils 

with a 10 centimetre topsoil.  The clay subsoil occurs at 10 tot 30 centimetres.   Good moisture and 
nutrient availability. 

5 200 

Rocky red brown loamy 
sand/sandy loam, 
Brownish grey granitic 
loamy sand  

Commonly found around rock outcrops and in minor drainage lines on slope gradients of 2 to 8%.  
Above average quality soil suitable for cereals, lupins and pasture.  These soils may suffer from 
limited mositure availability in dry periods, waterlogging in seepage areas and shallow rock areas 
which limit root growth and reduce yields.   

6 200 

Red brown sandy loam 
over clay; Red clay  valley  
floor; Grey clay valley 
floor 

Heavy red and grey valley floor soils that produce good cereal and field pea crops and good medic 
based pastures.  Production may be reduced due to soil structural decline and salinity. 

7 300 
Deep sandy surfaced 
valley; Shallow sandy 
surface valley soil 

A sandy topsoil that ranges from 10 to over 100 centimetres in depth.  A good quality soil suitable for 
cereal and pasture production, and where the sand profile is deep its also suitable for lupins.  It is 
often subject to salinity, waterlogging and wind erosion. 

8 390 
Loamy sand over clay Generally a productive soil with good moisture and nutrient availability.  Waterlogging problems can 

occur in some years in areas of this soil on lower slopes.  It is subject to traffic compaction pans, 
water and wind erosion. 
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Table 2  Rank correlation matrix (top 100 profitable farming systems) and t-values 
 

Ranked Item Profit 

Land 
use 
index 

Revenue 
index 

Expenditure 
index 

Farmer’s 
monthly 
labour EV 
index 

Farmer's 
annual 
labour 

Number 
of 
rotations 

Number 
of 
unique 
rotations 

Rotation 
index 

Profit 1 -0.28 -0.33 -0.47 0.53 -0.64 0.23 0.40 0.60
Land use index 1 0.61 0.40 -0.35 0.79 0.17 0.22 -0.16
Revenue index  1 0.49 -0.45 0.60 0.26 0.34 -0.15
Expenditure index  1 -0.41 0.58 0.17 0.30 -0.18
Farmer’s monthly labour EV index    1 -0.59 0.04 0.15 0.43
Farmer's annual labour    1 -0.14 -0.12 -0.51
Number of rotations     1 0.78 0.70
Number of unique rotations     1 0.55
Rotation index        1

 
Rank correlation coefficient t-values.  Bold values indicate statistical significance at the 95% level (t-critical is 1.64) 
 

Ranked Item 

Land 
use 
index 

Revenue 
index 

Expenditure 
index 

Farmer’s 
monthly 
labour EV 
index 

Farmer's 
annual 
labour 

Number 
of 
rotations 

Number 
of 
unique 
rotations 

 
Rotation 
index 

Profit 2.76 3.31 4.67 5.30 6.33 2.26 4.03 5.93
Land use index 6.09 3.95 3.46 7.84 1.67 2.20 1.59
Revenue index   4.87 4.50 5.97 2.63 3.36 1.54
Expenditure index   4.11 5.77 1.71 2.95 1.82
Farmer’s monthly labour EV index     5.83 0.45 1.50 4.27
Farmer's annual labour     1.36 1.18 5.03
Number of rotations      7.78 6.97
Number of unique rotations      5.45

 


