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Abstract

Growth rates are widely employed in the field of agriculture as these have
important policy implications. The usual parametric approach for growth
rate analysis is to assume multiplicative error in the underlying nonlinear
geometric model and then fit the linearized model by ‘method of least
squares’. The deficiencies of this approach have been highlighted. It has
been argued that nonlinear estimation procedures should be employed for
fitting the model and then only the growth rates should be computed. A
methodology has been discussed to compute the compound growth rate
by using growth models, viz. monomolecular, logistic and Gompertz.
Further, as an illustration, the total foodgrain production of our country
during the period 1980 to 2001 has been considered and its growth rate
has been computed.

Introduction

If there is one concept that has been used maximum number of times
during the past four decades or so in research papers published, particularly
in the discipline of agricultural economics, it is undoubtedly the ‘computation
of compound growth rates’ (see, for example, Panse, 1964; Dey, 1975;
Reddy, 1978; Narain et al., 1982; Kumar and Rosegrant, 1994; Kumar,
1997; Joshi and Saxena, 2002; Singh and Srivastava, 2003). In fact, one full
issue of Indian Journal of Agricultural Economics (Vol. 35, No. 2) in
1980 was devoted exclusively to presentations of its various aspects.

Research Note
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However, the procedure being followed for computation of growth rates
has a number of serious lapses and therefore the conclusions drawn are not
statistically sound. Accordingly, the aim of the present paper is to highlight
the discrepancies in computation and suggest more efficient procedures
that may be adopted to achieve the task.

Current Procedure for Computing Compound Growth Rate and
Its Deficiencies

If yt denotes the observation (e.g. agricultural production, productivity,
or area) at time t and r is the compound growth rate, model employed for
estimating r is based on Eq. (1):

 yt = y0 (1 + r) t  …(1)

The usual practice is to assume a multiplicative error-term exp (ε) in
Eq. (1) so that the model may be linearized by means of logarithmic
transformation, giving Eq. (2):

 In (yt) = A + Bt + ε …(2)

where, A = ln (y0 ), and B = ln ( 1 + r ). Eq. (2) is then fitted to data using
“method of least squares” and goodness of fit is assessed by the coefficient
of determination R2. Finally, the compound growth rate is estimated by Eq.
(3):

 r^ =  exp (B^ ) – 1 …(3)

As mentioned above, this procedure is beset with many pitfalls. Firstly,
let us consider the basic model, as given in Eq. (1); it is nothing but the
famous Malthusian model proposed towards the end of the eighteenth
century. A well-known drawback of this model is that the response variable
yt tends to infinity as t → ∞, which cannot happen in reality. Therefore,
continuing to sticking to only this model does not make much sense,
particularly when several other more realistic models exist in literature.

 Secondly, as pointed out by Ratkowsky (1990, p. 12), assumption of
multiplicative error tends to be valid when variability of response variable yt

increases with increasing values of yt. However, this assumption is usually
made only for mathematical convenience and its proper justification has
hardly ever been provided. The third drawback is that there is no way to
compute standard errors of estimates of original parameters, viz. y0 and r
appearing in Eq. (1) from the corresponding values of the transformed model
given in Eq. (2). Lastly, goodness of fit of linearized model given by Eq. (2)
is assessed on the basis of R2. In this context, Kvalseth (1985) has pointed
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out that eight different expressions appear for R2 in the literature. Different
computer packages employ different formulae for computation of R2 and
hardly any effort is made to find out as to which particular formula has been
employed in the computer package one is using! Furthermore, one most
frequent mistake occurs when goodness of fit of even the original nonlinear
model given by Eq. (1) is assessed by reporting the same value of R2 as has
been obtained for the linearized model, given by Eq. (2). In fact, it is not at
all possible to get R2 for Eq. (1) from that for Eq. (2). Scott and Wild (1991)
have given an example where two models were almost identical visually
when two different transformations were applied to attain linearity but had
widely different values of R2. In short, R2 is not the correct measure of
goodness of fit of nonlinear model given by Eq. (1).

Suggested Procedure for Computing Compound Growth Rates

The compound growth rates should be computed by first identifying the
model that describes satisfactorily the path followed by the response variable
over time. To this end, exponential model given by Eq. (1) may be replaced
by more realistic growth models discussed below. A special feature of these
models is that they are “Mechanistic models” in which parameters have
specific biological interpretation unlike “Empirical models”, like polynomial
or regression models.

Monomolecular Model

This model describes the progress of a growth situation in which it is
believed that the rate of growth at any time is proportional to the resources
yet to be achieved, and can be given by Eq. (4):

 dy/dt = r (K – y)  …(4)

where, r and K are the intrinsic growth rate and carrying capacity of the
system, respectively. Integrating Eq. (4), we get Eq. (5):

 y (t) = K – (K – y0) exp (– r t) …(5)

where, y0 is the value of y (t) at t = 0.

Logistic Model

This model postulates that in the beginning, growth takes place at an
exponential rate, as in the well-known Malthusian model. Subsequently, a
“deterrent force” comes into play because of the crowding effect and does
not let the population (or biomass) grow beyond limits. The graph of this
model is elongated S-shaped and, unlike the earlier model, has a point of
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inflexion at half the carrying capacity. The differential equation of this model
is given by Eq. (6):

 dy/dt = r y (1 – y/k) …(6)

Integrating Eq. (6), we get

 y (t) = K / [1 + (K / y0 – 1) exp (– r t)] …(7)

Gompertz Model

This model has sigmoid type of behaviour and is found quite useful in
the biological work. However, unlike logistic model, this is not symmetric
about its point of inflexion. This model is given by the differential equation
(8):

dy/dt =  r y In (K / y) …(8)

where, the symbol ‘ln’ denotes ‘natural logarithm’. Integration of Eq. (7)
yields:

y (t) = K exp [In (y0 / K) exp (– r t)] …(9)

The above three models [Eqs (5), (7) and (9)] have been proposed
deterministically. In order to apply these models to data, independently- and
identically-distributed error-term with constant variance is assumed on the
right hand side of Eqs. (5), (7), and (9), thus yielding the corresponding
“statistical models”. It may be noted that in the Eqs (5), (7), and (9),
parameters (r, K, y0) appear in a nonlinear manner. Thus, nonlinear estimation
procedures, like ‘Levenberg–Marquardt’ algorithms, or ‘Does not Use
Derivatives’ (DUD), are required to be employed for fitting the models. A
good description of these procedures is given in Draper and Smith (1998).
Fortunately, most of the software packages, like SPSS, SAS, SPLUS and
GENSTAT, contain computer programs to accomplish the task. Subsequently,
residual analysis may be carried out by employing “Run test” to examine
the validity of assumption of independence of errors. Finally, goodness of fit
of fitted models may be examined by computing a number of criteria, like
mean square error (MSE), and mean absolute error (MAE).

After successfully identifying the best model for a data set, the last step
is to compute the ‘compound growth rate’, which is given as:

d [ln (y)]/dt, i.e. y-1 dy / dt

For monomolecular, logistic, and Gompertz models, the annual growth
rates pertaining to the period (ti , ti+1 ) [i = 0, 1, …, n-1, where n denotes the
number of data points], on using Eqs (4), (6), and (8), respectively are:
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 Rt
M = r [ K / y(t) – 1]  …(10)

 Rt
L = r [1 – y (t) / K] …(11)

 Rt
G = r In [K / y (t) …(12)

Taking arithmetic mean, the requisite compound growth rate over a
given time-period may be obtained. However, it may be kept in mind that in
“Nonlinear modelling”, convergence to biologically meaningful values is not
always guaranteed. In such cases, the solution is to either study more
advanced single-species growth models, such as Richards model and mixed-
influence model, or apply non-parametric regression procedures (Chandran
and Prajneshu, 2004).

An Illustration

As an illustration, the total foodgrain production of the country during
the period 1980 to 2001 was considered. In the first instance, attempts were
made to identify the model that best described this data set. For this, three
nonlinear growth models, viz. monomolecular, logistic, and Gompertz, were
tried. In order to apply these models to data, an independently– and identically-
distributed error-term was assumed on the right hand side of respective Eqs
(5), (7), and (9). Statistical Analysis System (SAS) software package, Version
8e was employed for data analysis. A number of widely separated initial
values were tried to ensure ‘global convergence’ and the results have been
reported in Table 1. In respect of monomolecular model, although
convergence did take place, it was noticed that estimate of carrying capacity
(K) was extremely high. Further, the standard errors of estimates of two
parameters, viz. r and K were also very high. Thus, monomolecular model
was found to be inappropriate for describing the data set under consideration.
Subsequently, application of ‘Run test’ on residuals showed that, for both
logistic and Gompertz models, assumption of independence of error-terms
was not violated at 5% level. Thereafter, goodness of fit of models was
assessed by computing MSE and MAE and the results have been reported
in Table 1. A perusal of Table 1 indicates that, although logistic model had
performed slightly better than Gompertz model for a given the data set,
distinction between the two models was hardly significant and so both of
them could be employed for computation of compound growth rates. For
this, Eqs (11) and (12) were employed. These required the predicted values
of yt , which have been reported in the second and fourth columns of Table
2. The annual growth rates for the two models were also computed and
have been given in the third and last columns of Table 2. Finally, on taking
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Table 1. Fitting of nonlinear growth models

Parameter / Statistics Growth model

Monomolecular Logistic Gompertz

r  0.0137 (0.0232)* 0.0625 (0.0243) 0.0381 (0.0241)
K  458.17 (484.37)  274.87 (61.63)  315.64 (118.09)
y0  122.95 (5.63)  123.53 (5.02)  123.25 (5.30)

Goodness of fit statistics
MSE -  58.42  58.72
MAE -  5.82  5.83

* Figures within the brackets indicate corresponding standard errors

Table 2. Computation of compound growth rates

Year                           Growth model

                                    Logistic                               Gompertz

Predicted Annual Predicted Annual
value of yt growth rate value of yt growth rate

1980 127.79 0.0334 127.65 0.0345
1981 132.07 0.0325 132.04 0.0332
1982 136.36 0.0315 136.41 0.0320
1983 140.65 0.0305 140.76 0.0308
1984 144.93 0.0295 145.07 0.0296
1985 149.21 0.0286 149.34 0.0285
1986 153.45 0.0276 153.58 0.0274
1987 157.67 0.0266 157.77 0.0264
1988 161.85 0.0257 161.91 0.0254
1989 165.98 0.0248 166.00 0.0245
1990 170.06 0.0238 170.03 0.0236
1991 174.08 0.0229 174.00 0.0227
1992 178.04 0.0220 177.92 0.0218
1993 181.92 0.0211 181.77 0.0210
1994 185.72 0.0203 185.56 0.0202
1995 189.44 0.0194 189.28 0.0195
1996 193.08 0.0186 192.93 0.0187
1997 196.62 0.0178 196.51 0.0180
1998 200.07 0.0170 200.02 0.0174
1999 203.42 0.0162 203.46 0.0167
2000 206.67 0.0155 206.82 0.0161
2001 209.83 0.0148 210.11 0.0155
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the arithmetic means, compound growth rates, on the basis of logistic and
Gompertz models, were respectively obtained as 2.36% and 2.38%.

Conclusions

Although, the correct computation of compound growth rates based on
sound statistical procedures is of great significance, the methodology being
followed has a number of deficiencies. When this methodology was proposed
in 1964, there was no other choice, but during the past four decades, not
only nonlinear estimation procedures have been developed but even software
packages are also readily available to accomplish the task. Accordingly, in
year 2005, there is hardly any justification for not using more realistic nonlinear
growth models, like logistic and Gompertz models for computation of
compound growth rates. Using these two models, the compound growth
rates for the foodgrain production in India during the period 1980 – 2001
have been computed as 2.36% and 2.38%, respectively.
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