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Uniform vs. Heterogenous input management in agriculture

The quest for continually increasing and economically efficient food production

has resulted in farmers managing farms of ever increasing size. This has led to uniform

management of the agricultural inputs, substituting for the more site-specific

management approach of the smaller farms. As the average size of the agricultural fields

increased, it became cost effective, technologically efficient and convenient to manage all

agricultural inputs at a uniform rate. Although this has brought an undisputable progress

in food production, it has also led to mismanagement of resources, land degradation and a

host of other environmental problems associated with modern day agriculture. In recent

years, the heterogeneity of agricultural land has been recognized as an important factor in

agricultural input management, and the site-specific approach to agricultural production

has been rediscovered in agricultural and economic literature (McBratney, 1984; Weiss,

1996).

What is Precision Agriculture?

Precision agriculture may be viewed as a scientific endeavour to improve the

management of agricultural production (McBratney and Whelan, 1999). It may also be

viewed as an application of information technology in agriculture (Lowenberg-DeBoer

and Boehlje, 1996). The concept of precision agriculture is closely related to the site-

specific crop management (SSCM) which can be defined as: “Matching resource

application and agronomic practices with soil and crop requirements as they vary in space

and time within a field” (McBratney and Whelan, 1999). This definition is quite intuitive

since it implies that the yield response is not uniform within a heterogeneous agricultural

field, but is rather dependent on the spatial characteristics of the smaller areas within the

field.

Problems with precision agriculture

Even though the concept of precision agriculture (PA) is intuitive and

straightforward, its adoption in the farming practice has been limited (Bongiovanni and

Lowenberg-DeBoer, 2001). This lack of practical application of the site-specific crop

management (SSCM) technologies is a result of several factors. First, gathering of
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information required for devising a SSCM strategy can be quite expensive and time

consuming (Akridge and Whipker, 2001). Many farmers are not willing to incur these

costs, in expectation of uncertain gains spread over longer period of time. In addition, the

gains are usually distributed among a whole range of stakeholders, and are not exclusive

to the adopting farmer. Even though the cost of SSCM are diminishing, they are still too

high for many farmers to see the profitability of PA.  This in particular is the case with

farmers of extensive crops, where the value of inputs is generally lower. For example, the

PA has been adopted much faster in more input intensive crops (like sugar beets in the

Northern Hemisphere) (Daberkow and McBride, 2003), than in extensive crops (wheat,

canola, cotton, etc.). In the perspective of Australian agriculture, this implies that the

potential for wider adoption of PA may be limited because of the predominant extensive

character of the agricultural production.

Another and possibly more important problem with the PA is that the benefits of

SSCM are not immediately apparent, are dynamic in nature, and are distributed within

the society. The benefits of PA may be divided in three broad categories: immediate

private benefits to the farmer, where the profitability of the farm business increases due

to SSCM; sustainability benefits (both private and social), where natural resources used

in agriculture are maintained at desirable levels over time due to SSCM; and

environmental benefits to the society, where the negative environmental impacts from

agriculture are reduced due to the SSCM. The problem is that most of the literature, as

well as most of the farmers, only account for the first benefit category. In economics

parlance there is a “market failure”. Because the markets for sustainability and

environmental quality are either missing or utterly imperfect, they fail to assign the

correct value for these two benefit categories to the PA concept. And when only the most

apparent and simplistic benefits are accounted, the PA concept is often found

unprofitable and is therefore not applied in practice.

As an application of information technology to agriculture, the PA concept has

another aspect that is often overlooked and not accounted for. The research needed to

prepare a ground for a possible SSCM is extremely information intensive. In the process,

many million of terabytes of information are collected, processed and classified. This

information pertains to topographic, soil, hydrological, biological and other
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characteristics of agricultural land. Even though the research may not immediately result

in widespread application of PA technology in practice, the collected information has a

genuine value that will eventually emerge as a benefit to the society. This value is

overlooked when analysing the profitability of the PA (Lowenberg-DeBoer and Boehlje,

1996).

Objectives

The objective of this paper is to extend the previous theoretical and applied work

in the field of PA to account for broader benefits and beneficial aspects associated with

the concept of PA. Specifically, the paper aims to devise a formal criterion (test statistics)

that incorporates all benefit categories pertaining to PA technology. This criterion is

designed to be used in sequential hypothesis testing to determine whether PA should be

used in a given field, and if so, to determine the optimal number of management zones

within the filed.

Previous Literature

The concept of PA has been given much greater attention in the general

agriculture and soil science literature than in the agricultural economics literature. The

agricultural economics literature has focused on spatial econometric aspects of the PA

(Hurley, Malzer and Kilian, 2003) and on estimation of variable yield response functions

(Bongiovani and Lowenberg-DeBoer, 2001). In addition, a number of studies conducted

partial budgeting analysis, aiming at evaluation of the profitability of SSCM (Redulla et

al. 1996; Ostergard 1997). The environmental, sustainability and informational issues

have been largely absent from the literature.

  The attempts in agricultural and soil science literature have been focused on

devising better geostatistical models to describe spatial variability (McBratney and

Pringle, 1997). Since the spatial variation and autocorrelation of yield is the main

phenomenon characterizing spatial variability, sophisticated models have been devised

and reported (Viscarra Rossel et al.). Also, the temporal variability has been modelled as

possibly even more important for PA (Mc Bratney et al., 1997). Even though the

agricultural literature has long recognized the importance of economics and the
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environmental values for the assessment of the PA, the attempts in this direction have

been only emerging (McBratney, 2001). Some recent articles have set a stage suitable for

incorporating economic and environmental values in the PA calculation. McBratney and

Whelan, (1999) have proposed the so called “null hypothesis” of precision agriculture as:

“Given the large temporal (and spatial) variability evident in crop yield relative to the

scale of a single field, the optimal risk aversion strategy is uniform input management.”

This null hypothesis has a direct economic reference in using the term “risk aversion”,

which will be of some interest of this paper.1

The null hypothesis is presented in a Popperian framework and evidence is sought

that will lead to its refute.2 In the general context of hypothesis testing, the evidence

should be succinctly summarized in form of a criterion, or test statistics, for one to be

able to make a conclusive judgment about the validity of the hypothesis. McBratney et al.

(1997) made a step toward determination of such a criterion, termed “opportunity index

for PA”. The opportunity index consists of the magnitude of spatial variation, spatial

structure, and an economic/environmental component. While the first two components

were treated in detail, the economic/environmental aspects were assumed constant and

were not modelled in the study.

The present paper builds on the previous work and develops a framework for

sequential hypothesis testing. Improved criteria, incorporating economic, environmental

and informational aspects are proposed, and used to make judgments about the stated

hypotheses. The main contribution of the paper is that it explicitly incorporates all

identifiable benefits pertaining to SSCM. Further, the paper devises a formal framework

for determination of the optimal number of management zones within a filed, which can

be potentially developed in an automated algorithm easily applied in practice.

On the meaning of Risk Aversion in the Null Hypothesis of PA

To determine a credible decision rule about the SSCM one needs to formulate

testable hypotheses. As mentioned, the null hypothesis of precision agriculture has been

proposed and has been widely adopted in the agricultural and soil science literature. For

                                                
1 It seems that the term “risk aversion” was used with different meaning from what we are usually
accustomed in the economics literature.
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the purposes of this paper the proposed null hypothesis has to be modified, to serve as a

starting point in a sequential hypothesis test. In particular, the proposed null hypothesis of

PA has to be examined with respect to the risk aversion it assumes. In its original version

the null hypothesis refers to risk aversion more in the sense of adoption of changes. Here,

we formally explore the risk aversion in its pure economic meaning. Risk preferences in

economics are usually discussed within the framework of the expected utility theory (Von

Neuman and Morgenstern, 1944). In this framework, the expected utility EU(x)  is

defined as a function of risky outcomes represented by a random variable x, usually

referring to income. Preferences about the income are based on income magnitude and

income variability. In essence, each income magnitude has an associated variability. The

attitudes towards risk have to do with the tradeoffs between the magnitude and the

variability of income. Three basic cases of attitudes toward risk are identified based on

the shape of the expected utility function. Any expected utility function is characterised

with dEU(X) / dx >0, implying the usual fact of life that more income is preferred to less.

The attitudes toward risk are defined by the curvature of the expected utility. In

particular, d2 EU(X) / dx2 > 0, implies risk taking, in a sense that some sure income

would be traded for increase in income variance (increased prospects of high incomes). If

d2 EU(X) / dx2 = 0, it implies risk neutrality, in a sense that the agent is indifferent

between a sure income and the variability of income. If d2 EU(X) / dx2 < 0, it implies

risk-aversion in a sense that some sure income would be traded for a decrease in income

variance (decreased prospects of low incomes). This last situation is what is usually

assumed for individuals, and most certainly for farmers. Risk averse individuals (and

farmers in particular) seek to decrease the probability of bad outcomes (low income) by

buying insurance. Decreasing the probability of bad outcomes is directly related to

decreasing the variability of income. From a perspective of precision agriculture, if the

SSCM is reducing the variability of income, it will be seen as a preferred management

choice for risk averse farmers. The question to be answered then is whether the PA

reduces the variance of farm income? It would be plausible to think that PA management

would reduce the variability of yield, but the effects on the net income to the farmers

would depend on the cost structure of the PA technology. This is an avenue for another

                                                                                                                                                
2 Science may be defined as: “a collection of not yet rejected null hypotheses”.
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research, which is beyond the scope of the present paper.  For now, we just modify the

null hypothesis of PA, excluding to term risk-aversion. The meaning of “risk aversion” as

an aversion towards management change will probably continue to be used in non-

economic literature.

Formulating Hypotheses

A further modification to the design of the PA hypotheses is to consider the

alternative hypothesis against which the null will be tested. Some proposed alternative

hypotheses have not been specific enough, only stating that SSCM would be an

improvement over the uniform management (McBratney and Whelan, 1999). This type of

alternative hypothesis does not describe how exactly will the SSCM be implemented, and

in particular does not describe the number and the type of management zones that would

be optimally used. Another, more specific alternative hypothesis is needed, which will

address the type and number of SSCM zones. There are two types of SSCM, discrete

management zones and continuous management (McBratney and Whelan, 1995). The

null hypothesis should be tested against each of these two types of management.

Based on this, the following modified null hypothesis of PA is proposed:

Ho : Given the large temporal and spatial variability evident in crop yield relative to the

scale of a single field, treating the field as a single management zone (uniform input

management) is optimal.

This null hypothesis will be tested against two alternative hypotheses simultaneously.

One alternative hypothesis (applying to the discrete management zones approach) is:

HA1: Given the large temporal and spatial variability evident in crop yield relative to the

scale of a single field, managing the inputs in two different management zones is optimal.

The other alternative hypothesis (pertaining to the continuous management approach) is:

HA2: Given the large temporal and spatial variability evident in crop yield relative to the

scale of a single field, continuous input management is optimal.

The possible outcomes from this hypothesis test and their implications are

summarised in the Table 1.
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Table 1. Outcomes and Implications of testing the Modified Null Hypothesis of PA.
Outcome H0 not rejected H0 rejected in

favour of HA1
H0 rejected in
favour of HA2

H0 rejected in
favour of both
HA1 and HA2

Implication
for PA

Uniform is
optimal

Uniform is not
optimal, but
continue with
testing to
determine the
optimal no. of
management
zones

Uniform is not
optimal, and
continuous
management is
optimal

Uniform is not
optimal, but
continue with
testing to
determine if
greater no. of
management
zones are
optimal ; or if
continuous
management
optimal

Inspecting the possible outcomes and implications suggests that more than one test is

quite likely needed to determine the optimal number and type of SSCM. Therefore, a

sequential hypothesis test need to be performed (Johnsson, 2003).

To illustrate this, suppose that the null was rejected in favour of both alternative

hypotheses. The next step would than be to adopt the original HA1 as a new H0 and to

test it against the HA2 and a newly formulated HA1: Given the large temporal and

spatial variability evident in crop yield relative to the scale of a single field, managing

the inputs in three different management zones is optimal. The possible outcomes and

implications of this hypothesis test are summarised in  Table 2.

Again there are several possible outcomes, and a sequential hypothesis testing

could be run over and over again until the null hypothesis has not been rejected, or other

decisively conclusive result has been obtained. An algorithm for doing this sequential

hypothesis test could be approximated by the Figure 1. Following the procedure

presented in this algorithm will lead to determination of an optimal number of

management zones or the optimality of continuous management.
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Table 2. Outcomes and Implications of testing the Modified Null Hypothesis of PA in the

second loop

Outcome H0 not rejected H0 rejected in
favour of HA1

H0 rejected in
favour of HA2

H0 rejected in
favour of both
HA1 and HA2

Implication
for PA

Two
management
zones optimal

Two
management
zones are not
optimal, but
continue with
testing to
determine the
optimal no. of
management
zones

Two
management
zones are not
optimal, and
continuous
management is
optimal

Two
management
zones are not
optimal, but
continue with
testing to
determine if
greater no. of
management
zones are
optimal ; or if
continuous
management
optimal

Figure 1. Graphical Representation of the Sequential Hypotheses Test Algorithm.

Test the null hypothesis of i
management zones, against
discrete i+1 alternative and
against continuous alternative

Fail to reject

Conclude i is
optimal

Reject

Either conclude that
continuous is
optimal or proceed
to another loop with
i+1 = i
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The criterion for hypothesis tests

The concepts developed so far, although novel, are quite straight forward. The

main challenge in the PA debate is to devise an adequate criterion that will be used to

assess the truthfulness of the tested hypothesis. This criterion would in effect be used as a

test statistics in the proposed hypothesis testing framework. As noted above, it is

necessary that this criterion encompasses all aspects of  PA concept, spatial and temporal

variability of yield, profitability of the agricultural enterprise, sustainability of the

resource use (soil, water), environmental and informational aspects. In the usual

statistical tests the test statistics are computed, their theoretical distribution is assumed

and the value of test statistics are than compared to some critical value from the assumed

distribution. For the purposes of this study strict statistical tests are not conducted, but

rather only the broad concept of scientific hypothesis testing is used. The criteria are

designed for each of the three hypothesis tested in a single loop of the sequential testing.

The criterion for the initial null hypothesis (uniform treatment) may be represented by
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1

1max  ( ) ( )
(1 )t

t t t tt
t

TB E Py f EDC
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∞

−
=
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where the choice of the vector of controlled inputs x in each year t has to be made so as to

maximise  total benefits from the given agricultural enterprise under the uniform input

treatment (TB0), which represent a sum of all future discounted profits to the farmer net

of environmental damage costs EDCt (xt, zt(xt), εt) . Expectations about output price (Pyt)

are made in each prior period (Et-1).  The output (yt) is a function of controlled inputs (xt),

uncontrolled inputs (zt(xt)) influenced by xt, and uncontrolled inputs (εt) independent of

any agronomic influence. Affected uncontrolled inputs (zt(xt)) (soil structure, pH, organic

matter content, salinity etc.) are subject to the sustainability constraint which is assumed

to be a social goal, whereby the level of these inputs is not allowed to drop below some

desired value Z.  r represents a discount rate.  The environmental damage costs are a
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function of all managed and unmanaged inputs. Although this function is often difficult

to estimate, some new advances to be discussed further below offer such opportunities.

The criterion for discrete management zones hypotheses may be represented by

(2.1)
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where a choice of input quantity x in each management zone i and in each year t, for a

given number of management zones n, has to be made so as to maximize total benefits.

Total benefits are composed of  a sum of discounted farmers profits net of environmental

damage costs EDCit (xit, zit,(xit) εit) and the cost related to the use of precision agriculture

(cpa(n)) plus the value of the information provided by the non-uniform management of

the agricultural field VI (n, (xit, zit,(xit) εit). The output is now determined by a site-

specific yield response function fit((xit, zit,(xit) εit). This function is characterised with

spatial and temporal variability, determined by zit,and εit. The yield variability has two

important implications with respect to the optimal number of the management zones.

First, if the variance of yield across time and space in the field is low than managing

inputs non-uniformly would not be very beneficial while it would require additional cost

This has been previously measured as a magnitude of variation (McBratney et al. 1997).

Second, if the spatial covariance structure exhibits high level of correlation, low number

of management zones would be optimal which will presumably result in lower cost. This

has been previously measured as a spatial structure.  Everything else equal, there would

be some threshold for the spatial covariance structure for which it would be optimal to

manage inputs non-uniformly.

 The criterion for continuous site specific management may be represented as
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The meaning of the symbols are the same as in the discrete management zones case,

except that now the symbol n denotes the resolution of the continuous input management

which is determined by the technical characteristics of the application equipment.

Once these criteria are determined they can be used in hypothesis testing in the

following manner. To test the null hypothesis of uniform treatment against the alternative

of two management zones one has to set i = 2 in equation 2.1 and compare the values for

TB0 and TBi . If TB0 > TBi, one can not reject the null hypothesis and has to conclude

that the uniform management is an optimal strategy. If TBi > TB0, then the null

hypothesis can be rejected and the sequential hypothesis testing continues by setting i =3

in Eq. (2.1) and comparing TB2 with TB3 and TBc, and so forth.

The stated criteria represent solutions to optimisation problems. In essence, the

criteria are computed by choosing optimal input quantities. The accuracy of the

optimisation is dependent on the yield response function which in turn is dependent on

the number of management zones within the field. If the input is supplied uniformly, than

the response function will only represent the average response over the whole field.

Within the field, there will be some areas that are more responsive to the input, some that

are not responsive at all, and some that indeed respond negatively. This has a significant

impact, not only on profitability but also on the environmental implications. As the

number of management zone increases, while still remaining discrete, the average

responses get more and more precise, but they are still average rather than marginal

responses. The marginal response, at the highest level of precision is obtained only with

the continuous input management.
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Methods and Data

The discussion about the methodological treatment of the proposed criteria for

hypothesis testing is conducted on the separate components of these criteria. For each

component, the method of the empirical analysis and description of the available data and

further data needs are outlined.

Yield response function

The majority of empirical studies in both agricultural and economic literature

have focussed on determining the site specific response functions as a first step towards

the evaluation of the PA concept. This is quite logical, since PA would likely be

beneficial only if the responses to inputs vary spatially within the fields and across time.

If the responses were fairly constant across space and time, there would be little need for

SSCM.  Suppose that we maintain that the response is indeed uniform and that it is only

affected by the level of controlled inputs. In addition, the usual assumption is that other

factors (uncontrolled inputs like weather, soil characteristics etc.) affect the yield in a

uniform manner (i.e. independent of space and time). This leads to the following usual

specification: y = f(x) + µ, where y represents yield, f(•) represents a production function

(often assumed to exhibit decreasing marginal productivity), x is a vector of controlled

inputs and µ is a random error term (usually assumed to follow a normal distribution with

mean zero). This is in contrast with the one proposed here ( )( )it ity f= it it it itx , z x ,ε

(rewritten from Eq. 2.2). In the site specific approach these are represented with zit(xit)

and εit. In general one can say that a yield response function is composed of five

components: input effects (fixed), spatial effects (fixed and random, like soil type, pH,

OM etc.), temporal effects (random, like rainfall, temperature), various kinds of

interactions between these three components, and a true random error due to

measurement and approximation imprecision. Another theoretical aspect is to distinguish

between uncontrolled inputs that are affected by the controlled input choice (pH, OM)

and the purely unaffected inputs (weather, soil type etc.). However, even though the data

related to SSCM are becoming more abundant, the data on the uncontrolled inputs is still

rare.
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Using the yield monitor data, one could really only model the spatial variability

by using the spatial coordinates as explanatory variables in addition to the input variable.

Since the yield monitor data from an experiment with three nitrogen application rates

management zones and four control strips within each zone was available, the yield

response function estimated for the purposes of this study was formulated as

(4) ( ) 2 2 2
0 1 2 3 4 5 6 7, ,Y E N X X X E N E N ENXα α α α α α α α µ= + + + + + + + + ,

where X represents the urea application rate, E represents easting coordinate (with

minimum subtracted to prevent numerical overflow), N represents northing coordinate

and 2(0, )Nµ σ Ω is a random error term. This mean equation was estimated using

maximum likelihood. Because the variability of the yield is of great importance, the

variance equation is also specified, by using a spherical model to relate the variance of

the residuals to the in-field distance. The spherical model is of the following general form

(5)
3

0

0

0                                                         0

3 1( ) C                    0
2 2

+                                                     

h

h hh C h a
a a

C C h a

γ

= 
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,

where ( )hγ is the variogram, h represents distance in meters, a is the lag in meters, and

C0 and C are parameters to be estimated.  Specification of the covariance structure of the

yield residuals takes care of both spatial autocorrelation and heteroscedasticity.

Cost structure

The cost of sorghum production was adopted from the partial budgets published

by the Department of Agriculture of NSW. Since the available data was on the sorghum

yield the expected price of sorghum had to be specified. The price data was obtained

from ABARE. The cost of SSCM varies greatly with the number and type of inputs that

are managed on site specific basis, and with the number of management zones within a

field. There is not a reliable data on the cost of the SSCM, and the estimates have to be

based on the anecdotal evidence and the experience of the precision agriculture

professionals.  For example, simple division of a field in two or three management zones

with respect to fertiliser application will typically cost very little. The main cost would be
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in the need to change the speed of the applicator. Based on evidence from certain farms,

these costs were estimated at about $1/ha. These costs will increase as the number of

management zones increases. The exact dependence of the costs of management on the

number of management zones is not known at the present, and will need to be assessed

on the case by case basis for any specific field.

With respect to the continuous SSCM, there are currently several commercial

providers that offer the service of continuous spatial management of fertiliser application.

Based on information obtained from farmers, the cost of managing fertiliser continuously

is approximately $10/ha.

Gathering of the required information in terms of GPS monitoring, research, data

evaluation, soil and yield data maps is also commercially offered. Again, based on

anecdotal evidence, the cost of this information is estimated at about $8-10 / ha.

Pooling the costs of management and the cost of information together, the total cost of

SSCM at a given field would vary between $2-25 per hectare, and would be dependent on

the various characteristics, including field size and topography, type and number of

management zones, type and number of managed inputs and other characteristics.

Environmental Damage Costs

As specified in the above criteria, the costs of environmental damages from an

agricultural activity are a function of the controlled and uncontrolled inputs to that

activity, and their interactions thereof. Stable social preferences are assumed in the

specification. Going in further detail, the environmental cost function could be separated

in two subsequent segments. First there is a pollutant emission function, which relates

controlled and uncontrolled inputs to the amount of emission of pollutants from a given

agricultural activity. The second segment is the costs of damages caused by these

emissions. This can be written as

(6) EDCit (xit, zit,(xit) εit) = DCt(Et(xit, zit,(xit) εit),

where DCt (•) is a damage cost function, and the Et(•) is a pollution emission function.

The pollution emission functions are difficult to estimate and generalise, due to the

specific nature of every agricultural field and the associated complex processes. The

pollution emissions are usually simulated with many available computer simulation
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models (EPIC, APEX, SWAT etc.) (Ancev, Stoecker and Storm, 2003). These simulation

models are utilised to numerically determine the relationship between the inputs and the

pollution emissions from the agricultural activities on a field or watershed basis. Based

on these simulations, one would be able to derive a pollution emission function and use it

to calculate the environmental damage cost function.

The costs of environmental damages are also very difficult to assess. The

economic literature has been quite silent on this issue, since it involves some serious

estimation problems. Usually, there are two types of values considered in assessing

environmental aspects, use and non-use values. Use values are based on the utilitarian

values of environmental quality, clean drinking water, clean air, clean lakes and seas for

fishing and swimming, etc. Some of these use values are traded in the markets and their

value can be therefore easily determined using the available market information. For

other use values, even though direct market information may not be available, their

values can be derived from related market information, through the so called revealed

preference methods of Hedonic Pricing and the Travel Cost Method. If the majority of

the environmental values involved is composed of the use values there are relatively

inexpensive methods and techniques to measure the costs of environmental damages

(Ancev, Stoecker and Storm, 2003).

The things get more complex when the non-use values are dominant. Non-use

values refer to environmental features that people value, even though there is no direct

use of these features. These non-use values have to do with the existence (just knowing

that the Great Barrier Reef (GBR) exists and is in good health is of value to some person

who will never even visit it), bequest (I want my children and their children to be able to

also enjoy the GBR), and option (there is a potential that some currently not used feature

of the environment, may become useful in the future). The techniques to estimate these

values are expensive, complex and often imprecise. These techniques for valuation of the

non-use values rely on creation of hypothetical markets through the stated preferences

approach. The contingent valuation method is based on surveys that are used to elicit

individuals willingness-to–pay for non-use environmental values.

Even though the valuation of the costs of environmental damages is complex and

sometimes time consuming and expensive endeavour, it offers a possibility to arrive at a
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reasonable estimate for environmental damages. The main issue limiting this approach is

the data availability. More and better biophysical data is needed to improve the

simulation models of pollution emission functions. The data could be obtained either by

intensive sampling, which may be quite expensive, or by some proxy method. These

methods could be computerised simulations, or just approximation of the nutrient losses,

by accounting for example, for the protein content in the yield. In addition, improvements

in the economic models for valuation of use and non-use value are also required. In

combination with better data on recreational visitations, hedonic prices, and better survey

techniques, this will lead toward more precise estimation of the cost of environmental

damages from agricultural activities.

Value of the PA Information

The value of information is difficult to quantify in monetary terms, especially ex-

ante (before the actual hypothesis test). An ex-post value of the information could be

obtained by simply finding the difference between the optimal management and uniform

management. If the information is gathered and it turns out that the uniform management

is optimal than the cost of information gathering can not be directly justified. A broader

social justification of these costs may be present in terms of increased amount of

information available for further broadening of the knowledge (Lowenberg-DeBoer and

Boehlje, 1996). It is nevertheless desirable to conduct a detailed data gathering on the

agricultural fields where there is good indication that the SSCM may be optimal.

Therefore, a pre-screening should be undertaken, whereby information on soil

heterogeneity, topographic heterogeneity and historic within field yield variability will be

considered before conducting a full fledged PA data collection.  In addition, an initial

assessment of the environmental impacts of the given agricultural activity should be

undertaken. The value of PA information will tend to be greater for heterogenous fields

with associated pollution problems.
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An example

Yield monitor data was collected from a field on the “Romaka” property in West

Creek, NSW. A variable rate nitrogen application experiment was run on sorghum in

1999-2000 growing season. The field was divided on three management zones, within

which the nitrogen treatment was uniform.  In each of this three zones, strips of other four

nitrogen fertiliser rates were applied. This is represented in Figure 1.

Figure 1. Zone and Nitrogen Strips Delineation of the Field

The red colour represents zone 1 with 160 kg/ha of Urea. Green colour represents zone 2

with 220 kg/ha Urea, while blue colour represents zone 3 with 250 kg/ha. Within each

zone, there were additional four fertiliser treatments represented by the following colours:

Yellow (30 kg/ha Urea), Purple (85 kg/ha Urea) and Orange (300 kg/ha Urea). The

results from the yield monitors for the three main zones are presented in Table 3.
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Table 3. Yields From each of the Main Zones

Zone Urea Application Yield Standard Error
kg/ha t/ha t/ha

1 160 3.91 0.78
2 220 5.12 0.89
3 250 5.96 0.94

These results suggest that the division of the management zones was successful and

optimal, since the yield in each zone is significantly different from the other zones. Also,

it appears that the responsiveness to nitrogen fertilisation rate is quite significant.  These

conclusions are erroneous, however. To see this, the results for the fertilisation strips are

displayed in Table 4.

Table 4. Yields Variable N rate Experiments

Zone Urea Applied No. of observation Yield St. Dev

1 30 147 3.95 0.44
85 142 3.98 0.56
160 419 3.96 0.61
220 105 3.47 0.53
250 124 3.60 0.41

2 30 109 4.83 0.40
160 124 4.36 0.81
220 463 4.72 0.79
250 139 4.71 0.81
300 86 4.69 0.74

3 30 152 6.55 0.71
160 158 6.65 0.57
220 218 6.41 0.65
250 770 6.61 0.62
300 175 6.78 0.60

Based on these results, a response function was estimated for each zone, first only as a

function of nitrogen application rate. The estimated response functions are represented in

Figure 2.
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Figure 2. Estimated yield response functions to Urea application

As the figure suggests, the response is fairly linear and it appears that the optimal urea

application rates are the same across the three zones. In particular, in each zone the

optimal profit maximizing application rate was determined at around 70 kg/ha urea. This

suggests that the uniform treatment would be an optimal management strategy for this

field. The formal hypothesis testing, following the previously described method, supports

this finding, with the TB0 (the criterion for uniform treatment) being $217.45, and the

TB3 (the criterion for three zones) being $99.22. The value of environmental damage cost

and the value of information were not directly estimated due to lack of data.

Nevertheless, some indication about their beneficial impact is given by several facts from

this exercise. First, if it were not for the conducted experiment, the usual Urea application

rate on this particular field would have been around 210 kg/ha (around 100 kg/ha N).

Application at this rate, would not only result in profit losses (with calculated TB0 at 210

kg/ha Urea being 77.45), but would also result in significant potential for pollution via

nitrate leaching and runoff. This reflects the indirect benefits of the PA research. Even

though in this instance, the SSCM was not found optimal, an optimal uniform rate was

determined in the course of the research, which if adopted would both increase farmers
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profitability and decrease the environmental problems associated with this agricultural

activity.

Calculation of the criterion for continuous management TBc was not completed

due to some methodological difficulties not yet resolved. Essentially, to be able to

calculate this criterion one would need to have a response function estimated at each

point where the SSCM will be conducted. This depends on the resolution of the SSCM

technology. For example, if the resolution is 1x1 meter, than one has to estimate response

function for each of these cells. If the spatial structure is strong (high spatial correlation)

the response functions in cells closer together will be very similar. Nevertheless, one

would still need to estimate the relevant parameters for each cell, which is cumbersome

and tedious.  At present, efforts are under way to overcome this problem and to enable

estimation of yield responses from high resolution yield monitor data, in a practical and

efficient manner. The first step is to estimate a response function as specified in Eq.4.

This has been done and the results are given in Table 5. 

Table 5. Estimated Yield Response with Nitrogen and Spatial Effects
Variable Estimate St. error t-statistic p-value
Indicator zone 1 3880.37 78.21 49.61 <.0001
Indicator zone 2 4708.82 75.57 62.31 <.0001
Indicator zone 3 6751.41 62.41 108.18 <.0001
Urea rate 30 -911.67 125.56 -7.26 <.0001
Urea rate 85 -776.20 143.53 -5.41 <.0001
Urea rate 160 -433.34 82.31 -5.26 <.0001
Urea rate 220 -513.31 80.96 -6.34 <.0001
Urea rate 250 -570.97 80.05 -7.13 <.0001
Urea rate 300 0.00 . . .
Easting -5.61 1.04 -5.39 <.0001
Northing 16.88 1.13 14.90 <.0001
Easting squared 0.04 0.00 9.48 <.0001
Northing squared -0.06 0.01 -9.67 <.0001
Easting x Northing x Urea
rate 30 -0.01 0.01 -0.84 0.40
Easting x Northing x Urea
rate 85 0.08 0.04 2.09 0.04
Easting x Northing x Urea
rate 160 -0.04 0.01 -7.31 <.0001
Easting x Northing x Urea
rate 220 -0.07 0.01 -9.33 <.0001
Easting x Northing x Urea
rate 250 -0.05 0.01 -10.13 <.0001
Easting x Northing x Urea
rate 300 0.08 0.01 6.72 <.0001
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The results show that the spatial structure has a significant impact in determining yield

both apart of the nitrogen input and in conjunction with it. Northern parts of the field are

characterized with greater yield irrespective of the nitrogen application. In addition, the

interaction of the nitrogen application rate and the spatial coordinates is significant for all

but the lowest urea application rate. These results suggest that one should jointly use the

nitrogen input and the spatial co-ordinates in an attempt to compute the criterion for the

continuous SSCM. With the estimated coefficients in hand one could effectively plug

them back in the data (for each coordinate) and for each urea application rate. Then for

each data point one would have to determine the optimal urea rate, compute the resulting

yield and integrate over all points to get the desired criterion. This is a complex work and

for this reason, a more elegant way around it is presently sought.

Summary and Conclusion

Precision agriculture is a promising concept for the modern farming. For it to be

more widely accepted it is necessary to include the environmental and informational

values when evaluating the concept on the farm field. A formal testing in the form of

sequential hypothesis tests was proposed. The original null hypothesis of precision

agriculture was modified to serve as a starting point for this testing. The sequential

hypothesis testing offers an opportunity for systematic, straight forward and possibly

automated evaluation of various management options for an agricultural field. The

resulting optimal management, whether it is uniform, in discrete management zones, or

continuous SSCM, will produce maximum benefits from a social point of view,

accounting for both farmers’ income and environmental and sustainability preferences of

the society. Crucial elements of the hypothesis tests are the criteria designed to perform

the tests. A further refinement of these criteria may be needed for the intended practical

purpose.

Main issue with the empirical work in this field is the data limitations. This

especially refers to data on the environmental impacts of agriculture. Either computer

modelling or some proxy measures (like nitrogen content of grain) have to be used on

site-specific basis to quantify the emission of pollutants from the agricultural fields. Also,

an economic technique has to be carefully chosen from a range of the available options.
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An additional shortcoming is the unavailability of the data on the value of PA

information.

An example of the workings of the proposed model was provided using yield

monitor data from a field scale nitrogen response experiment. In this particular case it

was found optimal to apply uniform rate of about 70 kg/ha of Urea. Even though this

conclusion suggests that PA is not optimal in this field, a more in-depth look reveals the

value of the information collected for this PA exercise. Without that information, a likely

rate of 210 kg/ha Urea would have been applied, leading to profitability losses and high

potential environmental costs.

The need for environmental quality and for maintaining the level of natural

resources in agriculture at sustainable levels, points to the site specific crop management

(SSCM) as an viable and sound practice. To evaluate fully all the benefits of the SSCM,

intensive research on the economics of the technical, environmental and informational

aspects is needed. This paper we hope, presents a first step in that direction.
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