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Net feed efficiency (NFE) technology is expected to improve the productivity of
grazing systems in Australia’s southern beef producing regions. The extended time
path required for implementation of this genetic technology into commercial herds
and the influence of climatic variability on the pasture base are important issues to
address in estimating the benefits of this technology at the farm level. NFE also has
the potential to impact on the sustainability of the grazing systems in terms of
maintaining adequate pasture cover. These issues are investigated by developing a
stochastic dynamic simulation model. The bioeconomic model includes pasture,
animal production, herd dynamics and economic sub-models. In this paper the model
is presented and the implications of the results for adoption of the technology are
discussed.

1. INTRODUCTION

Economic evaluation of new technologies at the farm level is important for providing
information to farmers, extension and research personnel about a technology’s
application at the farm level. As well these results represent input data for the broader
objective of measuring the economic gains, both ex ante and ex post from agricultural
research. Additionally, there is increasing interest in undertaking more holistic
evaluations of technologies at the farm level to also include the impact of a new
technology on the ‘sustainability’" of the agricultural resource base or the farming
system.

The use of a bioeconomic framework can incorporate not only the critical biological
relationships, but also the dynamic and stochastic characteristics of an agricultural
system. Such an approach is applied to Net Feed Efficiency (NFE) in beef cattle, a
major research initiative of the Cooperative Research Centre for Cattle and Beef
Quality (CRC).

The paper proceeds by presenting a background discussion of the reasoning for
selecting a bioeconomic modelling approach, an outline of the model and a
description of the NFE technology. This technology is then applied to the
bioeconomic model using both deterministic and stochastic frameworks and the
results compared to the without technology case. This analysis is undertaken within
the constraint of maintaining a minimum pasture mass reflecting an important
management practice for sustainable grazing. The paper concludes by highlighting
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t ‘Sustainability’ here refers to the sustainability at the individual production system level and is
consistent with the definition of sustainability as‘‘ an improvement in the productive performance of a

system without depleting the natural resource base upon which future performance depends” (Pandey
and Hardaker, 1995).




findings of the research and their implications for adoption of the technology for both
extension and research personnel.

2. BACKGROUND

In general, the economic evaluation of new technologies as a result of agricultural
research and development is based upon the notion of economic surplus. A new
agricultural technology leads to an improvement in productivity in the industry and a
consequent shift in the supply curve for the relevant commodity brought about by the
adoption of the new technology by the target group. This shift in supply is known as
the K-factor (Alston, Norton and Pardey, 1995).

However, the information required to undertake a farm-level evaluation of a
technology to estimate K, is not always immediately obvious. In discussing the
evaluation of agricultural research, Pannell (1999) identifies categories of information
that are applicable to the evaluation of technologies at the farm level. Any method
utilised to undertake farm-level evaluations of new technologies should address as
many of these information categories as possible. These include:
e the biological, technical and/or management changes from the new
technology;
e the costs to the farm in implementing the new technology;
e the economic benefits accruing on a per hectare or per farm basis;
e the extent of adoption on the individual farm, for example, the number of
hectares on the farm affected; and
e the impact of side effects from implementation of the new technology, which
could be internal or external to the farm, including environmental impacts or
price changes as a result of supply shifts of a farm output.

Economic tools used to evaluate new technologies include technical ratios and partial
budgets, gross margins and budgeting, mathematical programming including linear
programming and dynamic programming and econometric methods. Each of these
various modelling approaches may capture to lesser or greater extents some or all of
the abovementioned categories of information. For example, linear programming
(LP) is well suited to measuring the impact of a new technology at the whole-farm
level, as well as providing additional information such as shadow prices and costs
(Pannell, 1999).

Two factors that contribute to the complexity of evaluations at the farm level are the
dynamic characteristics of some technologies, and the impact of risk.

The production risk that occurs in grazing systems as a result of climate variability
may have a significant impact on the level of adoption of a technology on a individual
farm and consequently on the benefits of a new technology. Incorporation of a
stochastic framework in the bioeconomic model will enable the effect of risk on the
value of a new technology at the farm level to be examined compared to a
deterministic analysis. However, the potential importance of risk in farm level
modelling has been considered by Pannell, Malcolm and Kingwell (2000) who
suggest that depending upon the purpose of the results, inclusion of risk aversion at
least, may be of secondary importance.



In the case of technologies that have dynamic attributes, measuring the cashflow over
time becomes important. Genetic traits in ruminants that have long biological lags are
such technologies. Typically, a commercial beef or sheep producer is constrained to
purchasing the enhanced genetic trait through buying in superior sires to infuse the
desired trait into their commercial breeding herd over time. Consequently, planning
periods of 20 or more years may be relevant. This means that a single-year
equilibrium model will be unable to effectively measure the costs of introducing the
new technology over time. In the case of the NFE technology in beef cattle, any herd
expansion that is possible as a result of introducing the trait is based on retaining
NFE-improved heifers rather than selling them. Thus, the change in herd dynamics
has to be properly incorporated as do the opportunity costs of forgone heifer sales.
These herd dynamics can be represented explicitly within the bioeconomic model.

The method followed in this research project was to develop a model that could
incorporate the important characteristics of the production system and the technology
in question, being stochastic and dynamic attributes respectively. The bioeconomic
model described in the following section provides a method by which to assess the
benefits of a technology by comparing with and without technology scenarios.

A multi-period LP has previously been applied to the NFE technology by the authors
(Alford, Griffith and Cacho, 2004), results from which are compared with results
obtained in this study. This whole-farm model enabled the estimation of the NFE
technology in the context of a mixed grazing system allowing for the potential for
output substitution to occur between various sheep and beef enterprises as a
consequence of the availability of the NFE trait. However the resulting size of this
model precluded the addition of stochastic elements.

Therefore a dynamic simulation modelling approach which can capture non-linear
biological relationships was developed that may more readily be able to incorporate
dynamic and stochastic attributes of a production system. Such a modelling
framework would also lend itself to the examination of the impact of a new
technology on the sustainability of a production system.

3. METHODOLOGY AND OUTLINE OF THE BIOECONOMIC MODEL

The model is based upon a beef enterprise typical for the Northern Tablelands region
of New South Wales. The Northern Tablelands farming system has been previously
described by Alford, Griffith and Davies (2003) and broadly consists of various beef
and sheep grazing enterprises. In this case, a self-replacing beef herd that produces
heavy feeder steers is modelled.  Typically cows are joined to calve in
August/September, and heifers are joined to calve at 2 years of age. Heifers are sold
as weaners at nine months of age, while steers are sold at 18 months of age at 440-450
kg (1.w.) suitable for entry into feedlots.

Comparisons between the without-NFE case (base) and the with-NFE case, were done
using optimal enterprise plans generated by conducting several modelling experiments
including both deterministic and stochastic pasture growth assumptions. The model is
also able to be constrained by setting minimum pasture mass requirements as a proxy
for sustainable grazing management.




Cacho (19974, 1998) developed a theoretical bioeconomic model for a grazing system
incorporating economic and biophysical models. This model has been used as a base
for the development of the current beef cattle model.

Annual profit is obtained from cattle sales less herd and sale costs and pasture and
supplementary feed costs. An area of 320 hectares is assumed. Further details of the
beef enterprise and associated resources are given in Alford ef al. (2004).

The biophysical model is linked to the economic sub-model through an equation
determining cattle sales and herd, pasture and supplementary feeding costs for each
year over the simulation period. The biophysical model is implemented and solved
using Simulink 4® (The MathWorks Inc, 2001a) and Matlab 6® (The MathWorks Inc,
2001b). The model has a daily time step, and captures two main components:

o  Pasture — pasture growth and pasture mass, and

* Animal production — pasture consumption, stocking rate, supplementary feed

and cattle sales.

Figure 1 shows an outline of the bioeconomic model including the linkages between
the various sub-models and their main data inputs and outputs.

The bioeconomic model has the potential to examine issues regarding the
sustainability of the grazing systems as far as it relates to maintaining minimum
pasture levels, since these can be set in the model. Scott et al. (2000) identified the
maintenance of a minimum pasture cover (of which pasture mass is a proxy) to be of
primary importance for the sustainability of Northern Tablelands grazing systems. As
a consequence of various research into sustainable grazing practices in the Northern
Tablelands a best management practice of maintaining a minimum pasture mass at
1000 kg DM has been recommended (McDonald, 2000). This model is applied
initially to the NFE trait in beef cattle to examine the value of the technology within
this minimum pasture constraint.

3.1 Pasture Sub-model

Pasture growth and the impact of grazing upon the potential growth of pasture is
fundamental to grazing models. In the agronomic literature pasture growth has been
represented by various types of equations from relatively simple single equations for
empirical modeling or complex mechanistic simulation models that include a series of
equations describing photosynthesis, respiration and phenology. Examples of the
latter type include GrassGro (Moore, Donnelly and Freer, 1997; CSIRO, 2003) and
Johnson and Parsons (1985).

The growth of individual pasture plants or pasture swards is directly influenced by
defoliation (or grazing), while factors such as light, temperature and moisture
availability and nutrients also impact upon potential pasture growth.

Bioeconomic models can be organised to describe the biological processes of a
system of interest with relatively few equations which relate current state and control
variables to future states of the system (King, Lybecker, Regmi, and Swinton, 1993
Oriade and Dillon, 1997). In contrast biological simulation models are generally
highly mechanistic involving a large number of equations detailing various biological



Figure 1. Diagrammatic representation of the Beef Grazing Bioeconomic Model
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subsystems. An advantage of mechanistic models is their greater applicability to
various conditions (Cacho, 19976). The generality of highly mechanistic models was
exploited in this study by using the GrassGro (CSIRO, 2003) model to derive pasture
growth data for the Northern Tablelands since long term pasture growth trials with
sufficient sampling points are not available.

In the region of interest, the authors identified many trials that typically were
undertaken for 3 years or less; for example, Lazenby and Lovett (1975), and Curll,
(1987). Other longer term trials undertook few readings within each year since their
primary objectives were other than examining pasture growth rates per se over the
whole period; for example, Robinson and Lazenby (1976), and Hutchinson, King and
Wilkinson (1995).

Pasture Growth — Sigmoid equation

A variety of forms of equations to model pasture growth have been used in the
literature including logistic, Gompertz, and Richards equations which are discussed in
detail by France and Thornley (1984) and Thornley and Johnson (1990). These
equations are sigmoidal in nature which assumes that growth rate continues to
increase until at some point an input such as a nutrient or light becomes limiting,
and/or the specific growth rate decays exponentially with time, for example due to
temperature (Thornley and Johnson, 1990).

In the bioeconomic model presented here a single sigmoid equation is used to
represent pasture growth under grazing described by (Cacho, 1993). The sigmoid
equation can implicitly reflect the various factors that influence growth rate (moisture,
light, temperature), while a scalar may be applied to reflect the impact of nutrient
availability (Cacho, 1998) or general productivity of the pasture.

The equation adopted is:

Gog X [ Yo =YT
Y, Y

max
Where: G is net growth rate (kgDM/day),
Y is pasture mass at time ¢ (kgDM),
Y max 18 maximum sustainable pasture mass (kgDM),
Growth parameters: « (time-1)
y (dimensionless).

The equation has been demonstrated to be applicable to modelling the accumulation
of green pasture dry matter (growth minus senescence) or growth that is defined as the
accumulation of live and dead biomass and so accounts for senescence and decay
(Cacho, 1993). Woodward (1998) noted that the majority of pasture biomass models
have followed the approach of modelling net pasture production and so avoided the
need to explicitly describe senescence and decay.

Figure 2 illustrates a generalised sigmoid growth curve showing the point of
maximum growth (Y*,G*); where Y represents pasture mass which may be green
pasture mass or total pasture mass and is normally measured in kilograms or tonnes of
dry matter per hectare, and dY/dt is growth rate such as kilograms (or tonnes) of dry



matter per day. The peak of the curve represents maximum growth rate (G*) which
occurs at the optimum herbage mass (Y*). Ymax is the maximum sustainable herbage
and is related to the relatively stable state where new growth equal senescence of
older leaves.

Figure 2. Sigmoid growth curve
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The sigmoid growth curve requires three parameters o, y and Ymax. Simulated data
from which to estimate the three parameters were obtained by undertaking a series of
GrassGro simulation experiments using data for Armidale over the period 1985 to
1999. The pasture modelled is for a mixed pasture sward including early annual grass
species, phalaris and white clover, derived from a Northern Tablelands pasture
detailed by CSIRO (2003). Each of these three pasture components have different
phenology resulting in differing stages of reproductive and vegetative growth.

Daily pasture growth simulation experiments were undertaken for a representative day
of each month over the 15 years. The simulations undertaken in GrassGro were run
from the start year of the simulation period 1st January 1985 to the representative day
of interest; the representative day being that day of each month which most closely
matched the median daily growth rate for that month. Simulated cutting trials were
undertaken using the “spinning up” function in the GrassGro model which allows the
model to be stopped during a simulation run (in this case three days prior to the
selected representative day to allow for some adjustment) and the predicted above
ground biomass reduced and the run recommenced to the day after the selected
representative day to mimic a pasture cut experiment. This enabled simulated daily
growth rates and corresponding total above ground pasture biomass to be determined.
Pasture mass was reduced by 0, 25, 50, 70 and 90 % respectively for each
representative day to provide 5 observations. Y. Was estimated visually by plotting
the observed GrassGro simulation data and estimating where the trajectory might
reasonably intersect the horizontal axis. This method was deemed to be adequate
given that under continuously or frequently grazed pastures the portion of the curve
close to Ynax would rarely be reached (Cacho, 1993). Figure 3 shows an example of
data obtained from the GrassGro simulations and the resulting fitted sigmoid growth
curve. The model replicates a continuous grazing or set-stocking management
strategy.




Figure 3. Example of simulated “pasture cutting trial” using repeated GrassGro
simulations on a representative day in May 1992 and the fitted sigmoid curve
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To estimate the coefficients for the pasture growth equations the simulated “cutting
trial” pasture growth and mass data were fitted using a non-lincar least-squares
procedure with the statistical package TSP® (TSP International, 1997). These resulted
in generally good fits with high R-squares while the two estimates for & and y were
always significantly different from zero with P values for the t-statistic of less than
0.001. This demonstrates that the sigmoid equation is a good approximation of the
mechanistic multi-equation GrassGro simulation model. To ensure that there were
no consistent biases plots of observed simulations and fitted data were plotted. A
summary of the coefficient estimates and related statistics and plots for the
representative year 1992 are provided in Table 1.

These estimated pasture growth parameter coefficients were used to derive a
deterministic pasture growth year taken as the 12 monthly averages across the 15
years for o and y and Yma respectively. The stochastic pasture growth parameters
were taken as the 15 sets of 12 monthly parameter coefficients.

A pasture decay rate is applied separately to the cumulative pasture mass as it is
passed through the various months of the year in the biophysical model. This was
determined from monthly averages from the GrassGro output and these rates ranged
0.3% to 2.0%. This compares with Bowman, White, Cayley and Bird (1982) who
found decay rates in southern Australian pastures of up to 1.8% of dry matter per day;
this rate being correlated to lagged cumulative rainfall.

The resulting daily growth rate from the biophysical model for the deterministic year
at a stocking rate of 15 dse/ha is shown in Figure 4. As part of the validation process
of the biophysical model, simulated results may be compared with published pasture
growth estimates. Two such studies are compared in Table 2.

While the experiments detailed in Table 2 are not directly comparable to the
biophysical model since they included a variety of pasture species and were
undertaken using monocultures or binary mixtures they serve as a broad guide of
typical growth rates that might be encountered in Northern Tablelands environments.



Table 1. Estimated values of pasture growth parameters for the representative day for each month over the 15 years (1985-1999)

Pasture parameter

a ¥y Y imax
mean  CV(%) minimum___maximum mean CV(%) minimum maximum mean CV(%) minimum maximum
Jan 0.012 98 0 0.036 Jan 1.333 14 1.050 1.695 Jan 4105 55 750 7700
Feb 0.010 99 0 0.025 Feb 1.221 13 0.914 1.440 Feb 4700 40 1500 8000
Mar 0.016 76 0 0.044 Mar 1.172 17 0.820 1.435 Mar 4323 55 750 8000
Apr 0.014 82 0 0.036 Apr  1.259 18 0.654 1.532 Apr 4000 55 850 7200
May 0.017 38 0.002 0.023 May 1.326 18 0.864 1.943 May 5157 34 900 7500
Jun 0.014 59 0 0.026 Jun  1.299 13 0.957 1.609 Jun 4925 26 1600 7000
Jul 0.018 59 0.004 0.034 Jul 1.154 14 0.869 1.655 Jul 4340 24 2000 6000
Aug 0.016 72 0 0.036 Aug 1.128 14 0.847 1.443 Aug 5196 16 2900 6500
Sep 0.029 46 0 0.043 Sep 1.170 4 1.105 1.219 Sep 6862 14 5200 8200
Oct 0.024 74 0 0.053 Oct 1.237 6 1.064 1.345 Oct 7164 24 2350 8400
Nov 0.022 68 0 0.046 Nov 1.205 11 1.024 1.495 Nov 7117 24 2500 8500
Dec 0.018 89 0 0.045 Dec 1.246 10 1.018 1.506 Dec 5932 46 750 8300

Table 2. Biophysical simulated pasture growth rates compared with experimental pasture growth rates

Bioeconomic model Begg (1959) McPhee et al.
monthly average ranges kgDM/ha.day (1997)
kgDM/ha.day* kgDM/ha.day*
Spring 32-36 42-52 25
Summer 13-28 19-48 15-20
Autumn 15-19 - 15-20
Winter 16-23 12-20 7-12

* Pasture grazed at 15 sheep/ha.




The pasture type described by CSIRO (2003) and used for pasture growth parameters
in the bioeconomic model includes three major components annual grasses, phalaris
and white clover. The characteristics of these three components affect the overall
growth rate pattern seen in Figure 4. In particular, the relatively high winter activity
of the predominant Phalaris cultivar (Watson, McDonald and Bourke, 2000) would
contribute to the greater level of winter production in the model pasture. Also while
the large proportion of early annual grass species which are relatively active in spring
and early summer are senescent by January and while providing biomass do not
contribute to pasture growth in summer.

The average metabolizable energy per kilogram of pasture dry matter for the different
months of the year are taken from GrassGro simulation estimates.

Figure 4. Daily pasture growth rate for the deterministic year

2 -

=
g s
Q
o
X
@
® &
£
3
)
4
2
7] (=]
[ e
a.
Ot " " —t —t +
& & &L & o fb*fb*&‘\@ > R ogR S & 0“
@s Q\Sbm(‘ Q>f< \v“ o;é %,?9:13/?96\‘\ e o rﬁ’f v9 Y&Qp@nﬁ,\o“ w\‘be mo"’wo

3.2 Animal Sub-model

Feed related components of the model are based upon metabolizable energy, as such it
1s a compromise, as it in effect assumes that other necessary nutritional requirements
such as protein, fibre, vitamins, minerals and water are not limiting to the ruminant.
Typically for ruminants grazing pasture energy and then protein are the primary
limiting nutritional requirements and hence ruminant simulation models typically use
energy or energy and protein requirements to derive feed requirements, for example
GRAZFEED (Freer, Moore and Donnelly, 1997).

The animal sub-model is based upon the daily metabolizable energy (ME)
requirements (MAFF, 1984; SCA, 1990) required to reach market specified age and
weight targets (NSW Agriculture, 2003) and matched with the ME provided by the
pasture including pasture carried over from the previous month and any
supplementary feeding. As well, the maximum dry matter intakes of various livestock
are also accounted for. ME equations used in the bioeconomic model are provided in
Alford et al. (2004).




Net Feed Efficiency in Beef Cattle

Selection of beef cattle for increased feed efficiency is a relatively new research area.
Feed-related costs represent the single largest cost category for a beef enterprise,
typically greater than 60 per cent (Arthur, Archer and Herd, 2000). Previous selection
objectives in beef cattle focused on the output side in terms of liveweight gain and
fertility gains, as well as improved carcass traits (Archer, Richardson, Herd and
Arthur, 1999). In contrast, selection for improved feed conversion efficiency is an
attempt to reduce input costs. This approach has been especially successful within the
monogastric poultry and pig industries.

NFE “refers to the variation in feed intake which remains after the requirements for
maintenance and growth are accounted for. It is calculated as an individual animal’s
actual feed intake minus the expected feed intake based on its size and growth rate.
Because an efficient animal is one which eats less feed compared to its weight and
growth rate, efficient animals have a negative [NFE] while inefficient animals have a
positive [NFE]” (Exton, Archer, Arthur and Herd, 2001, p.20).

Heritability of the NFE trait is moderate and of similar magnitude to the heritability of
growth (Arthur et al., 2000). Archer, Arthur, Herd and Richardson (1998) estimated a
heritability for the trait of 0.43. The physiological basis for feed-efficient cattle is
uncertain, with various hypotheses proposed (Archer et al., 1999). Further, there is
some uncertainty as to whether selection for efficient growing (young) cattle will
result in greater feed efficiency for the overall breeding herd (Archer ef al., 1999).
Major investigations have centred on feed efficiency of growing stock including the
validation of a test to measure NFE during the 70-day post-weaning period (Archer,
Arthur, Herd, Parnell and Pitchford, 1997), while examination of cow lines has found
heifer weaners selected for NFE also display improved NFE as mature cows (Arthur,
Archer, Herd, Richardson, Exton, Oswin, Dibley and Burton, 1999).

In a study of beef industry breeding schemes for the NFE trait, Archer and Barwick
(1999) assumed genetic correlations between the NFE criterion and the improvement
in NFE expressed by young animals to be 0.75 and for mature cows to be 0.50. In
this present study these estimates were taken to be the correlations between the
estimated breeding value for NFE and the actual improvements in growth efficiency
and maintenance efficiency respectively.

Other assumptions regarding the NFE trait included that initially bulls with an EBV
for NFE that is 4 per cent superior for NFE could be purchased by a commercial beef
producer (Exton et al., 2000). Further, an annual improvement in the NFE of the
seedstock herd of 0.76 per cent was assumed to be feasible. This was derived from
Arthur, Archer, Johnston, Herd, Richardson and Parnell (2001) who found an annual
response to selection for an improvement NFE of 0.16 kg/day; however given
multiple-breeding objectives, the annual potential rate of progress in the NFE EBV
might reasonably be assumed to be only half, or 0.08 kg/day. In the study by Arthur
et al. (2001), daily feed intake averaged 10.5 kg of dry matter per day therefore a
reduction in NFE of 0.08 kg/day is equivalent to a 0.76 per cent improvement in the
NFE trait per year.

The rate of improvement in NFE was determined by developing a simple cumulative
model based upon fixed proportions of the age cohorts within the commercial cow

11




herd. That is, 19.8 per cent of the cows were in the 2 year old cow cohort, and 17.1
per cent, 14.7 per cent, 12.7 per cent, 11.0 per cent, 9.5 per cent, 8.2 per cent and 7.0
per cent were in the 3 to 9 year old age cohorts, respectively. Additionally, since the
herd was a commercial herd it was assumed that the farm manager does not impose
additional selection pressure for NFE and that replacement heifers selected for the
cow herd are selected on visual type and growth performance. The result is that by
year 25 there is a 5.9 per cent reduction in the herd’s ME requirement over the base
herd.

3.3 Economic Sub-model

Annual profit is obtained from cattle sales less herd, pasture, supplementary feed and
cattle sales costs. The net present value of a series of 25 years of gross margins is
used as a basis of comparison between without and with-technology scenarios for the
representative cattle enterprise. Salvage values for the base and NFE cow herds are
assumed to be $979 per breeding unit (bu) and $1,068/bu respectively. (Refer to
Alford et al. (2004) for details.)

Prices used in the budgets are expressed using 2001 dollar values. The cattle
enterprise gross margin (8419 per breeding unit for a steady state herd) and pasture
costs ($67/ha.year') are detailed in Alford, Griffith and Davies (2003) while
supplementary feeding costs arc assumed to be $0.15 /kg DM with a metabolizable
energy of 10 MJ/kg DM to account for wastage at feeding out. The cost of the NFE
technology is reflected in an increase in purchase price of NFE bulls being $160
(adjusted to 2001 dollar values) above the standard bull price of $3750 per head
(Exton et al., 2000; Alford et al., 2003).

Labour costs are not included in this analysis. Since the results from the modelling
experiments resulted in only modest increases in herd size (less than 10%) it was
decided that the costing of additional labour was not warranted given the practical
difficulties in defining various thresholds for the extra labour for each additional cow
added to the herd above the base case.

A real discount rate of 5% is used.
4. RESULTS AND DISCUSSION
4.1 The Base Herd in a Deterministic Environment

In the first experiment the model was run using pasture growth data from the
deterministic year and the unimproved (or base) cow herd. The model was tested to
determine the stocking rate that maximised the net present value (NPV) of a 25 year
serics of annual enterprise gross margins. The model was constrained to maintain a
minimum 1000 kg DM/ha of pasture (McDonald, 2000). Supplementary feed is
introduced to maintain this minimum pasture mass and achieve weight targets for
stock, as well as to overcome livestock dry matter intake constraints as a consequence
of low pasture feed quality.

A NPV maximising stocking rate of 18.2 dse/ha or 1.04 breeding units (bu) per
hectare, was identified which equates to a 333 cow herd for the Heavy Feeder Steer
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enterprise modelled. This resulted in a NPV of gross margins of $1,651,900 plus a
present value of livestock of $96,270, summing to $1,748,170.

This stocking rate of 18.2 dse/ha results in the pasture biomass approaching the
minimum 1000 kg DM/ha in the late winter and early spring period when pasture
growth has been constrained by low winter pasture growth rates (refer to Figure 5).
This period coincides with the increased energy requirements for the cow herd pre
and post calving. The stocking rate identified compares favourably with published
stocking rate estimates for similar pastures as that modelled here for the Northern
Tablelands. Lowien, Duncan, Collet and McDonald (1997) suggest that pastures
which include an introduced perennial grass and legume on basalt derived soils range
in stocking rates of 15 to 25 dse per hectare.

Figure 5. Daily pasture mass over a year using the deterministic pasture growth
parameters
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Figure 6 shows the change in NPV as the stocking rate is increased on the model
farm. It can be seen here that the NPV has a direct negative correlation with the level
of supplementary feeding required.

Figure 6. Change in NPV for the Heavy Feeder Steer Enterprise as stocking rate
changes
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4,2 The Base Herd in a Stochastic Environment

To examine the effect of production risk on the optimal stocking rate, the model was
run using a Monte Carlo simulation procedure using the 15 years of derived pasture
parameters. The stochastic simulation experiment was undertaken to determine the
stocking level that maximised the net present value of a series of 25 year annual gross
margins. 500 iterations were used. A stocking rate of 16.3 dse/ha (or 0.93 bu/ha) was
identified as the optimal choice for a risk indifferent producer with a NPV including
livestock salvage values of $1,327,900, while a risk averse producer would consider a
lower stocking rate again (refer to Table 3).

Table 3. Estimated expected NPV and risk (in terms of NPV standard deviation)
at different stocking rates for the base herd

Stocking Rate mean NPV sD
(dse/ha) ($ x10%) ($ x10%
11 0.9314 0.0077
12 1.0389 0.0164
13 1.1387 0.0299
14 1.2242 0.0498
15 1.2904 0.0755
16 1.3258 0.1078
16.3 1.3279 0.1184
17 1.3230 0.1439
18 1.2941 0.1747

Examination of the resultant cumulative distribution functions shows that the plan to
adopt a stocking rate of 15 dse/ha is dominated by the three higher stocking rates
shown in Figure 7, using second degree stochastic dominance. Similarly the optimal
stocking rate dominates the 17 dse stocking rate scenario. However, discrimination
between the stocking rates of 16 and 16.3 dse/ha is less evident without using more
demanding risk aversion criteria.

Figure 7. Comparison of cumulative distribution functions of NPV for several
stocking rates for the base herd

1
0.9
0.8
0.7 4
0.6 1
0.5
0.4
0.3

-~ 15 dse
- = = =16dse
16.3 dse
17 dse

Cumulative Probability

0.95 115 1.35 1.55 1.75
Net Present Value ($, x10°)

Useful information may be obtained by using risk neutral modelling approaches
(Antle, 1983), and in so doing avoid assumptions regarding levels of risk aversion
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amongst farmers; for example, by identifying risk efficient frontiers (Cacho, Bywater
and Dillon, 1999). Such an approach is supported by Pannell, Malcolm and Kingwell
(2000) who provide empirical evidence that the incorporation of risk aversion, even at
relatively high levels of aversion will have little impact on the farmers’ optimal plan
for choices which involve continuous or approximately continuous decision variables
such as stocking rates.

The risk efficient frontier for stocking rates for the base herd is shown in Figure 8.
Such a frontier may be used by a producer to determine their personal preference in
terms of expected profit and level of risk for their individual circumstances (Cacho,
Bywater and Dillon, 1999). At stocking rates above 16.3 dse/ha, risk as measured by
the standard deviation of NPV increases however there is no additional increase in the
expected NPV.

Taking the risk-indifferent optimal choice it is found that the stocking rate of 16.3
dse/ha is 10.4% less than the optimal stocking rate using the deterministic model
(refer to Table 4). The cost of this stochastic environment compared with the
deterministic state is $420,270 or 24% in NPV over a 25 year simulation. This is
equivalent to a present value cost of $1,313/ha.

Figure 8. The risk efficient frontier with respect to stocking rate for the base
herd
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4.3 Net Feed Efficiency

The deterministic and stochastic bioeconomic models were then run incorporating the
NFE technology. In the first case the NFE was run assuming a steady state herd,
essentially this represents a before- and an after- implementation comparison of the
NFE technology without accounting for the cost in herd expansion. Since
comparisons between NFE cattle and base cattle on a DSE basis are not correct
because the NFE trait in effect reduces energy requirements, stock numbers in terms
of breeding units (bu) per hectare are used.
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Table 4. Comparison of deterministic and stochastic pasture assumptions on the
profit maximising stocking rate and resultant NPV for the unimproved beef
enterprise

Stocking rate Stock Numbers NPV
(dse/ha) (breeding units/ha) ($x10%
Deterministic — 18.2 1.04 1.7481
base herd
Stochastic- base 16.3 0.93 1.3279
herd (- 10.4%)* (- 24%)*

* Indicates percentage change compared with the respective deterministic or stochastic base herd
model.

Deterministic model

The optimal herd size for NFE cows is a herd size of 337 cows on the 320 hectare
enterprise. This is equivalent to 1.05 bu/ha. The resulting NPV is $1,672,600 in
discounted gross margins and an additional discounted salvage value for livestock of
$106,283, based upon a salvage value of $1068/bu (refer to Alford et al., 2004). This
represents a 1.8% increase in NPV over the 25 year simulation (refer to Table 5). The
small increase in optimum carrying capacity compared with the base herd (333 cows;
1.04 bu/ha) reflects the small annual improvement in NFE in the early years of the
simulation, which effectively limits the potential increased herd size. Due to the
effect of discounting the cost of additional supplementary feed in the early years of
the simulation necessary to enable a higher carrying capacity over the entire period is
greater than the feed efficiency benefits that may be accrued in the later years of the
simulation.

Table 5. Comparison of the optimal NPV and associated herd size between
unimproved and NFE herds

NPV Stock Numbers
($x10%) (breeding units/ha)

Deterministic — base herd 1.7481 1.04
Deterministic — NFE herd 1.7789 1.05

(+ 1.8%)* (+ 0.96%)*
Stochastic- base herd 1.3279 0.93
Stochastic- NFE herd 1.3689 0.96

(+3.1%)* (+3.2%)*

* Indicates percentage change compared with the respective deterministic or stochastic base herd
model.

The optimal carrying capacity was then compared using stochastic pasture production
(refer to Table 5). In this case the carrying capacity that maximised NPV of the
discounted gross margins is 0.96bu/ha which resulted in a NPV, including the salvage
value of livestock, of $1,368,944. As a result of the introduction of NFE to the herd
there is an increase in NPV/ha of 3.1% and a 3.2% increase in beef produced per
hectare over the base herd under the assumption of a stochastic pasture base. The
cumulative distribution functions for the base herd and steady state NFE herd are
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shown in Figure 9, where the NFE technology scenario dominates the NPV
cumulative distribution in terms of second degree stochastic dominance.

Examination of the NFE technology using a stochastic framework indicates a 3%
improvement in NPV compared with 1.8% from the deterministic scenario, over the
respective unimproved herd scenarios.

Figure 9. The cumulative distribution functions of NPV for the base herd and
the NFE herd assuming the herds are in steady state.
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4.4 “Optimal” expansion path

Access to a genetic technology such as NFE for commercial beef producers is
predominately restricted to buying bulls and increasing herd size by retaining
additional heifers above that required for maintaining a herd in steady state. Reasons
for this constraint include the limited availability of commercial females with the new
genetic trait in the early years of the technology, and if such females are available
they may still not suit the individual producer’s specific production systems and
related target markets. As well, herd health management practices may restrict the
number and frequency of new animal introductions to a breeding herd.

Therefore examining potential expansion strategies is warranted to account for the
changes in feed requirements and cashflow as the herd expands. This was done by
assuming that the initial herd size is the same as that for the optimal base herd under
deterministic (333 cows; 1.04 bu/ha) and stochastic (297 cows; 0.93 bu/ha) models.
Herd expansion scenario results are reported in Table 6.

The optimal expansion path to maximise the NPV of 25 years of gross margins in the
deterministic model is to expand to a herd size of 353 cows, a 5.8% expansion in herd
size over the 25 years. This provides a NPV of annual gross margins of $1,675,700.
An additional amount representing the present value of NFE cattle at the end of the
expansion phase is $111,348.

The extent to which herd expansion impacts upon the NPV of the cattle enterprise
incorporating the NFE technology under the deterministic model assumption is
illustrated in Figure 10. To maintain a steady state herd, 37% of weaner heifers are
sold to allow for sufficient numbers for culling and deaths before their first calving at
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Table 6. Differences between optimal herd expansion under deterministic and
stochastic pasture assumptions

Optimal Herd NPV Final Year Breeding
Expansion ($x10% Units (cows/ha)

Deterministic- base Steady state 1.7481 1.04

herd

Deterministic- NFE +5.8% 1.7870 1.10

herd expansion (+2.2%) (+ 5.8%)
Stochastic- base herd | Steady state 1.3279 0.93
Stochastic- NFE 1.1% 1.3663 0.94

herd expansion (+2.9%) (+1.1%)

2 years of age. Therefore, as the herd expands by selling fewer heifers to
approximately 36%, NPV increases after which the NPV decreases again as the
stocking rate increases and subsequently the supplementary feed requirements
increase.

In contrast to the optimal farm plan that has identified a 5.8% increase in the herd
size, an analysis using a multi-period linear program which included both sheep and
beef enterprises, identified that the optimal farm plan would expand the herd by some
12.6% over 25 years. However, there was the capacity for output substitution in this
model which resulted in resources being transferred from the sheep enterprises and
invested in the NFE cattle enterprise on the representative farm (Alford et al., 2004).

Figure 10. Effect of herd expansion on the NPV of the NFE cattle enterprise
assuming a deterministic pasture model
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Comparing the optimal herd expansion path identified within a stochastic
environment to the deterministic result suggests that level of expansion of the cattle
enterprise is sensitive to the opportunity cost of heifer sales and the extra contribution
that retained heifers make to the annual stocking rate. The optimal expansion plan in
the stochastic model is for a minor increase in herd size by 1% over the 25 year period
resulting in a NPV of $1,366,250 including livestock salvage values. This is a result
of the relatively low rate of improvement in NFE and the additional feed that is
required by the larger number of heifers in the early part of the planning period.
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5. CONCLUSIONS

From the particular issue examined here, it appears that taking account of the
stochastic nature of the grazing system is important. In this case it was found that the
deterministic model overestimated profit maximising stocking rates by 10% in the
base herd, while accounting for this variability resulted in a 24% lower NPV for the
base herd. This difference between deterministic and stochastic results was found
despite applying the relatively relaxed condition of risk neutrality and so avoiding
assumptions regarding farmers’ levels of risk aversion. This is consistent with theory
(eg., Antle, 1983) and the findings of other researchers (eg., Cacho, Bywater and
Dillon, 1999).

The NFE technology appears to be of economic benefit with a 2.9% increase in net
present value identified for a representative cow-calf enterprise, which is constrained
by a minimum pasture mass, ‘best management practice’ assumption.  This
improvement was accompanied by a 1.1% in beef production over the 25 year
planning period simulated. In contrast optimal herd expansion under a deterministic
scenario was 5.8% which essentially reflects the phenotypic improvement in the net
feed efficiency of the herd over the 25 years. In an environment of production risk,
the potential increase in beef output as a consequence of adoption of the NFE
technology may be limited by the low expected annual genetic improvement in the
NFE trait in a commercial herd and the opportunity cost of heifer sales and the extra
contribution that retained heifers make to the annual stocking rate in the early years of
the planning period.

Future research using this bioeconomic simulation model include incorporating
sensitivity analysis of various price assumptions, such as the cost of NFE bulls and
beef prices; as well as assumptions regarding the rate of improvement of the genetic
trait in a commercial herd. For example, research is currently being undertaken
through the Beef CRC examining various markers that are genetically correlated to
net feed efficiency in cattle. These markers, such as insulin-like growth factor-1
(IGF1) may decrease the cost of the NFE technology to producers.

The NFE trait may have greater benefits to producers which have not been included in
this current analysis, through the addition of a premium for young stock suitable for
feedlots. This assumes that a portion of the savings in feed that the feedlotter would
achieve by purchasing NFE progeny is passed back to the cow-calf operator (Exton et
al. 2000). The extent to which a producer might benefit from these savings further
down the production line will depend upon the various demand and supply elasticities
that exist in the supply chain. This is an area for further examination. It should be
noted however, that any such premium that might be obtained by producers of young
stock suitable for feedlot entry would have to account for additional costs that a
producer would incur in verifying to the feedlotter the level of NFE that their stock
will achieve.

The current model has the capacity to examine the economic trade-offs between short-
term utilisation of pastures and the long-term sustainability of a productive pasture
resource using estimates from long-term grazing management trails, for regions such
as the Northern Tablelands of New South Wales. This is anticipated to be an
important area for future investigation.
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