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International Consumption Patterns for Proteins and Fats: 
Intra-distributional Mobility and the Role of Income Elasticity 

 
 

Panos Fousekis* 
 
 
Abstract 
Stochastic kernels are used in this paper to investigate intra-distribution dynamics in 
the world per capita intakes of proteins and fats. The analysis of actual transitions over 
the last 40 years indicates that lagging countries improved their position relative to the 
leading. Long-run (steady-state) distributions have been obtained using estimated in-
take change models. These distributions have been compared to “virtual” ones reveal-
ing that the income elasticity of demand or equivalently the rate of growth in per capita 
income does have a strong influence on the dispersion of intakes at the steady-state. 
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JEL Classification: Q1, D12, C14 
 
 
Introduction  

The dynamic evolution of dietary patterns in different parts of the world has attracted 
considerable attention in the economic research since the early 1980s. Blandford (1984), 
Wheelock and Frank (1989), Herrmann and Roder (1995), Uhl (1991), Connor (1994), 
and Gil et al. (1995), compared the dietary patterns in developed countries and they 
found that diets were getting increasingly similar; Grigg (1995) analyzed the factors 
(e.g. economic, environmental, cultural) influencing the spatial variation in the world 
protein consumption; Fousekis and Lazaridis (2005) investigated the dynamics of the 
world caloric (energy) intakes. They found that despite the higher availability of food at 
a global level, the differences between low- and high-intake countries are still consider-
able making, thus, convergence in the foreseeable future unlikely. Policy makers have 
also a keen interest in the evolution of the international nutrient consumption patterns 
since both under-nutrition in low-income countries and over-nutrition in the more afflu-
ent ones accounts for a significant proportion of deaths and chronic disease all over the 
world (The World Health Report, 2002). 

The overwhelming majority of the empirical studies regarding convergence in per 
capita food consumption (or in per capita nutrient intakes) have been based on the so 
called Barro’s regression in which the change in consumption over a period of time is 
regressed on an initial consumption level and other variables which are assumed to af-
fect consumption growth. A negative and statistically coefficient of the initial consump-
tion level in such regression is taken to imply convergence. As shown by Quah in a 
flurry of papers (e.g. Quah, 1993a, 1993b, 1996a, 1996b, 1997), however, Barro’s re-
gressions are not quite informative about convergence or divergence. For Quah, ques-
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tions related to persistence (here, tendency of countries to retain their rank in the cross-
section nutrient intake distribution), mobility (here, low intake countries become high 
intake ones and the opposite), convergence (here, all countries attain very similar intake 
levels) and club formation (here, countries catching-up with one another but only within 
particular groups) can be properly addressed by developing a probability model of tran-
sitions, that means, by developing the law of motion for the entire cross-section intake 
distribution. 

In this context, the objective of the present paper is the analysis of intra-distribution 
dynamics for two nutrients, namely, proteins and fats. While most of the earlier empiri-
cal studies relied on data from few Western or OECD countries the present work relies 
on data from 103 countries around the world. The empirical investigation is based on 
stochastic kernels.1 Moreover, given that for economists income elasticity is considered 
to be a very important determinant of demand for nutrients, the paper follows an ap-
proach proposed recently by Fingleton and Lopez-Bazo (2003) to examine the effect of 
income elasticity on the shape of the long-run intake distributions.  

The paper is structured as follows. Section 2 contains the analytical framework (tran-
sition density functions and simulation of the long-run intake distributions). Section 3 
involves the specification and estimation of the intake change models. Section 4, pre-
sents the actual intake dynamics for the period 1961 to 2001 and investigates the effect 
of income elasticities. Section 5 offers conclusions. 

 
 

Analytical Framework  
Transition Density Functions  

Let R be a vector of the intake ratios of a given nutrient in each country relative to 
the highest intake (leading) country, and ft (R=x) and ft+k (R=x) be the probability den-
sity of R=x in periods t and t+k, respectively. The relationship ft and ft+k can be ex-
pressed as 

 1

0
y) y/ x) x)dxt k k tf ( R g ( R R f ( R+ = = = = =∫  (1) 

where  kg   is the stochastic kernel (transition density), that means the density of  R= y  
in period  t+k  conditional on  R= x ,  k periods before (Durlauf and Quah, 1999; Quah, 
1996a). A transition density provides the likelihood that a country which occupies a cer-
tain part of the cross-section distribution of R will transit to another part of it in k peri-
ods summarizing, thus, the whole information about the intra-distribution dynamics. 
The non parametric estimation of a transition density is described in Quah (1996a). The 
first step, involves a bivariate kernel density estimation of the joint density function of t 
and  t+k  at the points x and y. The second step, involves integration of the joint density 
over the values of R in  t+k  to obtain the marginal density at period t. The third step, 
involves division of the joint density by the marginal density at t to yield a consistent 
estimate of the stochastic kernel. 

Persistence, mobility, convergence, and club formation can be then read off the graph 
of the transition density and the associated contour plot. For example, if the probability 
mass is located along the positive diagonal this points to low mobility (or strong persis-
tence). On the other hand, clockwise kernel shifts indicate a tendency for convergence 
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in distribution with low (high) intake countries in t having a high probability of experi-
encing an improvement (deterioration) of their relative position in  t+k.  In the extreme 
case, the probability mass is located along a parallel to the R values at t indicating that 
nutrient intake levels in all countries are likely to converge to very similar levels in pe-
riod  t+k,  irrespective of their position in t. Finally, peaks in the kernel (separated by 
valleys with vanishing probability mass) indicate the existence of what Durlauf and 
Johnson (1995) termed as “basins of attraction” which encourage the formation of con-
vergence clubs.  

Just as stochastic kernels can quantify how the distribution of R evolves over time, 
they can also describe how a set of conditioning factors alter that distribution (Quah, 
1996a and 1997; Fingleton and Lopez-Bazo, 2003). This can achieved by comparing an 
unconditional (long-run) distribution with a conditional (“virtual”) distribution obtained 
by imposing restrictions on the parameters of an intake change model. In case that the 
probability mass lies along the positive diagonal one may conclude that the conditioning 
factor in question (e.g. income elasticity) has no influence whatsoever on the shape of 
the long-run intake distribution. The opposite will be true in case that conditioning 
shifts the stochastic kernel about the positive diagonal. 

  
 

Simulating an Equilibrium Intake Distribution 
The intake change (denoted by Ĉ ) between periods t and t+k may be expressed as  

 
1 1 1 1 1 1

^

G
( n ) ( n m )( m ) ( n )( ) ( n )
C ( X ) ( b ) (G )( b ) ε
× × × × × ×

= + +  (2) 

In (2), G=1-R stands for the n start-of-the period intake gaps, X is a matrix of n observa-
tions from m factors (other than G) which are hypothesized to influence intake growth, 
b and bG are parameter vectors, and ε  is a disturbance term. With bG positive (suggest-
ing that laggards grow faster than leaders) there is a stable long-run equilibrium in 
which the expected rate of intake growth is exactly the same across all countries, mean-
ing that  
 0 0* e *

G
ˆ ˆE(C C ) ( X )( b ) (G )( b ) ( X )( b )− = ⇒ + − =  (3) 

where *Ĉ  is the equilibrium intake growth rate for the leader, eG  are the equilibrium 
intake gaps, and X* is a matrix with the same dimensions as X but containing identical 
rows which are each equal to the leader’s row in  X  (Fingleton and Lopez-Bazo, 2003). 
From (3) follows that 
   e * e *

G G(G )( b ) ( X )( b ) ( X )( b ) G ( X X )( b ) / b= − ⇒ = −  , (4) 
suggesting that the vector of the equilibrium intake ratios (the simulated long-run intake 
distribution), denoted by Re , may be obtained as  
 1e eR G= −  . (5) 
 The results in this section set the basis for conditioning analysis. The simulated equi-
librium distribution is the unconditional one. Changing the coefficients of model (2) and 
utilizing relations (4) and (5) yields the desired conditional distributions.2 
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Specification and Estimation of the Intake Change Model  
The empirical intake change model is specified here as 

 0 I i i G
i

ˆ ˆC b b I b D b G ε= + + + +∑  , (6) 
where Ĉ  is the change in the daily per capita intake for proteins or fats, Î  is the change 
in real per capita income, G  is the start-of-the period gap, and iD  are continent dum-
mies. As it stands, model (6) is an Engel function for nutrients in differential form 
modified for continent influences (captured by the dummies) and for catching-up effects 
(captured by G).3 The coefficient of Î  is the intake elasticity with respect to income. A 
positive coefficient of the G variable will indicate the presence of catching-up effects in 
the sense that initially low-intake countries have exhibited higher rates of intake growth 
compared to the initially high-intake ones. A positive (negative) coefficient of a conti-
nent dummy will indicate that countries in the respective continent have experienced 
higher (lower) intake growth rates relative to the control continent.4 

The data for the empirical analysis come from two sources, namely, the FAOSTAT 
(FAO, 2006) and the Penn World Table 6.1 (2004). The FAOSTAT provides informa-
tion on daily per capita intakes for proteins and fats, while the Penn World Table pro-
vides information on real GDP per capita. Data on both nutrient intake as well as on real 
per capita income are available for 103 countries (41 from Africa, 13 from North and 
Central America, 11 from South America, 17 from Asia, 17 from Europe, and 4 from 
Oceania) over the period 1961-2001.5 The top 5 and bottom 5 countries in the intake 
distributions are presented in the Appendix.  

For the estimation, the start-of-the period intake level of each country has been set 
equal to its average in 1961-63, while the end-of the period intake level has been set 
equal to its average in 1999-2001.6 Accordingly, G has been computed from the average 
intakes in 1961-63, Ĉ  has been computed as the growth rate in intakes between 1961-
63 and 1999-2001, and Î  as the growth rate in real per capita income between 1961-63 
and 1999-2001.7 For both proteins and fats, the estimation of the full model (6) yielded 
a number of coefficients associated with continents dummies which were statistically 
insignificant at any reasonable level. Therefore, the initially estimated models were sub-
jected to redundant variables likelihood ratio tests (LRT). The application of these tests 
has led to two preferred models presented in Tables 1 and 2.8 The adjusted coefficients 
of determination are 0.35 for proteins and 0.51 for fats, which are quite satisfactory 
given that the estimations rely on cross-sectional data. The Rasmey reset tests support 
strongly the selected specification for proteins, while for fats the selected specification 
cannot be rejected at the 5 percent level. The coefficients of income growth for both 
nutrients are statistically significant at the 1 percent level or less and so it the case for 
the coefficients of the G variable (something that points outs to the presence of catch-
ing-up effects).  

 
Distribution Dynamics and the Role of Income Elasticity  

As mentioned in Section 2, the analysis of distribution dynamics requires estimation 
of joint density functions. This has been implemented here as suggested by Wand and 
Jones (1995). In particular, for points x and y in the start-of-the period and the end-of-
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the period, respectively, the estimate of the joint density function is  

 ( (( ) / ) (( ) / )ˆ ( , ) s x s ys

x y

φ x x h φ y y hf x y nh h
− −

=
∑ , (7) 

where φ  stands for the Gaussian kernel, n for the number of observations, and hx and hy 
for the Sheather and Jones (1991) bandwidth parameters. The estimations (which are 
available upon request) have been carried out using S-Plus routine kde2d from the li-
brary of Venables and Ripley (1999).  
 
Table 1. The Preferred Intake Change Model for Proteins 

Explanatory Variables Parameter Estimate Standard Error+ 
Constant  -0.244* 0.065 

G 0.750* 0.113 
Î  0.117* 0.049 
D1 -0.095** 0.044 
D5 0.136** 0.042 

   
R2 (Adjusted) 0.342  

   
 Value of the Test  

Statistic p-value 
Ramsey Reset Test 

1 fitted term 
2 fitted terms 

 
0.01 
0.01 

 
0.993 
0.998 

+: Heteroscedasticity Robust;  *(**) Statistically significant at the 5 (10) percent level or less.  
 
Table 2. The Preferred Intake Change Model for Fats 

Explanatory Variables Parameter Estimate Standard Error+ 
Constant  -0.187* 0.072 

G 0.856* 0.101 
Î  0.263* 0.062 
D1 -0.207* 0.069 
D3 -0.101 0.061 

   
R2 (Adjusted) 0.504  

   
 Value of the Test  

Statistic p-value 
Ramsey Reset Test 

1 fitted term 
2 fitted terms 

 
3.591 
4.787 

 
0.068 
0.091 

+: Heteroscedasticity Robust;  *(**) Statistically significant at the 1 (5) percent level or less.  
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Figure 1a presents the stochastic kernel of the actual transitions for protein intakes, 
while Figure 1b presents the associated contour map. The start-of-the period intake ra-
tios are denoted by R1962 (because they have been obtained by averaging intakes in 
1961-63) and the end-of-the period intake ratios are denoted by R2000 (because they 
have been obtained by averaging intakes in 1999-2001). There is a clockwise shift in the 
kernel most notable at the very low (less than 0.4) R1962 ratios as well as at the R1962 
ratios between 0.7 and 0.8, suggesting that countries which initially had ratios lower 
than 0.4 or between 0.7 and 0.8 enjoyed a higher probability of improving their position 
in the proteins intake distribution relative to the rest. Also the probability mass is quite 
thin about the R1962 ratio of 0.7. It appears that countries with start-of-the period R 
ratios just above 0.7 jumped to ratios close to 0.9 and separated themselves from coun-
tries with start-of-the period ratios just below 0.7 which showed no improvement in 
their relative position. Although there are no very distinct peaks, the vanishing probabil-
ity mass in the neighborhood of the R1962 ratio of 0.7 provides some indication of club 
formation. The dispersion, however, within each of the two clubs is considerable (and 
this is in line with the absence of very distinct peaks).  

Figure 1c shows the stochastic kernel relating the R2000 distribution to the simu-
lated/equilibrium distribution (denoted by RE), and Figure 1d shows the associated con-
tour map. There is a notable clockwise shift in the kernel for the whole range of the 
R2000 values meaning that the long-run (steady-state) distribution is likely to be more 
concentrated than the end-of-the period one. Despite the increased concentration, the 
probability mass does not lie along a parallel to the horizontal axis suggesting that in the 
long-run the intakes are not likely to converge to very similar levels but each country 
will approach its own-steady state level which may well be different from those of the 
rest.  

The effect of income elasticity on the long-run intake distribution can be determined 
by adjusting the coefficient of Î  in the intake growth model downwards or upwards, 
while setting all other coefficients equal to their estimated values (Fingleton and Lopez-
Bazo, 2003). Here, somewhat arbitrarily we set the coefficient of Î  equal to 50 percent 
of its estimated value (that is, 0.058 instead of 0.117). Figure 1e presents the stochastic 
kernel relating the equilibrium distribution with the “virtual” distribution (denoted by 
RI), and Figure 1f the associated contour map.9 There is a very clear clockwise shift in 
the kernel suggesting that the income elasticity has a very strong influence on the dis-
persion of the long-run intake distribution. Lower (higher) income elasticities work to-
wards lower (higher) concentration.10 With the lower income elasticity a club appears to 
be forming at about the 0.9 RE value. 

Figure 2a presents the stochastic kernel of the actual transitions for fats, and Figure 
2b the associated contour map. In contrast with proteins, the clockwise shift in the ker-
nel for fats is most notable at the relatively high R1962 ratios. The probability mass is 
vanishing around the start-of-the period 0.6 ratio with countries on the right jumping to 
ratios as high as 1 and countries on the left failing to improve their position or even ex-
periencing a deterioration of it. Again, the vanishing probability mass provides an indi-
cation of club formation. As it is the case with proteins, however, there is considerable 
dispersion within each club (something which is reflected in the presence of twin peaks 
both above as well as below the 0.6 ratio).  
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Figure 1a. Proteins: Stochastic Kernel for the Actual Transitions 

 
 
 

 
Figure 1b. Proteins: Contour Map for the Actual Transitions 
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Figure 1c. Proteins: Stochastic Kernel for the End-of-the Period and the Equilibrium Distribu-

tion 
 
 
 

 
Figure 1d. Proteins: Contour Map for the End-of-the Period and the Equilibrium Distribution 
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Figure 1e. Proteins: Stochastic Kernel with Conditioning for Income Elasticity 

 
 

 
Figure 1f. Proteins: Contour Map with Conditioning for Income Elasticity 
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Figure 2e shows the stochastic kernel relating the equilibrium distribution with the 
“virtual” (conditioned) distribution, and Figure 2f shows the associated contour map. 
For the conditioning, the income elasticity has been set again to 50 percent of its esti-
mated value. As expected, there is a very clear clockwise shift in the kernel suggesting 
that the income elasticity does has a strong influence on the dispersion of the long-run 
intake distribution. There is no indication for club formation with the lower income 
elasticity.  
 

 
Figure 2a. Fats: Stochastic Kernel for the Actual Transitions 

 
 

 
Figure 2b. Fats: Contour Map for the Actual Transitions 
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Figure 2c. Fats: Stochastic Kernel for the End-of-the Period and the Equilibrium Distribution 

 
 

 

 
Figure 2d. Fats: Contour Map for the End-of-the Period and the Equilibrium Distribution 
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Figure 2e. Fats: Stochastic Kernel with Conditioning for Income Elasticity 

 
 

 
Figure 2f. Fats: Contour Map with Conditioning for Income Elasticity 
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largely attributed to two forces. First, is the substantial increase in food availability at 
the global level over the last 40 years as a result of improvements in agricultural pro-
ductivity and a better functioning of the food processing and distribution sector. Second, 
is the fact that the per capita intakes of the selected nutrients in the leading countries 
reached their upper asymptotes by the early 1980’s. Since then, several of them have 
experienced reductions in intakes reflecting the higher awareness about the detrimental 
effects of nutrient excess and imbalance. In addition, the analysis of actual transitions 
provided some evidence of club formation for proteins and fats but with substantial dis-
persion within each club.  

Long-run/steady-state distributions of nutrient intakes have been simulated using a 
recently proposed approach and were found to be more concentrated that those in the 
1999-2001 period. The relevant stochastic kernels, however, indicated that convergence 
of intakes at very similar levels is not likely. The long-run distributions have been com-
pared with “virtual” ones revealing that the magnitude of income elasticity or equiva-
lently the rate of growth in real per capita income has a strong influence on the disper-
sion of an equilibrium distribution of intakes. 

For economists, income is a very important determinant of the demand for nutrients. 
But, it is not the only one. Environmental, cultural, and religious factors and even inter-
national trade and tourism can also play a role in dietary patterns. In the estimated in-
take change models some (although not all) continent dummies were found to be statis-
tically significant. This is an agreement with the notion that factors beyond income 
growth may affect changes in nutrient intakes. The use of continent dummies, however, 
is admittedly a rather crude way of capturing the influence of those factors. Future re-
search may use more sophisticated ways providing, thus, richer insights into the forces 
behind the evolution of nutrient intake patterns in the world.  
 
 
Iotes 
1 Fousekis and Lazaridis (2005) relied on a large cross-section of caloric (energy) in-

takes and analysed the intra-distribution dynamics through a transition probability 
matrix (Cox and Miller, 1965). Such matrices, however, are not very well suited for 
the study of distributions involving continuous variables like nutrient intakes since 
the estimation results may depend on the choice of the discretizing grid (Quah, 
1993b). In contrast, the stochastic kernels by being the counterparts of transition ma-
trices where the number of states tend to infinity provide robust results with regard 
to mobility, stratification, and convergence (Quah, 1997; Durlauf and Quah, 1999). 

2 The dynamics of an evolving cross-section distribution can be investigated consider-
ing either differences or ratios of variables. The choice between the two depends 
largely on the notion of the long-run cross-section distribution that a researcher has 
in mind. If she(he) thinks that each country in the long-run will attain a fixed level 
of intake it is appropriate to consider differences in intake levels. If, however, 
she(he) believes the long-run cross-section distribution is the one in which not the 
absolute but the relative positions of all countries will be fixed it is appropriate to 
consider intake ratios. The overwhelming majority of researchers work with the lat-
ter notion in mind (e.g. Johnson, 2001; Quah, 1997; Fingleton and Lopez-Bazo, 
2003). 
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3 Other factors such as food prices may influence growth in nutrient intakes. How-
ever, price information is unavailable. We note that most of the empirical studies at 
a national level (e.g. Naya, 1994; Variyam et al., 1996) and all empirical studies at 
an international level (e.g. Gil et al., 1995; Herrmann and Roder, 1995; Angulo et 
al., 2001) do not include prices in nutrient demand equations.  

4 The continent dummy variables are: D1 for Africa, D2 for North and Central Amer-
ica, D3 for South America, D4 for Asia, D5 for Europe, and D6 for Oceania. Asia is 
treated as the control continent. 

5 The analysis of distribution dynamics is conducted here in terms of nutrient intake 
levels. The intake level, however, is just one among a number of possible indicators 
of food consumption patterns. Others can be the shares of certain food items in the 
food budget, the shares of given nutrients taken from given food items, on even the 
income elasticities of demand, as in the study of Angulo et al. (2001). Because dif-
ferent variables may have different implications, the results of any empirical study 
should be always interpreted with the indicator employed in mind. 

6 Nutrient intakes in low-income countries may be subject to random shocks because 
of adverse weather conditions, civil wars, etc. The three-year averages have been 
used to reduce random noise. 

7 When equation (6) is estimated from cross-sectional data leads to a common to all 
countries income elasticity of demand for intakes. Given, however, that the objec-
tive of this study is to assess how an increase (decrease) in the elasticity of demand 
for all countries in the sample simultaneously affects the shape of the long-run dis-
tribution, working common (“average over the sample”) demand elasticity is not 
overly restrictive. 

8 The estimation results from the two full models are available upon request. For pro-
teins, the p-value of the test statistic for the hypothesis that D2, D3, and D6 are si-
multaneously redundant is 0.885; for fats the p-value that of the test statistic for the 
hypothesis that D2, D5, and D6 are simultaneously redundant is 0.662. 

9 Alternatively, one could set the coefficient of Î  equal to 150 percent of its esti-
mated value. The kernel in that case will be (almost) the mirror image relative to the 
positive diagonal of that in Figure 1e. 

10 Complying, thus, with a priori expectations. To explain it we use here a very simple 
example. Let two countries with initial daily per capita protein intakes of 100 (lead-
ing country) and of 50 (lagging country), respectively. Let also the income effect 
(income elasticity multiplied by income growth) in both countries be 0.02. Then in 
one period, the daily per capita intake in the first country will increase to 102 and in 
the second country will increase to 51 (the difference in intakes will be 51). Let now 
that the income elasticity decreases to 50 percent of its initial value, while the rate of 
growth in income remains the same. Then in one period the intake in the first coun-
try will become 101 and in the second will become 50.5 (the difference in intakes 
will be now reduced by 0.5). With the smaller income elasticity the lagging has im-
proved its position relative to the leading one. From the example it is obvious that 
what matters for the dispersion is the magnitude of the income effect. One could get 
exactly the same results by holding the income elasticity constant and reducing the 
growth rate for all countries by 50 percent.  
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APPEIDIX 
 
Countries at the top and the bottom of the intake distribution  
 
A. Proteins* 

1961-1963 1999-2001 
Top Bottom Top Bottom 

Iceland 120.2 Comoros 31.6 Iceland 120.7 Congo Dem. Rep. 24 
Australia 106.7 Central Afr. Rep. 32.6 Portugal 119.7 Mozambique 37.7 
Argentina 104.7 Papua N. Guinea 33.1 Greece 119.2 Congo Rep. 41.9 
France 103.3 Indonesia 34.8 France 117.3 Comoros 42.3 
Ireland 101.8 Mozambique 35.4 Ireland 115.4 Central Afr. Rep. 43.6 

 
 
B. Fats* 

1961-1963 1999-2001 
Top Bottom Top Bottom 

UK 137.6 Rwanda 10.5 France 166.7 Burundi 10.4 
Iceland 135.6 Burundi 12.2 Austria 163.3 Rwanda 16.9 
Switzerland 134.4 Korea Rep. 14.6 Belgium 160.1 Congo Dem. Rep. 23.6 
Denmark 132.3 103.3 Bangladesh 15.5 Italy 155.5 Bangladesh 26.3 
Netherlands 129.1 China 16.8 Spain 152.6 Malawi 28.5 

*, daily intakes in grams.  
 


