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Abstract 

This paper develops low cost, reasonably accurate, and simple models for improving 

the targeting efficiency of development policies in Malawi. Using a stepwise logistic 

regression (weighted) along with other techniques applied in credit scoring, the research 

identifies a set of easily observable and verifiable indicators for correctly predicting whether a 

household is poor or not, based on the 2004-05 Malawi Integrated Household Survey data. 

The predictive power of the models is assessed using out-of-sample validation tests and 

receiver operating characteristic curves, whereas the model’s robustness is evaluated by 

bootstrap simulation methods. Finally, sensitivity analyses are performed using the 

international and extreme poverty lines.  

 The models developed have proven their validity in an independent sample derived 

from the same population. Findings suggest that the rural model calibrated to the national 

poverty line correctly predicts the status of about 69% of poor households when applied to an 

independent subset of surveyed households, whereas the urban model correctly identifies 64% 

of poor households. Increasing the poverty line improves the model’s targeting performances, 

while reducing the poverty line does the opposite. In terms of robustness, the rural model 

yields a more robust result with a prediction margin ±10% points compared to the urban 

model. While the best indicator sets can potentially yield a sizable impact on poverty if used 

in combination with a direct transfer program, some non-poor households would also be 

targeted as the result of model’s leakage. One major feature of the models is that household 

score can be easily and quickly computed in the field. Overall, the models developed can be 

potential policy tools for Malawi.  

 

Keywords: Malawi, poverty targeting, proxy means tests, out-of-sample tests, bootstrap. 
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Targeting the Poor and Smallholder Farmers 

Empirical evidence from Malawi  

Nazaire Houssou and Manfred Zeller 

 

1. Introduction 

Lately, policy makers as well as international donors have begun to take concrete steps 

to direct their financial and technical support to those programs that have greater poverty 

outreach and withdraw resources from those that fail to reach the poor. While this is definitely 

a step in the right direction, further progress is hampered by the lack of low cost and 

operationally reliable methods for assessing whether a project, policy or development 

institution reaches the poor (Zeller et al., 2006).  

This paper seeks to fill this knowledge gap by developing low cost, reasonably 

accurate, and simple models for identifying the poor and smallholder farmers in Malawi. 

Most of the country previous development programs have been poorly targeted at the 

population in need. Almost all interventions have targeted problems in the country 

(Government of Malawi and World Bank, 2007). They suffer from limited beneficiary 

coverage and significant leakages to the non-poor (World Bank, 2007). As a result, poverty 

has not been reduced and the poverty rate remains above 50% in 2005 (National Statistics 

Office, 2005).  

Therefore, this research explores the use of proxy means tests to identify the poor and 

smallholders farmers in the country. Proxy means tests use household socioeconomic indicators 

to proxy household poverty or welfare levels. The main objective of the tests is to infer 

Malawian poverty statuses without having to measure household consumption expenditures or 

income. Proxy-means tests are a simplification of the relationship often seen in survey data 

between household characteristics and its welfare level (Benson et al., 2006). They have the 

merit of making replicable judgments using consistent and visible criteria (Coady et al., 2002) 

and are also simple to implement and less costly than sophisticated means tests3.  

The logit (weighted) regression was used in a stepwise process to select the best set of 

operational indicators for correctly predicting the household poverty status. The model’s 

                                                 
3 Means tests directly measure household’s income to determine its welfare level. Due to the difficulties  

associated with such tests, they are largely reserved for industrialized countries. See Coady et al. (2002) and 
Grosh and Baker (1995) for further details on means tests.  



 

 2

predictive power was evaluated using out-of-sample validation tests and Receiver Operating 

Characteristic (ROC) curves. Furthermore, the model’s robustness was assessed using 

bootstrap simulation methods. Finally, sensitivity analyses were conducted using the 

international and extreme poverty lines.  

One major feature of the models is that household score can be quickly computed and 

its poverty status determined in the field. The set of indicators used in our models are usually 

available in World Bank’s LSMS4 data and from most household surveys in developing 

countries. Apart from targeting Malawi poor households, the models developed in this paper 

can be used in a wide range of applications, including the assessment of the welfare impact of 

development projects and the estimation and monitoring of poverty rates as the costs of frequent 

consumption expenditures survey cannot be justified for the country.  

This paper is organized as follows. Section 2 reviews the data and methodology, 

including some theoretical considerations, whereas section 3 presents the results. Section 4 

concludes the work with observations on policy implications. 

2. Data and Methodology 

2.1 Data and theoretical framework 

This research uses the Second Malawi Integrated Household Survey (IHS2) data5. The 

National Statistics Office (NSO, 2005) of Malawi conducted the IHS2 with the assistance of 

the International Food Policy Research Insitute (IFPRI) and the World Bank. The IHS2 was 

carried out from March 2004 through March 2005 and covered 11,280 households and 51,288 

individuals over an estimated population of 2,731,346 households and 12,170,000 people. The 

sample was selected based on a two-staged stratified sampling selection process. First, the 

enumeration areas were selected within each district based on a Probability Proportional to 

Size (PPS) design. Second, 20 households were selected from each enumeration area based on 

a simple random sampling selection.  

Compared to previous experiences, this survey is particularly suited to developing 

proxy means tests for three main reasons. First, it used an improved methodology for 

collecting and computing household consumption expenditures and poverty rates. Second, the 

survey covered a wide array of potential poverty indicators and thus offers an opportunity to 

                                                 
4 LSMS is the Living Standard Measurement Survey 
5 We gratefully acknowledge the National Statistics Office of Malawi (NSO) for providing us with the data. 
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develop highly accurate proxy means test models. Finally, the sample is representative at 

national as well as district levels. 

Poverty in this research is defined as a level of consumption and expenditure by 

individuals in a household which has been calculated to be insufficient to meet their basic needs. 

It is generally agreed among analysts that expenditures (as an income proxy) are a more robust 

measure of poverty than income itself (Deaton, 1997). This definition is a standard, although 

narrow view of poverty (Benson, 2002). We adopt the consumption and expenditure-based 

perspective on individual and household welfare and on poverty mainly for two main reasons. 

First, the Government of Malawi and international organizations in the country use this definition 

for poverty targeting and measurement of development impact of rural and agricultural policies. 

Second, the concept of the monetary poverty line is also adopted by the first of the UN 

Millennium Development Goals. In view of the widespread use of monetary poverty lines with 

expenditure-based measures of poverty, the research pursues a policy-relevant objective by 

identifying indicator-based tools that can simplify the identification of rural poor, and measure 

welfare changes over time in poor populations.  

Furthermore, the distinction between exogenous and endogenous variables in the 

holistic causal chain of poverty is difficult to make in practice: feedback loops and 

endogeneity issues can be conceptualized virtually everywhere in this chain (Grootaert and 

Braithwaite, 1998). However since the purpose of a poverty assessment is to measure poverty 

(i.e., to identify and use highly significant, but easily measurable correlates of poverty) and 

not to analyze causal relationships, it is analytically permissible to measure primary causes 

(lack of entitlements, rights, and endowments) together with intermediate and final outcome 

variables in the consumption, production, and investment spheres of individuals and their 

households as possible indicators of poverty. Therefore, this research does not seek to identify 

the determinants of poverty, but select variables that can best predict the current poverty 

status of a household. A causal relationship should not be inferred from the results.  

2.2 Model estimation methods 

2.2.1 Variable selection 

Initially, about 800 variables were prepared for the estimates based on the Malawi IHS2 

dataset. However, only 98 practical indicators6 were selected for further analyses to ensure an 

operational use of the models. The practicality refers to two criteria: difficulty and verifiability 

                                                 
6 The list of indicators was reduced to 79 for the urban model; some of the variables were not relevant in urban area. 
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of indicators. Initially, variables that are difficult to measure, verify (for example, subjective or 

monetary variables), and compute were excluded from the set of available indicators.  

All of the poverty indicators used to estimate the models are categorical variables. These 

variables are easier to measure and less susceptible to measurement error than continuous 

variables7. Continuous variables were transformed into class variables. The choice of class 

boundaries was based on the distributional graphs, the coefficient of variation, and the distance 

between class means. These boundaries were set to ensure greater homogeneity within classes 

(low coefficient of variation) and higher heterogeneity between classes (large distance 

between class means). The list of selected variables reflects different dimensions of poverty, 

such as demographic, housing, education, and assets. These variables are usually available in 

LSMS data and most national surveys in developing countries. Hence the analysis could be 

replicated in other countries. 

2.2.2 Estimating the proxy means tests 

 Separate models were estimated for rural and urban households for three main reasons. 

First the Malawi poverty study revealed different profiles for urban and rural households: 

there is a substantial difference between urban and rural areas in the country. Second, the 

interactions between the regions and other variables were found to be statistically significant 

in a national-level model. Third, the country-level model, when validated over urban 

households only, shows poor targeting performances (see Table 7 in the annex).  

In order to perform the validation tests, each sample was first split into two sub-samples 

according to the ratio 67:33. The larger sample or calibration sample was employed to estimate 

the model, i.e. identify the best set of variables and their weights, whereas the smaller sample or 

validation sample was used to test out-of-sample the predictive accuracy of the model. In the 

out-of-sample tests, we applied the set of identified indicators and their derived weights to 

predict the household poverty status. The sample split followed a two-stage stratified sampling 

selection process and PPS protocol in order to mimic the initial sample selection. This design 

ensures that all strata are adequately represented in the calibration samples. A simple random 

sampling split would not guaranty such representativity. 

With the 67:33 split and the stratified sampling design, we put more emphasis on the 

model’s calibration than validation. Furthermore, the continued representativity of the 

calibration samples was assessed by testing the differences in estimates across the samples and 

                                                 
7 Furthermore, the use of categorical variables allows simplifying the model’s application on the field.  
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the full datasets. The results of the tests show no statistically significant difference between both 

sets. Therefore, the calibration samples are as representative as the full datasets. 

After performing the sample split, the household weight was readjusted to reflect the 

new inflation rates in the calibration samples. In order to account for the importance of each 

household in the total population, the subsequent regressions were weighted using these new 

household weights. The weight adjustment however, was not necessary in the validation sub-

samples because the weight is not needed to predict the out-of-sample accuracy of the models. 

Obviously, the same level of accuracy cannot be guaranteed in such smaller samples. Table 1 

describes the number of indicators and the sample size by model type. 

Table 1. Sample size by model type 

Sub-samples Rural model Urban model Total 
Total sample size 9,840 1,440 11,280 

- calibration (2/3) 6,560 960 7,540 
- validation (1/3) 3,280 480 3,760 

Number of indicators 98 79 - 
Source: Own calculations based on Malawi IHS2 data. 

Except for three, all of the indicators selected are ordinal. Therefore, before estimating the 

models, the association of each indicator with poverty (as measured by national poverty line) was 

measured by the spearman correlation test. The spearman correlation test is a non-parametric test 

of association between two ordinal variables. It is appropriate only when both variables lie on an 

ordinal scale (SAS Institute, 2003). The spearman correlation coefficient ranges from -1 to 1 with 

values close to 1 or -1, indicating a stronger positive or stronger negative correlation between both 

variables respectively. The spearman test does not impose any normality assumption over the 

distribution of the variables. After performing the test, all of the indicators were ranked based on 

the absolute value of their coefficients. The first fifty indicators8 (about one-half of the total 

number of indicators), including the three nominal variables were selected for the regression 

analyses. This screening is the first step towards the selection of indicators strongly associated 

with poverty, an important step to ensure accuracy in predictions.  

The logit regression was applied to estimate the models and identify the best set of 

variables. Logit or probit regression is commonly used in the literature on poverty assessment9. 

Likewise, binary regression is the preferred choice in credit scoring (Mays, 2004).  

                                                 
8All of the indicators were significantly associated with poverty at 1% level of error. 
9 See for example Braithwaite et al. (1998); Zeller and Alcaraz V. (2005); Zeller et al. (2005); Schreiner (2008). 



 

 6

The models used the actual household poverty status as determined by the national 

poverty line of 44.29 Malawi Kwacha (MK) per day as dependent variable. This variable was 

coded one if the household is non-poor (i.e. expenditures above MK44.29) and zero 

otherwise. In other words, the logit model estimated the probability of a household being 

above the poverty line. The regression is of the form:        

µi (yi=1) = 1/(1 + e – ηi)                                                     1         

ηi = Log [µi/(1- µi)] = ßo + xi .ßi + єi                                  2 

µi is the probability of being non-poor; 

yi is the poverty status variable, yi =  

ηi is the linear predictor or the log odds;  

xi (x1, x2, x3…, xn) is a vector of regressors, all categorical variables;  

ßo is the intercept term; 

ßi is a vector of regression coefficients; 

єi is the random error term.  

The model was fitted with the maximum likelihood method. A forward stepwise 

selection of variables was used based on the maximum “c” statistic along with judgment on 

potentially good poverty predictors with “c” as the area under the Receiver Operating 

Characteristic (ROC) curve. The higher the area of c, the higher the efficacy of the ROC to 

distinguish between two diagnostic situations (Baulch, 2002). Previous applications of the “c” 

criterion to evaluate the accuracy of individual poverty indicators include Schreiner (2008), 

Baulch (2002), and Wodon (1997) who applied the ROC curve in combination with logistic 

regression in a calibration sample only. 

In addition to the “c” statistic, the criteria for the selection of indicators were based on 

Zeller et al. (2006) and included practicability considerations regarding the ease and accuracy 

with which information on the indicators could be elicited in an interview, as well as 

considerations regarding the objectiveness and verifiability of an indicator. Likewise, 

variables that express similar relationships were screened to select the best. As stated by Mays 

(2004), scorecard building is a combination of art and science. The policy analyst needs to 

exercise a good deal of judgment and common sense in evaluating the usefulness of different 

poverty indicators (Baulch, 2002).  

1 if µi > cut-off

0 otherwise
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Previous researches show that in general, the higher the number of indicators, the 

higher the achieved accuracy10. Higher accuracy is often achieved at a cost of practicality, and 

operational use. Therefore, we limited the number of regressors to the best ten set in order to 

balance the cost of data collection, practicality and ensure an operational use of the models11. 

Furthermore, most analysts favor the use of a maximum of ten regressors in an operational 

poverty targeting model. We controlled for agricultural development districts in the rural model 

in order to capture agro-ecological and socioeconomic differences between regions. The 

inclusion of such variables also captures the effects of omitted variables, as well as the effects of 

other unobservable factors in the model. Likewise, in the urban model we controlled for the four 

major cities: Mzuzu, Zomba, Lilongwe, and Blantyre. The omission of such control variables 

would result in less accurate parameter estimates and hence low targeting performances.  

After estimating the models, the logit coefficients were transformed into non-negative 

integers in order to allow the linear predictor12 or score to be positive and range from 0 (most 

likely poor) to 100 (less likely poor). Such a transformation is standard practice in credit 

scoring13. It ensures that the score is easy to understand and compute. The most important in 

rescaling the score is that its ordinal ranking is preserved. The linear predictor was used 

instead of the predicted probability of being non-poor because the former expresses a linear 

and simpler relationship between the score and the best indicators. The latter can only be 

derived through complex computations involving logarithmic and exponential functions, 

which are harder to perform when identifying poor households on the field. The 

transformation led to loss in the model’s performance. However, the accuracy lost from the 

coefficient transformation is very low (see Tables 8 and 9 in the annex), especially when the 

model is calibrated to the national and international poverty lines. Therefore, the 

transformation does not compromise the validity of the models. 

Once the models are developed, household score can be computed and its poverty status 

predicted. However, a cut-off score - a score below which a household is deemed poor - is 

needed to classify the households as poor or non-poor. The cut-off that maximizes the Balanced 

Poverty Accuracy Criterion (BPAC) in-sample (see section 2.3 for details) was chosen as the 

optimal cut-off for classification out-of-sample. In other words, a household is predicted as poor 

                                                 
10 See for example Zeller and Alcaraz V. (2005) and Zeller et al. (2005). 
11 The best ten simply refers to the indicator set being selected given the “c”, the practicality, and the maximum 

number of regressors used to fit the final model. It should not be misunderstood as a value statement that 
implies as being best for any of the targeting ratios in Table 2.  

12 The linear predictor is the log odds (equation 2). It is normally unbounded in logit models. 
13 See for example Schreiner (2008), Mays (2004), and Thomas et al. (2001). 
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if its score is less than the optimal score cut-off and non-poor otherwise. This classification was 

used in a cross tabulation with the actual household poverty status. The two-by-two cross-table 

was then used to calculate different performance measures as described in section 2.3. 

2.3 Accuracy measures and robustness tests 

2.3.1. Accuracy measures 

Different measures have been proposed in the literature on poverty targeting to assess 

the accuracy of a poverty assessment tool. This paper focuses on selected ratios which are 

especially relevant for poverty targeting (Table 2). 

Table 2. Selected accuracy ratios 

Targeting ratios Definitions 

Poverty Accuracy 
Total number of households correctly predicted as poor, 
expressed as a percentage of the total number of poor 

Undercoverage 
Error of predicting poor households as being non-poor, 
expressed as a percentage of the total number of poor 

Leakage 
Error of predicting non-poor households as poor, expressed as a 
percentage of the total number of poor 

Poverty Incidence 
 Error (PIE) 

Difference between predicted and actual poverty incidence, 
measured in percentage points 

Balanced Poverty  
Accuracy Criterion 

( )

Poverty accuracy minus the absolute difference between 
undercoverage and leakage, measured in percentage points 

Source: Adapted from IRIS. 

 The poverty accuracy is self-explanatory. Undercoverage and leakage are extensively 

used to assess the targeting efficiency of development policies (Valdivia, 2005; Ahmed et al., 

2004; Weiss, 2004). The Poverty Incidence Error (PIE) indicates the precision of the model in 

correctly predicting the poverty incidence. Ideally, the value of PIE should be zero, implying 

that the predicted poverty rate equals the observed rate. Positive values of PIE indicate an 

underestimation of the poverty incidence, whereas negative values imply the opposite. PIE is 

particularly useful in measuring the poverty outreach of an institution that provides 

microfinance or business development services.  

The Balanced Poverty Accuracy Criterion (BPAC) considers the above accuracy 

measures because of their relevance for poverty targeting. These three measures exhibit trade-

offs. For example, minimizing leakage leads to higher undercoverage and lower poverty 

accuracy. Higher positive values for BPAC indicate higher poverty accuracy, adjusted by the 

absolute difference between leakage and undercoverage. In this paper, the BPAC is used as the 

overall criterion to judge the model’s accuracy performance. In the formulation of the BPAC, it 

is assumed that leakage and undercoverage are equally valued. For example, Ravallion (2007) 
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found it more credible to value both measures in a characterization of a policy problem. 

However, a policymaker may give higher or lower weight to undercoverage compared to 

leakage, which is possible in principle by altering the weight for leakage in the BPAC formula.  

2.3.2 Assessing the predictive power and the model’s robustness.  

Out-of-sample validation tests were performed to gauge the predictive power and the 

robustness of the models and ascertain their predictive potential. The main purpose of the 

validation is to observe how well the models predict the poor and non-poor in an independent 

sample derived from the same population. A model with high predictive power (high poverty 

accuracy and low leakage) not only in the calibration sample, but also in validation sample is 

relevant for reaching most of the poor households. Therefore, the models developed were 

validated by applying the set of selected indicators and their weights and the optimal score cut-

off to the validation sub-samples in order to predict the household poverty status.  

Furthermore, the model’s robustness was assessed by estimating the prediction 

intervals of the targeting ratios out-of-sample using bootstrapped simulation methods. 

Approximate confidence intervals based on bootstrap computations were introduced by Efron 

in 1979 (Efron, 1987; Horowitz, 2000). Bootstrap is the statistical procedure which models 

sampling from a population by the process of resampling from the sample (Hall, 1994). Using 

the bootstrap approach, repeated random samples of the same size as the validation sub 

samples were drawn with replacement. The set of identified indicators and their derived 

weights were applied to each resample to predict the household score, its poverty status, and 

estimate the accuracy ratios. These bootstrap estimates were then used to build up an 

empirical distribution for each ratio. Unlike standard confidence intervals estimation, 

bootstrap does not make any distributional assumption about the population and hence does 

not require the assumption of normality.  

A thousand (1,000) new samples were used for the estimations. Campbell and 

Torgerson (1999), state that the number of bootstrap samples required depends on the 

application, but typically it should be at least 1,000 when the distribution is to be used to 

construct confidence intervals. Figure 1 illustrates the distribution of the poverty accuracy for 

1,000 samples for the best ten indicator set. This graph is superimposed with a normal curve.  
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                               Figure 1: Bootstrapped distribution of the poverty accuracy (rural model). 
                               Source: Own results based on Malawi IHS2 data. 

After generating the bootstrap distribution, the 2.5th and 97.5th percentiles were used as 

the limits for the interval at a 95% confidence level. This amounts to cutting the tails of the 

above distribution on both sides.  

3. Targeting Accuracy of the Proxy Means Tests: Empirical results  

This section discusses the out-of-sample performances of the models14. First, Table 3 

gives an overview of the poverty lines and rates applied. Second, the accuracy performances 

of the models are presented, including the prediction intervals. Third, the ROC curves of the 

models are analyzed, followed by the sensitivity analyses. Finally, we explore the distribution of 

the model’s targeting errors. 

Table 3. Malawi poverty rates by region and poverty line (as of 2005)15 

Poverty rate 
(in percent of people) 

Poverty rate 
(in percent of households) Types of poverty 

line 
Poverty lines 

(MK*) nationa
l rural urban nationa

l rural urban 

Extreme 29.81 26.21 28.66 8.72 19.94 22.08 5.95 
National 44.29 52.4 56.19 25.23 43.58 47.13 19.67 

International 59.175 
(US $1.25 PPP) 69.52 73.59 40.26 61.04 65.20 33.08 

Source: Own results based on Malawi IHS2 data, Chen and Ravallion (2008), and  
World Bank (2008). MK denotes Malawi Kwacha or national currency. PPP stands 
for Purchasing Power Parity. 

                                                 
14  For brevity reasons, only out-of-sample results are presented throughout this paper.  
15 These rates differ slightly from the official statistics because of errors in the weights of the IHS2 report. 
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As shown in Table 3, the poverty rate in Malawi is estimated at 52.4% under the 

national poverty line of MK44.29. In other words, more than half the population is unable to 

meet their basic needs. However, the poverty rate varies considerably between urban and rural 

areas. Following Chen and Ravallion (2008), the international poverty line of US$1.25 was 

used. Converted to Malawi Kwacha (MK) using the 2005 Purchasing Power Parity (World 

Bank, 2008), the international poverty line is equivalent to MK59.175 per day. Under this 

line, the national poverty headcount is estimated at 69.52%. This line hides sizeable 

differences between urban and rural areas. The extreme poverty line is defined as the line 

under which the poorest 50% of the population below the national poverty line are living. 

This line was set at MK29.31. Under the extreme poverty line, 26% of Malawians are very 

poor. These poverty rates are lower when expressed in percent of households. Section 3.1 

presents the model’s targeting performances. 

3.1 Model’s predictive performances 

Having estimated a household’s poverty score, the question arises as to what cut-off 

point to use to determine whether it is poor or not. Therefore, the score cut-off that maximized 

the BPAC in the calibration sample was applied to the validation sample to predict the 

household poverty status. Table 4 describes the model’s predictive performances at these 

optimal cut-offs. Most of the coefficient estimates are highly significant. Their signs and size 

are consistent with expectations and economic theory. The full regression results are shown in 

Tables 10 and 11 in the annex.  

Table 4: Model’s predictive performances 

 Targeting ratios 
 
Models 

Cut-off 
Poverty 
accuracy 

(%) 

Under 
coverage (%) 

Leakage 
(%) 

PIE 
(% points) 

BPAC 
(% points) 

Rural 37 68.52 31.48 28.0 -1.64 65.03 
Urban 20 63.96 36.04 36.94 0.21 63.06 

Source: Own results based on Malawi IHS2 data. PIE is defined as the Poverty Incidence Error. 
BPAC is defined as the Balanced Poverty Accuracy Criterion. 

 
Table 4 suggests that the rural model correctly identifies about 69% of poor 

households, against about 64% for the urban model. Consequently, the undercoverage is 

estimated at 31% for the former and 36% for the latter. These results indicate that either of the 

models would enable a policy maker or program manager to concentrate benefits on about 2/3 

of poor households when applied in Malawi. This will maximize the effectiveness of limited 

resources. If, for example, the Malawian Government chooses to target all rural poor 

households with a direct transfer program and sets the appropriate budget, the poverty rate 
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would be reduced by about 32% points from 47.13% to 14.84%. If it were to target only 50% 

of the rural poor, the poverty rate would be reduced by a sizable margin of about 16% points 

from 47.13% to 30.84%. 

As concerns the inclusion error, the urban model yields a higher leakage of about 37% 

versus 28% for the rural model. These results indicate that a part of the benefits from e.g. a 

targeted transfer program would also be leaked to the non-poor as none of the models are 

perfect at poverty targeting. Leakage to the non-poor is not harmful per se. It may increase the 

politically supportable budget necessary for targeting. As stated by Gelbach and Pritchett 

(2000), a leakier bucket may be better for redistribution to the poor whereas conversely, fine 

targeting can undermine political support for an antipoverty program (Ravallion, 2007). 

Nevertheless, it remains to be seen whether political support for poverty reduction can be 

weakened in Malawi, a country where more than 50% of the population is poor. Both models 

outperform the Free Seed Distribution and Fertilizer Subsidy Program of 2000/2001 (also 

known as Starter Pack or Targeted Input Program) which yields a poor targeting efficiency. 

Though the program was explicitly targeted at poor households, its undercoverage and 

leakage are deceptively high and were estimated at 38% and 60%, respectively. 

Furthermore, both models predict the poverty rate remarkably well as their estimated 

PIE is very low; 0.21% and -1.64% points, respectively. The BPAC is set at 65% points for 

the rural model and 63% for the urban model. Compared to the rural model, the targeting 

performances of the urban model are low. This relatively low targeting performance may be 

explained by the low poverty rate in the urban area as compared to the rural area; 20% versus 

47%. This result may also be due to the greater variability in the welfare indicator for urban 

households and between different urban centers in Malawi. The variance estimates of the 

welfare indicator support this argument. Nonetheless, even though undercoverage and leakage 

are high in urban areas, these errors amount to relatively small number of households; less 

than 15% of the Malawian population lives in urban areas. As shown in section 3.3, 

calibrating the urban model to a higher poverty line improves its targeting performances. 

Likewise, selecting less practical indicators could improve the model’s targeting accuracy as 

indicated by previous researches16. However, the use of such indicators has to be weighted 

against the lost in practicality that will result.  

Having validated the models in an independent sample, the question that arises then is: 

what is the prediction intervals associated with such targeting performances? To answer the 

                                                 
16 See for example Zeller and Alcaraz V. (2005) and Zeller et al. (2005) 
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question, Table 5 illustrates the prediction intervals of the model’s performances using 

bootstrapped simulations. 

Table 5. Bootstrapped prediction intervals  

Location estimates 95% level of prediction                    Targeting ratios  
 
Models          Mean Median Lower 

limit 
Upper 
limit 

Width 
(upper-lower) 

Poverty Accuracy 68.44 68.48 66.11 70.6 4.49 
Leakage 28.03 28.05 25.30 30.84 5.54 

Undercoverage 31.56 31.52 29.43 33.89 4.46 
PIE -1.67 -1.68 -3.45 0.17 3.62 

Rural 

BPAC 64.86 64.88 59.67 69.58 9.91 
Poverty Accuracy 64.15 64.17 55.04 72.32 17.28 

Leakage 37.45 36.84 24.78 52.00 27.22 
Undercoverage 35.85 35.83 27.68 44.96 17.28 

PIE 0.29 0.21 -3.54 3.75 7.29 
Urban 

BPAC 57.35 58.04 42.92 67.68 24.76 
Source: Own results based on Malawi IHS2 data. PIE is defined as the Poverty  

Incidence Error. BPAC is defined as the Balanced Poverty Accuracy Criterion. 

Table 5 indicates that the estimated mean and median of the bootstrapped samples are 

very close to the predicted performances in Table 4. Likewise, all of the estimated ratios in 

Table 4 range within the prediction intervals. The results of the rural model show that the 

width of the prediction intervals ranges within a maximum of 10% points for any given ratio 

at 5% level of error. This small margin suggests that the model’s predictive performances are 

quite robust. As concerns the urban model, a different trend applies. The prediction intervals 

are wider, indicating a less robust model. This result is explained by the lower size of the 

sample used to validate the model as shown in Table 1. 

As stated earlier, the cut-off that maximizes the BPAC in-sample is explicitly used to 

judge the model’s overall targeting performance. However, a policymaker may set a different 

cut-off using the ROC curve to decide on the number of poor a program should reach and 

ponder on the number of non-poor that would be incorrectly targeted. To demonstrate how 

this could be done in practice, we present in section 3.2 the ROC curves of the models. 
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3.2 Targeting poverty using ROC curves: Examples from Malawi. 

We plot the ROC curves out-of-sample to estimate the model’s aggregate predictive 

power. The ROC curve shows the trade-offs between the coverage of the poor (poverty 

accuracy) and the inclusion of non-poor (inclusion error)17 at different score cut-offs across 

the predicted score spectrum in the validation sample. To our knowledge, apart from 

Johannsen (2007), no research has applied the ROC curve in a validation sample.  

The more the ROC curve is bowed towards the upper left of the graph, the better the 

model predicts the actual household poverty status. In addition to the ROC curves, we graph 

the BPAC curves out-of-sample. Figures 2 and 3 show the ROC curves which portray the 

ability of each model to distinguish between the poor and non-poor at possible cut-offs along 

the predicted score spectrum.  
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Figure 2: ROC curve (left) and BPAC curve (right) of the rural model (out-of-sample). 
Source: Own results based on Malawi IHS2 data. 
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Figure 3: ROC curve (left) and BPAC curve (right) of the urban model (out-of-sample). 
Source: Own results based on Malawi IHS2 data. 

                                                 
17 The coverage of the poor or poverty accuracy is also known as sensitivity, whereas the inclusion of non-poor 
or inclusion error is also termed as 1-specificity. It is defined as the error of predicted non-poor as poor, 
expressed in percent of non-poor. It differs from the leakage (Table 2) which is expressed in percent of the poor.  

Urban model Urban model 

Rural model 
Rural model 
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The ROC curves in Figures 2 and 3 show that the higher the coverage of the poor 

(sensitivity), the higher the inclusion of non-poor18. For example, the ROC curve of the rural 

model indicates that a coverage of 80% of the poor would lead to an inclusion of about 30% 

of the non-poor households. Extending the coverage of the poor to 90% leads to more than 

40% of the non-poor being wrongly included. This pattern illustrates the trade-off between the 

coverage of the poor and inclusion of non-poor along the predicted score spectrum. 

Both ROC curves follow the same pattern with exceptions. While the curves are 

monotonically increasing, their shape depends on the performances underlying each model 

used to predict the poverty status of the households. In the relevant band of sensitivity from 

70% to 90%, the inclusion error ranges from about 22% to 50% for the rural model and from 

about 18% to 30% for the urban model.   

It is interesting to note that the rural model maximizes its BPAC out-of-sample at a 

cut-off of 38 (right panel of Figure 2), whereas the urban model reaches its highest BPAC at a 

cut-off of 20 (right panel of Figure 3). The latter is identical to the optimal in-sample cut-off 

used to classify the urban households out-of-sample, whereas the difference between both cut-

offs is just one in the case of the rural model. These results indicate that the cut-offs derived 

from the calibration samples are exceptionally robust out-of-sample, converging towards the 

out-of-sample optima19. Tables 12 and 13 in the annex present the transformed models as they 

would appear on the field. 

3.3 How sensitive are the models to the poverty line?  

In this section, we examine the sensitivity of the models to the choice of the poverty 

line. These simulations involved the calibration of the models to the international and extreme 

poverty lines described in Table 3. Since the dependent variable in the model - the household 

poverty status - is affected by the poverty line chosen, the logit regression, including the 

selection of indicators was re-estimated for both lines and models. Table 6 shows the results 

of the simulations.  

 

 

 

                                                 
18 The 45° line on the graph shows a ROC curve with no ranking ability. This line yields the same coverage of 

the poor and inclusion of non-poor at any score cut-off. 
19 The same conclusion emerges when the models were calibrated to the international and extreme poverty lines. 
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Table 6. Model’s sensitivity to poverty line 

         Targeting ratios 

Models  Poverty lines* 
Cut-off 

Poverty  
accuracy 

(%) 

Under- 
coverage 

(%) 

Leakage 
 (%)  

PIE 
(% points) 

BPAC 
(% points) 

International 40 84.52 
(78.8; 82.9) 

15.48 
(14.0; 17.1) 

18.87 
(17.0; 21.1) 

2.23 
(0.55; 3.81) 

81.13 
(78.9; 83.0) Rural 

Extreme 18 46.13 
(42.3; 49.8) 

53.87 
(50.2; 57.7) 

38.13 
(33.3; 44.0) 

-3.54 
(-5.0; -1.9) 

30.39 
(21.9; 39.6) 

International 22 76.30 
(69.9; 82.5) 

23.70 
(17.5; 30.1) 

27.17 
(19.2; 36.9) 

1.25 
(-2.5; 5.42) 

72.83 
(62.0; 77.6) Urban 

Extreme 8 64.71 
(43.4; 80) 

35.29 
(20; 52.6) 

94.12 
(57.6; 152) 

4.17 
(1.67; 7.08) 

5.88 
(-52; 42.04) 

Source: Own results based on Malawi IHS2 data. PIE is defined as the Poverty Incidence Error. 
BPAC is defined as the Balanced Poverty Accuracy Criterion. Prediction intervals in 
brackets. *See Table 2 for description of poverty lines. 

Compared to the results in Table 4, Table 6 shows that raising the poverty line to US 

$1.25 (MK59.175 PPP) increases the coverage of the poor by about 16% points and 12% 

points for the rural and urban models, respectively. As a result, leakage is reduced by about 

10% points for both models. The BPAC has also increased by 16% points for the rural model 

and 19% points for the urban model. These results suggest a sizable improvement in the 

model’s targeting performances with about 85% of the poor households correctly targeted in 

the rural area and 76% of the poor households correctly identified in the urban area. Nearly, 

all of the poor households are identified and covered in these simulations.  

On the other hand, reducing the poverty line to MK29.31 disappointingly reduces the 

model’s targeting performances. For instance, the coverage of the poor is reduced by about 

22% points for the rural model, but by less than 1% points for the urban model. Similarly, the 

leakage is increased by 10% points for the former, but by about 57% points for the latter. 

These results may be explained by the higher international and the lower extreme poverty 

lines. Therefore, increasing the poverty line allows picking more poor households, while 

reducing the poverty line does the opposite.  

However, the ROC curves of models calibrated to the three poverty lines show a 

mixed pattern of the model’s aggregate predictive power (see Figure 5 in the annex). The 

following section analyzes the targeting errors across poverty deciles.   

3.4 Targeting error distribution  

As we have seen in the previous sections, irrespective of the poverty line applied, the 

models yield targeting errors, though the errors decrease with increasing poverty line. This is 

due to the inherent model estimation error. While it is unsatisfactory to undercover poor 

households or wrongly target the non-poor, the error would be less severe if indeed those who 
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are excluded are the least poor or those who are incorrectly targeted are the least rich 

households. To confirm this, we look at the distribution of the model’s undercoverage and 

leakage by deciles of actual consumption expenditures for the three poverty lines (Figure 4). 
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Figure 4: Targeting error distribution by decile of consumption and poverty line. 
Source: Own results based on Malawi IHS2 data.  

Figure 4 shows that when calibrated to the national poverty line, poor households who 

are undercover are heavily concentrated among those just under the line in the 5th decile rather 

than at the very bottom of the welfare distribution, while those who are incorrectly targeted 

are also heavily concentrated among those just over the national poverty line rather than at the 

top of the distribution. The same trend applies to the international and extreme poverty lines. 

These results suggest that the model performs quite well in terms of the poor households who 

are incorrectly excluded and the non-poor who are wrongly targeted; covering most of the 

poorest deciles and excluding most of the richest ones.  

Further simulations based on the urban model reveal the same pattern (see Figure 6 in 

the annex). These results have obvious desirable welfare implications. They hint at how 

targeting benefits will be distributed in the population. They are also consistent with Coady 

and Parker (2009) who found that administrative selection based on proxy-means testing is 

particularly effective at reducing overall program coverage while maintaining high coverage 

of the lowest welfare households.  

 

Rural Model
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4. Conclusions 

This research suggests a simple and low cost method for targeting the poor and 

smallholder farmers in Malawi. The paper applies the logit regression (weighted) in a 

stepwise procedure along with out-of-sample validation and robustness tests to develop proxy 

means test models for the country.  

The main conclusion that emerges from the results is that measures of absolute poverty 

estimated with logit regression can yield reasonably accurate and robust out-of-sample 

predictions of absolute poverty in a nationally representative sample. Furthermore, calibrating 

the model to a higher poverty line improves its targeting performances, while calibrating the 

model to a lower line does the opposite. The models also perform well in terms of those who 

are mistargeted; covering most of the poorest deciles and excluding most of the richest ones.  

One major feature of the models developed is that household score can be easily and 

quickly computed. The best indicators selected are objective and easily verifiable. They are all 

categorical variables on which it would relatively easy and quick to collect reliable 

information. However, an effective verification process (e.g. home visits, triangulation, etc.) 

may be needed in order to limit misreports and corruption in the screening process.  

 The models developed in this paper can be used in a wide range of applications, 

including identifying and targeting the poor in Malawi. Moreover, they can be used to 

produce estimates of poverty rates and monitor change in poverty over time as the country 

and donors cannot afford the costs of frequent household expenditure surveys. Likewise, they 

can be used to assess household eligibility to welfare programs and the impacts of 

development policies targeted to those living below the poverty line. Finally, they can be 

used to assess the poverty outreach of microfinance institutions. Overall, the models 

developed can be potential policy tools for Malawi.  

Though the models have proven their validity in an independent sample, there is a 

scope for further improvements. The observed patterns could be refined with additional 

validations across time as suitable data become available.  
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Annexes  

Table 7. Performances of a unique national model by area  

´       Targeting ratios 
Models Cut-off Poverty 

accuracy (%) 
Under 

coverage (%) 
Leakage 

(%) 
PIE 

(% points) 
BPAC 

(% points) 
National model 14 73.03 26.96 24.63 -1.01 70.71 
Rural area  14 73.98 26.02 24.40 -0.76 72.35 
Urban area 14 57.89 42.11 28.42 -2.71 44.21 
Accuracy lost 
National to rural area 14 -0.95 0.94 0.23 -0.25 -1.64 
National to urban area 14 15.14 -15.15 -3.79 1.70 26.50 

Source: Own computations based on Malawi IHS2 data. PIE is defined as the Poverty Incidence 
Error. BPAC is defined as the Balanced Poverty Accuracy Criterion. 

 

Table 8. Lost in model’s accuracy after transformation (rural model) 

           Targeting ratios 
 
Poverty lines                   

Cut-off 
Poverty 
accuracy 

(%) 

Under 
coverage 

(%) 

Leakage 
(%) 

PIE 
(% points) 

BPAC 
(% points) 

National line  
       original model 

 
0.51 

 
72.19 

 
27.81 

 
25.74 

 
-0.98 

 
70.13 

      transformed model 37 68.52 31.48 28.0 -1.64 65.03 
International line 
       original model 

 
0.56 

 
82.1 

 
17.9 

 
16.09 

 
-1.19 

 
80.29 

      transformed model 40 84.52 15.48 18.87 2.23 81.13 
Extreme line  
       original model 

 
0.39 

 
51.15 

 
48.85 

 
38.26 

 
-2.38 

 
40.57 

      transformed model 18 46.13 53.87 38.13 -3.54 30.39 
Source: Own computations based on Malawi IHS2 data. PIE is defined as the Poverty Incidence  
              Error. BPAC is defined as the Balanced Poverty Accuracy Criterion. 

 

Table 9. Lost in model’s accuracy after transformation (urban model) 

           Targeting ratios 
 
Poverty lines                   

Cut-off 
Poverty 
accuracy 

(%) 

Under 
coverage 

(%) 

Leakage 
(%) 

PIE 
(% points) 

BPAC 
(% points) 

National line  
       original model 0.37 62.16 37.84 33.33 -1.04 57.66 
      transformed model 20 63.96 36.04 36.94 0.21 63.06 
International line 
       original model 

 
0.45 

 
74.57 25.43 25.43 

 
0 

 
74.57 

      transformed model 22 76.30 23.70 27.17 1.25 72.83 

Extreme line  
       original model 

 
0.36 

 
47.06 52.94 52.94 

 
0 

 
47.06 

      transformed model 8 64.71 35.29 94.12 4.17 5.88 
Source: Own computations based on Malawi IHS2 data. PIE is defined as the Poverty Incidence  
              Error. BPAC is defined as the Balanced Poverty Accuracy Criterion. 
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Table 10. Results of the maximum likelihood estimates (rural model) 

Likelihood ratio: 950419.735***                                                 Wald Chi-square: 554730.601***
Score: 781671.495***                   c-statistic  =  0.837                Number of observations = 6560   

                Standard     Wald 
Parameter                                                         Estimate     Error  Chi-Square  Pr > ChiSq Exp(Est) 
Intercept                                                           1.5498       0.0212    5340.5537      <.0001      4.710 
Agricultural development district is Karonga   -0.1775    0.00817   472.2879       <.0001      0.837 
Agricultural development district is Mzuzu      0.0643     0.00568   128.4419       <.0001      1.066 
Agricultural development district is Kasungu   1.0299     0.00521   39023.5476   <.0001      2.801 
Agricultural development district is Salima      0.0552     0.00592   87.0985         <.0001      1.057 
Agricultural development district is Lilongwe  0.6642     0.00365   33125.4007   <.0001      1.943 
Agricultural development district is Machinga -0.7539    0.00381   39207.3345   <.0001      0.471 
Agricultural development district is Blantyre   -0.4910    0.00385   16292.7820   <.0001      0.612 
Agricultural development district is Ngabu (reference) 
Household size is two or less                              2.7505   0.00473   337670.576     <.0001   15.651 
Household size is three                                       0.8489    0.00355   57039.3650    <.0001     2.337 
Household size is four                                         0.1165   0.00338   1186.4186      <.0001     1.124 
Household size is five                                        -0.6271   0.00357   30914.1938    <.0001     0.534 
Household size is six or seven                           -1.1727   0.00345   115519.285    <.0001     0.310 
Household size is eight or more (reference)     
Household head sleeps on bed and mattress       0.5739    0.00543   11175.4626    <.0001     1.775 
Household head sleeps on bed and                     0.2921    0.00503   3372.9606      <.0001     1.339 
mat/bed alone  
Household head sleeps on mattress on the floor 0.0541   0.00749    52.2385         <.0001      1.056 
Household head sleeps on mat                          -0.2226    0.00379   3457.2988      <.0001      0.800 
(grass on the floor)    
Household head sleeps on cloth/sack/floor (reference) 
Maximum class level ever attended by members -0.8112   0.0186  1901.2740       <.0001     0.444 
is primary/nursery  
Maximum class level ever attended by members  -0.2251  0.0186  146.6400         <.0001     0.798 
is secondary   
Maximum class level ever attended by members   0.6733   0.0273   607.8646       <.0001     1.961   
is training/college  
Maximum class level ever attended by members is university (reference) 
Household head owns no bicycle                            -0.2754  0.00185  22265.7807   <.0001   0.759 
Household head owns a bicycle (reference)     
House lighting fuel is collected firewood/grass       -0.9111  0.0114   6415.8002     <.0001    0.402 
House lighting fuel is purchased firewood               -0.9687  0.0277   1224.5835     <.0001   0.380 
House lighting fuel is candle                                      0.6149  0.0268   527.8702       <.0001   1.849 
House lighting fuel is paraffin/diesel                        -0.2468  0.0105   550.5214       <.0001   0.781 
House lighting fuel is battery/dry cell/electricity (reference)  
House flooring material is sand                                 -0.6056  0.00626  9357.2213    <.0001  0.546 
House flooring material is smooth mud/wood          -0.0747  0.00364   420.6285     <.0001   0.928 
House flooring material is tile or cement (reference) 
Household owns no tape/cd player/HiFi                   -0.2987   0.00274  11882.2099  <.0001  0.742 
Household owns a tape/cd player/HiFi (reference) 
No household member sleeps under a bed net           -0.2096  0.00188  12378.3402  <.0001  0.811 
A household member sleeps under a bed net (reference)  
Household grew no tobacco in the past five years    -0.2158  0.00221    9503.7619   <.0001 0.806 
Household grew tobacco in the past five years (reference) 
Household head cannot read in Chichewa language -0.1562   0.00178   7673.3451  <.0001  0.855 
Household head can read in Chichewa language (reference) 

Source: Own results based on Malawi IHS2 data. *** denotes significant at the 99% level.  
                  ** denotes significant at the 95% level. 
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Table 11. Results of maximum likelihood estimates (urban model)  

Likelihood ratio: 144809.746***                                                 Wald Chi-square: 61435.0177*** 
Score: 118028.979***                   c-statistic  =  0.913                Number of observations = 960   
                                                                       Standard      Wald 
Parameter                                                         Estimate    Error    Chi-Square   Pr > ChiSq Exp(Est) 
Intercept                                                             9.3575   17.4844      0.2864        0.5925     11585.87 
Household lives in Mzuzu                                  0.0542  0.0164       10.9445        0.0009          1.056 
Household lives in Linlongwe                            0.5875  0.0113       2707.2585    <.0001         1.799 
Household lives in Zomba                                 -0.4198  0.0172       595.8924     <.0001          0.657 
Household lives in Blantyre (reference)    
House construction material is permanent           0.2727   0.0113     578.2221       <.0001        1.314 
House construction material is semi-permanent  0.2183   0.00801    742.0303      <.0001        1.244 
House construction material is traditional (reference)    
Household size is  two or less                              3.3718    0.0229   21627.4476    <.0001      29.132 
Household size is three                                        1.1108    0.0146     5766.4666     <.0001       3.037 
Household size is four                                         0.2675    0.0137      379.3309      <.0001        1.307 
Household size is five                                         -0.9742   0.0126     6013.6759     <.0001        0.377 
Household size is six or seven                            -1.6360   0.0142    13220.8533    <.0001        0.195 
Household size is eight or more (reference)    
Household head sleeps on bed and mattress        0.9591   0.0132    5313.1745     <.0001         2.609 
Household head sleeps on bed and mat               0.7243   0.0182    1588.1906     <.0001         2.063 
(grass on the floor)  
Household head sleeps on bed alone                  -0.6038   0.0273    488.9628       <.0001         0.547 
Household head sleeps on mattress alone           -0.3907   0.0170    526.0643       <.0001         0.677 
Household head sleeps on mat (grass on the floor)/cloth/sack/floor (reference)    
Maximum class level attended my members is  -7.3580   17.4844     0.1771         0.6739        0.001 
primary/nursery                                                              
Maximum class level attended my members      -6.3898   17.4844     0.1336         0.7148        0.002 
is secondary  
Maximum class level attended my members       7.2666    38.7130     0.0352        0.8511    431.675 
is training/college    
Maximum class level attended my members is university (reference) 
House flooring material is                                  -0.2782      0.00782   1266.2785    <.0001      0.757 
sand/smooth mud/wood   
House flooring material is smooth cement/tile (reference)    
Household owns no cellular phone                    -0.8516        0.0235    1311.7994    <.0001      0.427 
in working condition  
Household owns a cellular phone in working condition (reference)    
Toilet facility is flush toilet/VIP latrine              0.8799        0.0199     1958.8300    <.0001     2.411 
Toilet facility is traditional with/without roof   -0.0248        0.0143      2.9901          0.0838    0.976 
Household has no toilet facility (reference)    
Number of males in the household is zero          -0.4900      0.0253    376.1012        <.0001     0.613 
Number of males in the household is one or two 0.0715      0.0117    37.4412          <.0001     1.074 
Number of males in the household is three          0.3179      0.0134    561.2314        <.0001     1.374 
Number of males in the household is four or more (reference)    
Household owns no paraffin or kerosene stove  -0.6537      0.0169   1504.1453       <.0001     0.520 
Household owns a paraffin or kerosene stove (reference)    
Household owns no clock                                   -0.2652      0.00701  1433.7344       <.0001    0.767 
Household owns a clock (reference)    

Source: Own results based on Malawi IHS2 data. *** denotes significant at the 99% level.  
                  ** denotes significant at the 95% level. 
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Table 12. Malawi rural poverty model calibrated to the national poverty line 

Indicators Values Weight Score 
Blantyre 0  
Ngabu 1  
Karonga 2  
Salima, Mzuzu 4  
Linlongwe, Machinga 8  

1. Where does the household live 
(agricultural development 
district)? 

Kasungu 10  
Eight or more 0  
Six or seven 5  
Five 9  
Four 14  
Three 18  

2. How many people live in the 
household? 

Two or less 31  
Floor/clock or sack on the floor 0  
Mat (grass) on the floor 3  
Mattress on floor 5  
Bed alone/Bed & Mat (grass) 7  

3. What does the household head sleep 
on? 

Bed & Mattress 8  
No 0  4. Does the household own a bicycle? 
Yes 4  
Nursery/Primary 0  
Secondary 4  
University  8  

5. What is the maximum class level  
   attended by household members? 

Training/College 10  
Collected/purchased firewood or grass 0  
Paraffin/diesel 5  
Candle 11  

6. What is the household source of 
lighting fuel? 

Electricity, gas or battery/dry cell 17  
Sand 0  
Smooth mud/wood 4  

7. What is the house flooring material  
    made of? 

Smooth cement/tile 9  
No 0  8. Does any household member sleep   

    under a bed net Yes 3  
No 0  9. Did the household grow tobacco in 

the past five cropping seasons? Yes 3  
No 0  10. Does the household own a tape/cd  

      player or HiFi? Yes 4  
No 0  11. Can the household head read in 

Chichewa language? Yes 2  

Household is deemed poor if its total score is less than 37                                    Total score    

                                         Household poverty status:      Poor                    Non-poor  

Source: Own results based on Malawi IHS2 data. 
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Table 13. Malawi urban poverty model calibrated to the national poverty line 

Indicators Values Weight Score 
Zomba 0  
Blantyre 1  
Mzuzu 2  

1. Where does the household live? 
 

Lilongwe 3  
Eight or more 0  
Six or seven 2  
Five 4  
Four 8  
Three 11  

2. How many people live in the 
household? 

Two or less 18  
Bed alone/Mat (grass on the floor)/ 
clock/sack on the floor 0  

Mattress on floor  1  
3. What does the household head sleep 

on? 
Bed & Mat/Bed & Mattress 5  
Traditional 0  
Semi-permanent 2  

4. What is the house type of 
construction material? 

Permanent 3  
Nursery/Primary 0  
Secondary 3  
University 46  

5. What is the maximum class level  
   attended by household members? 

Training 48  
Zero 0  
One or two 2  
Three 3  

6. How many males live in the 
household? 

Four or more 2  
Sand/smooth mud/wood 0  7. What is the house flooring material  

    made of? Smooth cement/tile 2  
No 0  8. Is there a cellular phone in a 

working condition in the house? Yes 6  
None 0  
Traditional with/without roof 3  

9. What is the type of toilet facility used 
by household members? 

Flush toilet/VIP latrine 6  
No 0  10. Does the household own a paraffin 

or kerosene stove? Yes 4  
No 0  11. Does the household own a clock? 
Yes 2  

Household is deemed poor if its total score is less than 20                                     Total score    

                                       Household poverty status:          Poor                 Non-poor  

Source: Own results based on Malawi IHS2 data. 
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Figure 5: ROC curves of the rural model (left) and urban model (right) by poverty line. 
Source: Own results based on Malawi IHS2 data. 
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Figure 6: Distribution of targeting errors by consumption decile and poverty line. 
Source: Own results based on Malawi IHS2 data. 
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