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Abstract 

This paper examines the impact of climate change on primary crops grown in Africa. An 
innovative approach is presented that bridges the gap between agro-economic and traditional 
Ricardian models. We label it a ‘structural Ricardian model’. It first captures the type of crop a 
farmer will select and then examines the conditional net revenue of that crop. The model is 
estimated using a sample of over 5000 farmers across 11 countries in Africa. The analysis finds 
that farmers shift the crops they plant to match the climate they face. Studies that fail to account 
for crop switching will overestimate the damages from climate change and underestimate the 
benefits.  

Keywords: Adaptation; Climate change; Crops; Africa 

 

Résumé 

Cet article étudie l’impact du changement climatique sur les principales cultures en Afrique. On y 
présente une approche innovatrice qui comble l’écart entre les modèles agro-économiques et les 
traditionnels ricardiens. Nous la qualifions de « modèle structurel ricardien ». Elle distingue tout 
d’abord le genre de culture qu’un fermier choisira et examine ensuite le revenu conditionnel net 
de cette culture. Le modèle est calculé sur la base d’un échantillon de plus de 5 000 fermiers 
répartis sur 11 pays en Afrique. L’analyse démontre que les fermiers alternent leurs cultures afin 
de s’adapter au climat auquel ils font face. Les études qui ne tiennent pas en compte la culture 
alternée surestimeront les dommages imputés au changement climatique et en sous-estimeront les 
bénéfices.  

Mots clés : Adaptation ; Changement climatique ; Cultures ; Afrique 

 

1. Introduction 

There are four competing strands of research into the economic impacts of climate change on 
agriculture: agronomic, panel data, agro-economic and Ricardian. The agronomic literature 
predicts large and dire yield losses (Rosenzweig & Parry, 1994) especially in many areas of Africa 
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(Deressa et al., 2005; Gbetibouo & Hassan, 2005). Panel data studies examine weather surprises 
and also suggest climate change will be harmful, though their predictions are not as dire as those 
of the agronomic studies (Deschenes & Greenstone, 2007). Agro-economic models take farmers’ 
yield losses as given, but predict that farmers can reduce the impact by switching crops (Adams et 
al., 1990). Finally, the Ricardian model captures the actual adaptations that farmers make and 
measures the final net impact (Mendelsohn et al., 1994; Mendelsohn & Dinar, 2003). The problem 
with the first two approaches is that they do not capture adaptation and so overestimate damages. 
The problem with the agro-economic approach is that the burden of capturing adaptation falls on 
the analyst. Finally, the problem with the traditional Ricardian approach is that it is a ‘black box’ 
so that the actual adaptations by farmers are not revealed.  

This paper develops a new approach that attempts to bridge the gap between the agro-economic 
and Ricardian models in a ‘Structural Ricardian model’. A simple model of the farm is developed 
where a farmer first chooses a desired crop or crop combination and then earns a conditional 
income given the crop chosen. By modeling crop choice, this approach reveals one of the explicit 
adaptations that farmers make. Crop choice has been modeled in the agricultural literature before 
and it has been found to be sensitive to climate (e.g. Moore & Negri, 1992). But this empirical 
research is limited to the US and the authors did not explore what implications their research 
might have for climate change. Empirical work on crop choice is virtually nonexistent in the low 
latitudes where climate change is expected to have a devastating effect on agriculture 
(Mendelsohn et al., 2006). 

In this paper we quantify the climate sensitivity of specific crop choices made by farmers in 
Africa. The modeling follows earlier research on the impact of irrigation (Kurukulasuriya & 
Mendelsohn, 2007) and especially livestock choice (Seo & Mendelsohn, 2007). We first examine 
farmer’ crop choices across different climates, measuring the role that climate plays in these 
choices. We then estimate conditional net revenue functions for each crop. The resulting model is 
used to predict the effect of two global warming scenarios on expected net revenue, both with and 
without changing crops.  

The next section outlines the formal modeling framework. Crop selection is analyzed within the 
framework of a multinomial logit model (MNL) and the conditional net revenue functions are 
estimated using a Dubin-McFadden selection bias correction model. Section 3 outlines the 
available data, Section 4 presents the results of the empirical modeling of crop choice and the 
conditional income equations, and Section 5 uses these empirical results to predict what would 
happen to African farmers in two climate scenarios. The paper concludes in Section 6 with a 
discussion of the crop model results and the implications of climate change for African crops.  

 

2. Theory 

The paper takes the amount of cropland as given1 and examines the impact of climate change on 
the income a farmer earns per hectare of cropland. The analysis takes explicit account of the 
farmer’s choice of crops. We assume each farmer makes crop decisions to maximize expected 
profit. We define profit broadly to include the value a farmer may get from consuming his own 
crops. We examine choices of both a single crop and combinations of specific crops in each 
season. For example, farmers might combine two different crops as a choice. The full set of 
choices is mutually exclusive: the farmer must pick one choice from the full set. 
                                                 
1 Clearly, if climate changes then the amount of cropland is likely to change as well. However, in this paper we do not 
address this issue but leave it for future analysis. 
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We employ a discrete-continuous (DM) model (Dubin & McFadden, 1984) that is a generalization 
of Heckman’s (1979) two-step selection model. It takes into account the polychotomous first 
choice of which crop to grow. The DM two-step estimation uses a multinomial logit model in the 
first stage to choose a specific crop (or combination of crops) and then estimates a conditional net 
revenue model for each choice using ordinary least squares (OLS) with selection terms.2  

The probability that a species is chosen depends on the profitability, V(Zji), of crop j (j=1,2,…,J): 

 

jijiji ZV επ += )(           (1) 

 

where Z is a vector of independent variables that include climate variables, soils and other 
socioeconomic variables such as household characteristics. The profit function in equation (1) is 
composed of two components: the observable component V and an error term ε . The error term is 
unknown to the researcher, but may be known to the farmer. The farmer will choose the livestock 
that gives him the highest profit. The farmer will choose crop j over all other crops if: 

 

 j]kfor  )()( if[or  j.k for  )()( ** ≠−<−≠∀> kijijkkiji ZVZVZZ εεππ    (2) 

 

The probability jiP  for the jth crop to be chosen is then 
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Assuming ε  is independently and identically Gumbel distributed,3 the probability that farmer i 
will choose crop j (McFadden, 1981; Chow, 1983) is: 
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2 We also examine an OLS version of the model and the Lee (1983) model as alternative specifications. Contact the 
corresponding author for results. 
3 Two common assumptions about the error term are either the normal or the Gumbel distribution. Normal random 
variables have the property that any linear combination of normal varieties is normal. The difference between two 
Gumbel random variables has a logistic distribution, which is similar to the normal, but with longer tails. Thus the 
choice is somewhat arbitrary with large samples (Greene, 2003). 
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Because the farmer may know the ε  that applies to his farm, it is possible that conditional income 
is correlated with the choice of crops. This is the standard Heckman (1979) selection problem. 
OLS estimates of the conditional income equation will consequently be biased. Following 
McFadden (1973), we can correct for this problem by introducing a selection correction term in 
the second stage conditional income equation: 
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where wj is an independent error term. This equation can be estimated using OLS. The choice 
regressions are identified in this system with cross price terms.  

The agronomy literature has revealed through laboratory experiments that temperature and 
precipitation have non-linear impacts on crop yields (Reilly et al., 1996). We consequently 
introduce both long-run mean temperature and precipitation as quadratic functions. We also 
follow agronomic results that suggest temperature and precipitation have different effects during 
each phase of a crop’s growth and use seasonal temperature and precipitation measures. We 
calculate the marginal impacts of temperature and precipitation and 95% confidence intervals 
using bootstrapping.  

The expected income is the sum of the conditional revenues earned across all crop choices times 
the probability each crop is chosen. The probability (θj) of choosing crop (j) is obtained from the 
estimates of the first stage regression (4) and the conditional income (Qj) comes from the second 
stage (5). The expected income associated with the current climate (C0) is: 

 

Y(C0) = ∑ θj (C0) * Qj (C0)         (6) 

 

The welfare effect of a change in climate from (C0) to (C1) is therefore: 

 

W = Y(C1) - Y(C0)          (7) 

 

We rely on bootstrapping to predict the median and 95% confidence intervals for the welfare 
effects.  

3. Data 

The data for this study was collected in 11 countries – Burkina Faso, Cameroon, Egypt, Ethiopia, 
Kenya, Ghana, Niger, Senegal, South Africa, Zambia and Zimbabwe – by national teams (Dinar et 
al., 2008). The countries were chosen to represent the diverse climates of Africa. Further, within 
each country, districts were chosen to get a wide representation of the climates that support 
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farming in that country. The districts are not representative in that some climatic regions in each 
country tend to produce a preponderance of agricultural production. In this sample we wanted to 
make sure there was sufficient variation in the climate conditions facing farms. However, the 
farms are representative of the farms in each district and climatic zone. The sampling is clustered 
within a district.  

The number of surveys in each country varied, but a total of 9597 surveys was administered. 
Some farmers did not grow crops. Some surveys contained incorrect information about the size of 
the farm or area of cropland. Impossible values were judged to be missing. It is not clear what the 
sources of these errors were. They may reflect field errors due to a misunderstanding of the 
question or the units of measurement, or they may be intentionally incorrect answers. Other 
surveys did not contain clear information on crop type and are therefore excluded. The final 
number of useable surveys for this analysis was 7296.  

Most of the surveys of farm production and input data are for the 2002–2003 agricultural year.4 In 
this paper, the analysis is undertaken at the plot level. Plot specific data on crops grown is 
summarized to obtain the suite of crops grown throughout the year. The full dataset revealed 130 
distinct combinations of crops. However, some of the combinations were rare, with only a handful 
of observations. We only examine crop alternatives where there are at least 100 observations. We 
are restricted to analyzing this subset of the data given that the district specific climate and soil 
variables place a limit on the number of covariates that can be accommodated in the analytical 
framework.5 We therefore do not analyze relatively rare crop selections. Using this restricted 
dataset, the median district-level yield price of each crop is measured and used to identify the crop 
choice equations (see Table 5). 

Data on climate are from two sources. Long-term temperature data comes from US Department of 
Defense satellites. These satellites pass over every location on earth between 6 am and 6 pm every 
day. They are equipped with sensors that detect microwaves that can pass through clouds and 
detect surface temperature (Weng & Grody, 1998). Precipitation data comes from the Africa 
Rainfall and Temperature Evaluation System (ARTES) (World Bank, 2003). This dataset, created 
by the National Oceanic and Atmospheric Association’s Climate Prediction Center, interpolates 
between ground station measurements. The mean annual temperature and precipitation for each 
country in the sample is shown in Figure 1.  

 

                                                 
4 Data from Cameroon, Ethiopia, Kenya and Zimbabwe were collected in 2003–2004. 
5 There are in total 394 districts in the sample. This places a restriction on the number of observations that can be in 
the model, given the district specific variables that we use to analyze the climate sensitivity of crops. 
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Note: BFAS: Burkina Faso, EGY: Egypt, ETH: Ethiopia, GHA: Ghana, NIG: Niger, SEN: Senegal, SAF: South 
Africa, ZAM: Zambia, CAM: Cameroon, KEN: Kenya, ZIM: Zimbabwe 
 
Figure 1: Mean annual temperature and precipitation 

 

As outlined in Kurukulasuriya et al. (2006), although monthly climate measures were available, 
individual months are highly correlated with neighboring months. Previous research indicates it is 
useful to aggregate monthly data into seasons (Mendelsohn et al., 2001). However, it is not self-
evident how to cluster monthly temperatures into a limited set of seasonal measurements. We 
explored several ways of defining three-month average seasons, starting with November, 
December and January for winter. Comparing the results, we found that defining winter in the 
northern hemisphere as the average of November, December and January provided the most 
robust results for Africa. This assumption in turn implies that the next three months would be 
spring, the three after that would be summer, and August, September and October would be fall 
(in the north). The choice of these particular seasonal definitions is motivated by the fact that they 
provided the best fit with the data and reflect the mid-point for key rainy seasons in the sample. 
We adjusted for the fact that seasons in the southern hemisphere occur at exactly the opposite 
months of the year from northern hemisphere seasons. We did not use the temperature and 
precipitation for the growing season to define climate because the growing season would clearly 
change with future climate scenarios. In other words, it is an endogenous length of time and would 
lead to confusion between the effects of warmer temperatures for a specific time and measuring 
temperature over a longer time period.  

Soil data was obtained from FAO (2003). The FAO data provides information about the major and 
minor soils in each location. Data for the hydrology was obtained from the University of Colorado 
(IWMI & University of Colorado, 2003). Using a hydrological model for Africa, the hydrology 
team calculated the potential flow for each district in the surveyed countries.  
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4. Results 

Table 1 presents the major crop choices that farmers make by country. The study looks at the eight 
most popular choices. Note that to a large extent they reflect farmers’ choices in all countries 
except Egypt. Egyptian agriculture is entirely irrigated and many farmers chose crops not common 
in the rest of Africa. The most popular crop choice in the sample is maize, which is capable of 
growing across a range of climates because there are a number of varieties grown in Africa. The 
second most popular crop portfolio is maize-groundnut. (We hyphenate crop combinations 
throughout the paper.) Cowpea-sorghum, sorghum and millet-groundnut are also popular choices. 
While growing maize alone is the most popular choice in Zambia and Ghana, farmers in 
Cameroon prefer to grow maize-groundnut. Drought tolerant crops were the revealed preference 
of farmers in Burkina Faso, Niger and Senegal (sorghum, cowpea or cowpea-sorghum). In Egypt 
and South Africa, the popular choices are maize, wheat, and fruits and vegetables. Farmers in 
Zambia and Zimbabwe indicated a preference for maize and maize-groundnut.  

In order to have sufficient observations to model each crop choice we analyze only the eight most 
popular choices. We assume that these are independent of the more minor crops. These choices are 
maize (1071 observations), maize-groundnut (811), cowpea-sorghum (666), sorghum (569), 
millet-groundnut (568), fruits-vegetables (556), maize-beans (399), cowpea (388) and maize-
millet (331). The farmers who made these choices account for almost three quarters of all farmers 
in the dataset.  

 
Table 1: Farms choosing major crops by country 

Major crop 
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Cowpea 11 8 0 3 25 41 271 0 1 16 12 388 
Maize 0 62 6 122 364 47 2 3 44 312 109 1,071 
Sorghum 100 2 61 223 9 28 11 27 3 50 55 569 
Fruits-
vegetables 0 90 45 23 47 176 3 10 88 45 29 556 
Maize-beans 0 79 4 16 6 189 0 1 27 37 40 399 
Cowpea-
sorghum 189 0 0 5 0 28 432 0 0 5 7 666 
Maize-
groundnut 14 200 0 5 58 25 0 24 9 249 227 811 
Maize-millet 14 4 0 32 15 55 22 100 1 35 53 331 
Millet-
groundnut 25 0 0 4 33 0 59 440 0 7 0 568 

Farms 
choosing 
major crops 353 445 116 433 557 589 800 605 173 756 532 5,359 

Total farms 716 518 478 644 664 692 871 906 243 920 644 7,296 
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Table 2 presents the multinomial logit (MNL) regression results of crop choice. Elevation, surface 
flow availability and several soil variables affect crop choice. Higher elevation encourages 
cowpea, sorghum, maize and beans, cowpea-sorghum, maize-groundnut and maize-millet and 
discourages millet-groundnut. Lower flow is associated with farmers choosing maize-beans, 
cowpea-sorghum, maize-groundnut, maize-millet, millet-groundnut and fruits-vegetables. Lower 
flow probably implies that farmers cannot irrigate. Choosing low-water-intensive crop 
combinations is one way for farmers to adapt to dryland farming in Africa. Farms that have 
electricity are more likely to choose minor crops but less likely to choose every other crop. 
Electricity may help in the production of fruits-vegetables or it may simply signal access to urban 
markets, which often accompanies access to electricity (particularly in the context of rural Africa 
where electricity distribution networks are predominantly in the vicinity of towns and cities). 
Farmers whose farms have steep slopes and fine-textured soils are more likely to choose millet-
groundnut but less likely to choose cowpea, sorghum, cowpea-sorghum, maize-beans and fruits-
vegetables. Farms whose soils are eutric gleysols and solodic planosols are more likely to choose 
cowpea and maize and less likely to choose every other crop. Farms with lithosols or medium-
textured soils in steep areas are more likely to choose cowpea, maize-beans and minor crops, but 
less likely to choose sorghum. Finally, those whose farms have orthic ferrasols and chromic 
luvisols are more likely to choose millet-groundnut but less likely to choose sorghum and maize-
millet. 

 
Table 2: Multinomial logit crop choice model  

 Cowpea Sorghum Fruits-
vegetables 

Maize-
beans 

Cowpea-
sorghum 

Maize-
groundnut 

Maize-
millet 

Millet-
groundnut 

Temp winter -2.81* 1.14* -1.27* -0.83 2.12* -0.87 1.12 -5.41** 
Temp winter sq .06* -.04* .04* 0.01 -.05* 0.00 -0.03 0.13** 
Temp spring 2.19 -2.73** -0.10 -0.29 -2.85* -0.79 -3.09** 6.16* 
Temp spring sq -0.03 .07** -0.01 0.01 .07* .048* .08** -0.10* 
Temp summer -5.81** 0.89 -0.75 -0.69 -1.06 -3.37** 0.43 6.62** 
Temp summer 
sq 0.11** -0.01 0.01 0.00 0.03 0.07** 0.00 -0.11** 

Temp fall 4.58** -1.90* 0.39 1.26 -0.15 6.60** -0.94 -6.31** 
Temp fall sq -0.10** 0.03* 0.01 -0.01 0.00 -0.16** 0.00 0.11** 
Precip winter -0.12** -0.11** 0.06** -0.03 -.17** -0.02 0.09** 0.03 
Precip winter sq 0.001** 0.001** -0.0002* 0.0002* 0.001** 0.0003** -0.0005** 0.00 
Precip spring 0.03 .06** -.06** 0.01 -0.03 0.01 -0.10** -0.04 
Precip spring sq 0.00 -.0003** .0002** 0.00 0.00 0.00 0.0004** 0.00 
Precip summer .21** -.05** 0.00 0.01 .15** 0.02 -.05** -.12** 
Precip summer 
sq -.001** .0002** 0.00 0.00 -.001** 0.00 .0002** .0003** 

Precip fall -.16** 0.01 .02* 0.00 -.103** 0.01 .04* .22** 
Precip fall sq .001** -0.0001 -0.00003 0.00 .0003* 0.00 -.0001* -.0008** 

Notes: Base category crop: maize.  ** significant at 1%  * significant at 5% 
Multinomial logistic regression:  Number of obs =  5251; LR chi2(200) = 10042; Prob > chi2 = 0.0000;  
 
    Pseudo R2= 0.45; Log likelihood =  -6184 
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Table 2 (continued): Multinomial logit crop choice model 

 Cowpea Sorghum Fruits-
vegetables 

Maize-
beans 

Cowpea-
sorghum 

Maize-
groundnut 

Maize-
millet 

Millet-
groundnut 

Mean flow 
(mm) 0.1* -0.06* -0.08** -0.04 0.00 -0.06 -0.24** -0.19* 

Elevation (m) 0.0002 0.00 0.0004 .001* 0.00 0.00 .001** .003** 
Log (farmland 
area)  0.04 0.10 -.14* -.19** .19* 0.05 .187* 0.00 

Log (household 
size) .69** .69** .41* .43* 1.50** .81** .80** .67* 

Electricity 
dummy   -.67* -1.83** 0.19 -0.20 -1.81** -0.48* -0.98** -0.66* 

Soil type 1 0.99 2.49** -2.83** -0.72 0.20 0.75 -0.74 2.06* 
Soil type 2 -1.42** -.62* -1.00* -1.00* -1.01* -.57* -.70* -1.17* 
Soil type 3 -0.76 -2.11* 2.47** 2.06* -1.90* -0.75 1.50 -1.87* 
Soil type 5 0.58 -0.39 -0.48 -0.01 -0.28 -0.46 -0.95 -1.95 
Price of 
groundnut 1.68* 4.37** 1.32* 4.00** 5.66** 1.59** 4.55** 3.54** 

Price of 
cotton/kg -5.34** 0.47 -2.55* -1.92* 0.13 0.50 1.45 -9.78** 

Price of 
wheat/kg 6.62** -4.10** .33* 0.43 -12.94** 4.33** 0.23 -5.43 

Price of 
cowpea/kg -3.26** 0.34 -0.70 -0.32 0.96 -0.42 0.57 -0.61 

Price of 
sorghum/kg -0.79 -1.11 1.70* 3.42** 0.92 -0.44 -1.10 -1.05 

Constant 10.20 29.24** 14.33** 1.05 18.84* -20.70* 22.70** -53.81** 

Notes: Base category crop: maize.  ** significant at 1%  * significant at 5% 
Multinomial logistic regression:  Number of obs =  5251; LR chi2(200) = 10042; Prob > chi2 = 0.0000;  
    Pseudo R2= 0.45; Log likelihood =  -6184 

 

From the perspective of this study, the most important coefficients in Table 2 concern the seasonal 
climate. The choice of different crops is sensitive to seasonal climate variables. For example, in 
comparison to maize, cowpea reacts to summer and fall temperatures and winter, summer and fall 
precipitation, whereas sorghum reacts to winter, spring and fall temperatures and precipitation in 
every season. Millet-maize in comparison reacts to winter and spring temperature and 
precipitation in all seasons. In order to get a sense of the impact of climate on crop choice, we 
calculate the climate elasticity in Table 3. The climate elasticity measures the percentage change 
in the probability of selecting a crop with respect to a percentage change in annual temperature or 
precipitation. The temperature elasticity is generally much larger than the precipitation elasticity. 
Crop choices are more sensitive to temperature than precipitation. Warmer temperatures reduce 
the probability of maize-millet, maize-groundnut, and fruits- vegetables, and especially cowpea 
but increase the probability of all other crops and especially sorghum. Increased precipitation 
reduces the probability of maize, maize-millet and maize-groundnut, but increases the probability 
of sorghum and cowpea-sorghum.  
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Table 3: Marginal effects of climate on choosing crop i  

Crop Temperature Precipitation 

Cowpea 1.26 -0.06 
Maize   
Sorghum -0.08 -0.06 
Fruits-vegetables -0.06 0.01 
Maize-beans -0.08 0.01 
Cowpea-sorghum 1.10 -0.17 
Maize-groundnut -0.01 0.02 
Maize-millet 0.34 0.0003 
Millet-groundnut 0.90 -0.06 

Note: Marginal effects estimated from coefficients in Table 4. 

 

It is helpful to see how crop choice changes as temperature and precipitation move away from the 
mean. Figure 2 (a, b, c) shows how crop probabilities change at different temperatures and Figure 
3 (a, b) how they change with different precipitation levels. In these figures, annual temperature 
changes are adjusted equally across all seasons. The relative temperatures and precipitation 
between seasons are important.6 For example, if the model is estimated using annual temperature 
rather than seasonal temperature, cowpea, maize-millet and minor crops all behave quite 
differently.7 Figure 2 (a, b, c) shows that farmers are more likely to choose cowpea, maize-beans 
and fruits-vegetables in relatively cool temperatures; maize, maize-millet, sorghum and cowpea-
sorghum in more average African temperatures; and millet-groundnut in the hottest regions of 
Africa. Figure 3 (a, b) shows that farmers tend to select maize-millet, sorghum and millet-
groundnut in dry but not desert regions; maize, fruits-vegetables and maize-beans in regions with 
moderate rainfall; and cowpea and cowpea-sorghum in the wettest regions.  
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Figure 2a: Probability of crops by annual temperature  
                                                 
6 Regressions based on annual temperature and precipitation give slightly different results for the crop choice model. 
7 The annual model assumes that seasonal differences shrink as temperatures increase, whereas the seasonal model 
holds the difference fixed. The results of these additional regressions are available from the corresponding author.  
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Figure 2b: Probability of crops by annual temperature  
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Figure 2c: Probability of crops by annual temperature  
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Figure 3a: Probability of crops by annual precipitation 
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Figure 3b: Probability of crops by annual precipitation 
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Table 4 presents the results of the second stage regressions of net revenue by crop. Selection bias 
is controlled using the Durbin-McFadden selection bias correction.8 Many of the seasonal climate 
variables in Table 4 are statistically significant, although many of the squared terms are not 
significant. Because there are fewer observations in each conditional income equation compared 
to the choice model, the individual coefficients of the model are less significant. The significant 
selection term coefficients in Table 4 are all negative. A negative selection term coefficient 
implies there is a negative correlation between the errors in the selection and conditional income 
equations. For example, the selection term in the cowpea regression for maize-millet is negative. 
This implies that if the selection equation predicts a farm is more likely to choose maize-millet, 
but instead the farmer chooses to grow cowpea, that farm will earn more than would be expected 
by growing cowpea.  

An additional test we undertook was to assess the effect that clustering of the data is likely to have 
on the coefficients. We controlled for clustering effects by clustering at the district level. We find 
that the clustering does not affect the magnitude or sign of the coefficients. Clustering does 
increase the size of the standard errors, but we rely on bootstrapping to estimate the statistical 
confidence of this analysis.  

 
Table 4: Conditional income by crop regressions 

 Cowpea Maize Sorghum Fruits-
vegetables 

Maize-
beans 

Cowpea-
sorghum 

Maize-
groundnut 

Maize-
millet 

Millet-
groundnut 

Independent 
variable          

Price of 
cowpea/kg 296.2*     40.0    

Price of 
sorghum/kg   1238**   181.4*    

Price of 
maize/kg     1698*  118.1 400.3  

Price of 
groundnut/kg  -445.5     -296.9  -115.8 

Price of 
millet/kg        45.9 720.5* 

Temp winter -887.5* -248.5 281.8 353.8 423.3 641.1 -681.5* 67.7 -24.2 
Temp winter 
sq 17.8* 14.3** -5.2 -7.6 -12.1 -14.5* 25.1* 1.1 1.9 

Temp spring 829 -4.1** -374 -338 -572 -204 715 -50 -275 
Temp spring 
sq -15.04 -7.9 5.29 2.9 12.01 3.96 -21.28 -1.3 4.16 

Temp 
summer -522 1054.0** 214 1207* 458 -115 182 127 466 

Temp 
summer sq 11.41 -23.5** -5.07 -23.11* -2.23 3.45 -0.72 -1.78 -7.36 

Temp fall 662* -840.8** -320 -1235 728 -2 1237 -97 -1 
Temp fall sq -14.86* 22.3** 8.91 29.94 -26.39 -1.1 -33.99 1.46 -0.67 
Precip winter -20.2 7.49 4.15 -16.63 27.53 -24.4 -3.47 -0.29 43.99 

                                                 
8 A similar analysis using the Lee correction model is available from the corresponding author. 
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Table 4: (Continued) Conditional income by crop 
 
Precip winter 
sq -0.02 -0.04 -0.05 0.11 -0.07 0.12* 0.05 -0.02 -0.22 

Precip spring 36.39** -16.3** 2.92 14.32 -12.17 26.64* -8.49 -1.66 -7.28 

Precip spring 
sq -0.07 0.10** -0.02 -0.08 0.02 -0.12* 0.02 0.02 -0.12 

Precip 
summer 21 -0.01 4.71 4.31 3.65 4.12 -7.64 -3.3 -5.45 

Precip 
summer sq -0.11* 0.0002 -0.01 -0.02 0.00 0.02 0.01 0.00 0.03 

Precip fall -36.34** 5.40 -15.42* 2.73 5.84 -1.97 8.24 3.4 11.41 

Precip fall sq 0.14** -0.01 0.06 0.00 -0.01 -0.04 -0.01 -0.01 -0.06 

Log (area of 
farmland) -68.5* -60.8** -7.0 -101.4* -115.8** -27.6* -160.0** -21.9 -72.3* 

Log 
(household 
size) 

-14.18 -48.9 -61.11 33.06 0.38 25.76 178.75* -37.88 -22.38 

Dummy 
household 
with 
electricity 

-154.6* 275.7** 170.9 516.1** 280.3* -15.7 152 112.0 32.6 

Soil type 1 188.6 -233.9 157.6 378.4 -967.6 239.2 1044.4 -247.7 -75.1 

Soil type 2 -34.5 64.7 232.8* 53.2 146.2 -77.0 107.4 12.7 26.9 

Soil type 3 202.9 -60.8 367.0* -358.9 -141.4 -193.1 -1583* 119.5 181.7 

Soil type 5 117.7 124.2 -87.2 -169.7 315.9 332.4 -154.3 412.7 386.0 

Selection 
cowpea   -469.4 370.8 -385.6 -736.6 111.6 -724.2 313.6 -323.9 

Selection 
maize  -160.27  183.4 881.0* 700.8 423.3 323.8 737.5* 753.1 

Selection 
sorghum  509.9 162.5  171.3 -247.4 466.5 529.8 -502.0 -476.0 

Selection 
fruits-
vegetables 

372.3 1538** -243.09 0.0 1692.6* 269.1 994.9 -63.7 -713.6 

Selection 
maize-beans -91.4 -718** 1338.8* -285.5  -295.5 -2017.2** 19.9 1424.0 

Selection 
cowpea- 
sorghum 

-243.1 -231.5 -902.4** 309.7 625.7  415.1 -56.6 61.3 

Selection 
maize- 
groundnut 

-591.9 -729.2** -409.5* -611.5 2111.0* -418.7  -691.0* -887.7* 

Selection 
maize-millet 996.2* -148.6 -128.8 -1233.0* 272.5 -572.1 -682.0  139.0 

Selection 
millet-
groundnut 

-732.6* 704.3 -216.0 1145.9 -4273.0* -10.9 1062.7 211.2  

Constant -1253.4 -242.6 3216.6** -456.5 -8745.0 -3274.3 -15325.0* -141.8 -3239.0 

Note: Dependent variable is net revenue. 
Selection terms are consistent estimators of conditional expected values of the residuals derived from the MNL model 
in Table 2.  
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Table 4 (continued): Conditional income by crop 

 Cowpea Maize Sorghum Fruits-
vegetables 

Maize-
beans 

Cowpea- 
sorghum 

Maize- 
groundnut 

Maize-
millet 

Millet-
groundnut 

Ancillary          

Sigma2 822574 2245430 1106193 2148307 6178184 318609 3714124 793803 423232 

Rho cowpea   -0.40 0.45 -0.34 -0.38 0.25 -0.48 0.45 -0.64 

Rho maize -0.23  0.22 0.77 0.36 0.96 0.22 1.06 1.48 

Rho 
sorghum 0.72 -0.14  0.15 -0.13 1.06 0.35 -0.72 -0.94 

Rho fruits-
vegetables 0.53 1.32 -0.3  0.87 0.61 0.66 -0.09 -1.41 

Rho maize-
beans -0.13 -0.61 1.63 -0.25  -0.67 -1.34 0.03 2.81 

Rho 
cowpea-
sorghum 

-0.34 -0.20 -1.1 0.27 0.32  0.28 -0.08 0.12 

Rho maize-
groundnut -0.84 -0.62 -0.5 -0.54 1.09 -0.95  -0.99 -1.75 

Rho maize-
millet 1.41 -0.13 -0.16 -1.08 0.14 -1.3 -0.45  0.27 

Rho millet-
groundnut -1.04 0.60 -0.26 1 -2.2 -0.02 0.71 0.3  

Number of 
obs 367 1023 540 503 381 630 780 313 554 

F-stat 9.63  29.06 7.8 5.11 7.07 10.49 1.64 2.11 

Prob > F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.02 0 

R-squared 0.48 0.25 0.65 0.34 0.32 0.28 0.32 0.16 0.12 

Adj R-
squared 0.43 0.23 0.62 0.3 0.26 0.24 0.29 0.06 0.06 

Root MSE 268.05 571.93 372.05 928.15 582.55 200.22 639.86 349.86 272.07 

Note: Dependent variable is net revenue. 
Selection terms are consistent estimators of conditional expected values of the residuals derived from the MNL model 
in Table 2.  
 
 

To interpret the results of the empirical modeling, we examine the marginal impact on conditional 
income of a 1 degree increase in temperature and a 1 mm increase in precipitation. This is shown 
in Table 5. Warming will reduce net revenues per hectare by USD10 for maize-beans, USD14 for 
cowpea-sorghum and USD19 for sorghum but increase net revenues per hectare by USD32 for 
maize-groundnut and by USD86 for fruits-vegetables. These results are consistent with the 
choices made by farmers (warming will increase the probability that they will select maize-
groundnut and fruits-vegetables). Curiously, the results using the Lee estimation procedure or 
OLS are not similar. All but the cowpea and the millet-groundnut estimates are different. 
Controlling for sample selection bias is quite important.  
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Table 5: Marginal effects of climate on conditional net revenue  

Crop 
Temperature 
(C◦) 

Precipitation 
(mm/mo) 

Cowpea -5.29* 0.06 
Maize 31.6* 0.78 
Sorghum -19.43* 3.55* 
Fruits-vegetables 86.42* 0.03 
Maize-beans -10.40* 14.04* 
Cowpea-sorghum -14.12* 3.85* 
Maize-groundnut 31.86* -5.61* 
Maize-millet 3.03* -3.43* 
Millet-groundnut 6.57* 38.19* 

Note: Marginal effects estimated from coefficients in Table 4. 
 

4.1 Climate change scenarios 

The empirical research compares the results in one farm against another in different climate zones. 
In this section, we use these empirical results to forecast the impact of climate change. Note that 
to the extent that we did not capture the correct functional form of this relationship, the 
intertemporal forecasts will be biased. One must also be careful to use the intertemporal forecasts 
appropriately. They are intended to capture the effect of long-term shifts in climate, not short-term 
fluctuations in weather. To the extent that farmers fail to adjust to climate changes there may be 
additional adjustment costs not considered in this analysis (Kelly et al., 2005).  

We examine how alternative future climate scenarios may affect the choice of irrigation and net 
revenue per hectare. We rely on two climate models, the Parallel Climate Model (PCM) 
(Washington et al., 2001) and the Canadian Climate Centre model (CCC) (Boer et al., 2000), to 
provide a range of climate outcomes for each African country in 2100.9 The PCM scenario is 
relatively mild and wet whereas the CCC scenario is relatively hot and dry. With both scenarios, 
we examine how the predicted changes in climate would affect both the probability of choosing 
each crop and the conditional income. Table 6 shows the results of the changes in the mean 
predicted probabilities based on 300 bootstrapped runs. It is evident that the probability of 
selecting cowpea decreases under the PCM estimates of future climate but increases under the 
CCC scenario. Cowpea is a dry weather crop so it is understandable that it should increase with 
the relatively dry CCC scenario but not with the relatively wet PCM scenario. The crop 
combinations maize-millet and millet-groundnut are more likely with the PCM scenario but 
especially with the CCC scenario. The adoption of sorghum, maize-beans and maize-groundnut is 
likely to decrease according to both scenarios. Fruit and vegetables, cowpea and sorghum are 
more likely to be adopted under the mild PCM climate scenario than the severe CCC one.  

 

 

 

                                                 
9 The choice of 2100 as a scenario is for exposition purposes. The analysis can easily project impacts for other 
scenarios. 
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Table 6: Change in probability of crops under alternative climate scenarios 

 Current climate  PCM CCC 

Cowpea 7.3% -0.8% +8.0% 
Maize 19.8% -14.6%* -15.8%* 
Sorghum 10.6% -6.7%* -6.6%* 
Fruits-vegetables 10.2% +22.1%* +8.0% 
Maize-beans 7.5% -6.3%* -4.1% 
Cowpea-sorghum 12.3% +7.1% -3.5% 
Maize-groundnut 15.2% -14.3%* -14.8%* 
Maize-millet 6.2% +7.4% +5.8% 
Millet-groundnut 10.8% +6.1% +23.0%* 

* Significant differences 
PCM - Parallel Climate Model; CCC - Canadian Climate Centre model 

 

Table 7 highlights the conditional incomes under alternative climate change scenarios using the 
DM method. The reported values reflect the mean of 300 bootstrapped runs. According to these 
results the continued adoption of cowpea under both the PCM and CCC 2100 scenario results in a 
significant reduction in conditional revenues. While losses under the PCM scenario (relative to 
current climate) are significantly larger, even under the CCC scenario there are losses. In the case 
of sorghum, the conditional net revenues increase to nearly USD600 per hectare under the CCC 
scenario while decreasing to USD268 under the PCM scenario (relative to USD426 under current 
climate). The conditional incomes of fruits and vegetables increase under both the PCM and CCC 
scenario. By contrast, the conditional incomes of maize-beans stay relatively similar to current 
levels under the PCM scenario but decrease substantially under the CCC scenario. Farms that 
grow maize-millet and millet-groundnut earn higher conditional revenues under both the CCC and 
PCM scenarios relative to earnings under the current climate. Farms that grow cowpea-sorghum 
are predicted to earn less conditional revenue under the PCM and CCC scenarios. 

We then calculate the expected income from current climate by summing the product of the 
probability of selecting crop i multiplied by the conditional net revenue from crop i. After this we 
calculate the expected income of each farmer for each future climate scenario. The change in 
expected income is the welfare effect of climate change. We compare the results from the DM 
approach with the estimates from the OLS and Lee approaches. We also examine the predicted 
effect if one assumes there is no crop switching; that is, if one assumes the probability of crop 
choice is exogenous to climate. We employ bootstrapping with 300 replications to obtain unbiased 
standard errors for the mean of the estimates of each draw. 
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Table 7: Change in conditional incomes under alternative climate scenarios  

Crop 

Current conditional 
income 
(USD/hectare) 

PCM 
(USD/hectare) 
 

CCC 
(USD/hectare) 

Cowpea 157 -1760 -139 
Maize 464 +1210 +554 
Sorghum 427  -160 +125 
Fruits-vegetables 318  +343 +432 
Maize-beans  178 +12 -2110 
Cowpea-sorghum 99  +62 -302 
Maize-groundnut 296  +1521 -1829 
Maize-millet 248  -0 +19 
Millet-groundnut -266  +681 +530 

PCM – Parallel Climate Model, CCC - Canadian Climate Centre model 

 

Table 8 shows the results of the welfare analysis. We first present the welfare effect of climate 
change if farmers do not change their crops. With the current climate, farmers earn USD157/ha. 
With the same crops but the PCM climate scenario for 2100, predicted revenues are expected to 
increase by 82%. By contrast, under a CCC climate scenario for 2100, which includes a reduction 
in rainfall and a large increase in temperature, predicted net revenues are likely to fall by 68%. We 
then calculate the expected welfare effect allowing the farmer to adjust his crop mix. Welfare 
increases by 49% under the PCM scenario and falls by only 5% in the CCC scenario.  

 
Table 8: Change in expected welfare from alternative climate scenarios 

Calculation PCM welfare  
USD/hectare 

% Change in 
welfare with 
PCM 

CCC  welfare 
USD/hectare 

% Change in  
welfare with 
CCC 

Constant crops +129 +82% -106 -68% 
Crop switching  +77 +49%    -8 -5% 

PCM – Parallel Climate Model, CCC - Canadian Climate Centre model 
Note: The expected income with current climate is USD157/ha.  
Constant crops measures the change in expected income assuming there is no change in cropping patterns. The 
endogenous crop measure allows farmers to switch crops to match the future climate. 
 
 

These results reveal that crop switching is an important adaptation for farmers. If they could not 
switch crops, the magnitude of the damages would be exceedingly high in the CCC scenario 
(losses of near 70%). However, with crop switching these losses virtually disappear. It is evident 
from the analysis that African farmers are already adapting, albeit with several constraints, to 
current climate; that is, they are selecting the crops most suitable for the climate in which they 
must be grown. If this practice is extended into the future, the likely impacts of climate change on 
agriculture will be small. This study has provided an indication of the extent to which adaptation 
can affect overall household welfare. 
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5. Conclusion and policy implications 

This paper examines the choices that farmers in Africa make across a wide spectrum of climate 
conditions. The study finds that crop choice is highly sensitive to both temperature and 
precipitation. Farmers adapt their crop choices to suit the local conditions they face. For example, 
farmers in cooler regions of Africa choose maize-beans and sorghum, whereas those in hot 
regions choose cowpea and millet. Farmers in dry regions choose millet and sorghum, whereas 
those in wet regions choose maize-beans, cowpea-sorghum and maize-groundnut. Other crops, 
such as maize, are grown throughout Africa. The study also found that farmers often choose crop 
combinations to survive the harsh conditions in Africa, such as maize-beans, cowpea-sorghum and 
millet-groundnut. These combinations provide the farmer with more flexibility across climates 
than growing a single crop on its own.  

However, the focus of this analysis is on climate change. This study has shown that African 
farmers have adapted crop choice to climate. There is every reason to believe that they will alter 
future crop choices as the climate changes, provided there are no barriers to the adoption of 
appropriate crops. Analyses of the agricultural impacts of climate change must take into account 
crop selection. Studies that treat crop choice as exogenous will seriously overestimate the 
damages from global warming. For example, agronomic studies or empirical studies that use 
weather as a proxy must be careful not to assume crop choices are exogenous. Farmers will 
probably change crops in response to a new climate. They will match future crops to future 
climates. Although some climate scenarios may still lead to losses in agricultural income in 
Africa, the predicted losses appear to be much smaller with endogenous crop choice.  

On a cautionary note, this paper only examines choices across currently available crops. 
Agronomic research could develop new varieties that are more suitable for higher temperatures. 
These new varieties could substantially improve farmers’ welfare, especially in hot locations such 
as Africa. Such research could substantially expand the choices available to low latitude farmers 
and help them adapt not only to current conditions but to future climates as well. The paper does 
not address every factor that might be important to crop choice and outcomes in the distant future, 
including sudden changes in weather, technical change, carbon fertilization, irrigation and changes 
in cropland. The quantitative results must consequently be taken as suggestive, not conclusive. 
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