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Global Wage Inequality and the International Flow of Migrants

Mark R. Rosenzweig

Abstract
A framework for understanding the determinants in the variation in the pricing of skills across
countries and the model underlying the Mincer specification of wages that is used widely to
estimate the relationship between schooling and wages are described. A method for identifying
skill prices and for testing the Mincer model, using wages and the human capital attributes of
workers located around the world, is discussed. A global wage equation that nests the Mincer
specification is estimated that provides skill price estimates for 140 countries. The estimates
reject the Mincer model. The skill price estimates indicate that variation in skill prices
dominates the cross-country variation in schooling levels or rates of return to schooling in
accounting for the global inequality in the earnings of workers worldwide. Variation in skill
prices and GDP across countries has opposite and significant effects on the number and quality

of migrants to the United States.
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Although it is well known that global income inequality is high, the extent to which wage
rates differ across persons with the same skill but located in different countries is not well
understood. Because of data limitations, in practice measures of income inequality across
countries are usually based on the per capita gross domestic product (GDP). Until recently, for
many countries no data providing comparable cross-country information on worker earnings and
their characteristics were available. Yet information on cross-country wage inequality for
workers of a given skill is useful for three reasons. First, it helps to identify the sources of
inequality. Average earnings differ across workers located around the world for two reasons:
workers differ in average skill levels and the rewards to skill—skill prices—differ across countries.
If the difference in average skill levels is the major reason for global wage or earnings inequality,
a focus on upgrading skills might be a suitable remedy for ameliorating global income
inequality. If, however, wage inequality is mainly due to the different pricing of skills across
countries, the remedies might be quite different.

Labor force surveys providing wages by occupation such as that by Freeman and
Oostendorp (2000) indicate that in 1995 a construction carpenter’s wage in India was US$42 a
month.'A worker in the same occupation in Mexico earned $125 a month, while his counterparts
in Korea and the United States earned $1,113 and $2,299 a month, respectively. These are
enormous differences in earnings. But it is not possible to know from these figures how much of
the observed wage differentials are due to differences in skill and how much to the different
prices of skill across countries. Surely the average construction carpenter in India has a lower
level of schooling than, for example, a carpenter in the United States, and that may account for
some part of the difference.”

A second reason that information on rewards to skill across countries is useful is that it
helps analysts understand the magnitudes and patterns of the global migration of labor. Basic
models of migration depict the choice of location of a worker with a given skill. Thus the
relevant set of variables includes the wages a worker of a given skill would earn at different
locations. Country-specific skill prices are central to understanding the individual gains from

migration, and thus the quantity and the selectivity of international migration—that is, which

! All dollar amounts are U.S. dollars unless otherwise indicated.

* These wages are not corrected for purchasing power parity.



workers of what skill levels move to which country. Whether a construction carpenter in India
would want to move to, say, Korea depends on how much of the observed wage gap is a result of
Koreans in the same occupation having more skill than their counterparts in India. If most of the
difference stems just from a gap in skills, then for a typical low-skill Indian carpenter the
incentives to migrate are low.

Yet as in the literature on global inequality, studies of the determinants of international
migration do not use any cross-country wage data. Instead, they almost always rely on
differences in country-specific levels of per capita GDP to explain, along with some other
nonwage aggregate variables, cross-border migration. Per capita GDP is related to skill price, as
discussed later in this chapter, but per capita GDP also differs across countries because of
differences in the average domestic levels of human capital and because of differences in the
proportion of the population that is employed because of differences, for example, in the labor
force participation of women and in the proportion of the population of labor force age
(dependency ratio). Variations in these cross-country factors for given skill prices do not have a
strong direct bearing on individual migration decisions. Income also affects the ability to finance
migration, so per capita income will imperfectly pick up both skill price and income effects,
which may go in opposite directions.

A third reason it is important to have information on how skills are priced across
countries is that inequality in skill prices indicates how well or how badly skill, or human capital,
is allocated around the world. Large differences in skill prices imply there is a large global
misallocation of labor (and perhaps other factors of production such as capital), and thus that
total world income is substantially lower than it could be if labor were reallocated across
countries. From a global efficiency point of view, if inequality in country-specific skill prices is
high, then one might view statistics on the “brain drain”—the proportion of highly skilled persons
born in “poor” countries who reside in “rich” countries—as a measure of the contribution of
international migration to the alleviation of world income inequality. This would be particularly
so if poor countries reward skills meagerly and rich countries reward skill with a high price.
Thus from the perspective of global efficiency the statistic that, for example, 43 percent of

tertiary-educated Ghanaians live in member countries of the Organisation for Economic Co-



operation and Development (OECD), would be seen not as alarmingly high but as alarmingly
low, if the skill price in Ghana is still substantially lower than the average OECD skill price.’

In this chapter, I first set out a framework for understanding the determinants in the
variation in the pricing of skills across countries and describe the model underlying the Mincer
specification of wages that is used widely to estimate the relationship between schooling and
wages. | then show how, using wages and the human capital attributes of workers located around
the world, skill prices can be identified and the Mincer model can be tested. After describing the
data sets that can be used to obtain estimates of skill prices, I estimate a global wage equation
that is more general than the Mincer specification and provides estimates of skill prices for 140
countries. The estimates reject the Mincer model, implying that factors affecting the supply of
schooling as well as schooling productivity need to be taken into account to understand the
pricing of skill across countries.

The skill price estimates indicate that, as a first-order approximation, variation in skill
prices substantially dominates the cross-country variation in schooling levels or rates of return to
schooling in accounting for the global inequality in the earnings of workers around the world. I
also show that the variation in skill prices and GDP across countries has opposite and significant
effects on the number and quality of migrants to the United States, including employment
migrants with permanent visas and persons with student visas. Skill prices also matter for which
students return to their home countries. The migration findings indicate that among countries
with the same GDP, low—skill price countries experience larger per capita outflows of total
human capital-numbers of migrants multiplied by their average years of schooling—despite
outmigration being more positively selective in higher—skill price countries. By contrast,
countries with lower skill prices have, on net, larger populations of higher-educated persons
trained outside their country, despite experiencing lower return rates of foreign students, which

offsets the permanent outflow of “brains.”

1. A Framework for Understanding the Proximate Determinants of Wages and Skill

Prices across Countries

To understand the proximate determinants of the rewards to skills across countries, it is

3 This statistic is obtained from the database on stocks of educated foreign-born around the world assembled by
Beine, Docquier, and Rapoport (2001 and 2006).



useful to consider three functions. First, the aggregate production technology relates the total

output of a country Y].to the vector of aggregate skills of its labor force Xjand its capital stock

and natural resources K to yield

YJ.ZY(XJ., K, dil.), 9.1)
where dil. are technology parameters, which may be country-specific. For purposes of exposition,

I assume initially that there is one skill type (different types of skills are considered later in this

chapter). The country-specific skill price ORE just the marginal value product of skill 8YJ./8XJ..
The wage sz of a worker i in country j is then given by

W. = (Djxij, (92)

i
where x;; is the number of skill units of worker i in country ;. Thus wage inequality within a
country is due solely to differences in skills across workers. Differences in wages across workers
in different countries stem from both differences in their skill levels and in the country-specific
prices of skill. Skills are usually not measured directly or provided in most data sets. However,

inputs to the production of skill, such as years of formal schooling Sl.j, are measured. The skill

production function for a country is
X = Si(S Hiy, Iy) , (9.3)
where H, i is a vector of school inputs other than years of schooling attended, and I, is a vector of
other human capital inputs, including training and work experience. A large literature has
attempted to characterize (estimate) the skill production function, examining the effects of school
inputs such as class size, textbooks, and teacher attributes. Substituting (9.3) into (9.2), one
would get a wage function relating a worker’s wage to his or her skill inputs and the skill price.
Cross-country wage inequality would then be proximately determined by differences in cross-
country skill prices, the technology of skill production, and differences in years of schooling,
schooling inputs, and work experience across individuals.
The most popular wage function used in empirical studies of wage determination is the
Mincer wage function, which is
log W= w; + BiSi + Il.j.yj, (9.4)
where w, is an intercept, perhaps specific to country j, and ﬁj is the rate of return to schooling in

each country. If this is the correct wage function, then to completely characterize global wage
inequality one would need to know just three parameters: the intercepts and the country-specific

rates of return to schooling ﬁj and work experience ¥ Conspicuously absent from the Mincer
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specification are school quality variables—that is, the inputs to schooling. Is this just a mis-
specification? And what is the relationship between variation in skill prices across countries and
the parameters of the Mincer wage function? For example, if the rate of return to schooling is
higher in country A compared with country B, does that mean that skill is more rewarded in
country A?

The original specification of the wage function derived by Jacob Mincer (1958) was
based on the assumption that individuals discount future income and that there are no nonmarket
barriers to schooling—that is, the amounts of schooling chosen by individual workers are not
constrained by school availability or by access to finance (credit constraints). In particular,

lifetime income y for an infinitely lived agent i who spends Sl.j years in school is by definition

¥(S;) =[S, et (9.5)
where r(j) is the subjective discount rate in j. Relationship (9.5) embodies the assumption that
earnings are zero when schooling is being acquired—the only cost to schooling is thus the
foregone wage. With no barriers to schooling, lifetime wages must be equal for all workers no
matter what their schooling level—that is, for example, if college graduates had higher lifetime
earnings, then more persons would go to college, driving down the wages of college graduates
until lifetime incomes are the same. This arbitrage assumption means that

V(S = U, (9.6)
for any S, S, including S = 0. Moreover, because agents would compare the returns to schooling
with the returns to capital, the discount rate would be equated to the cost of capital. Thus in the
Mincer earnings function (9.4), the parameters have a structural interpretation in terms of the

model: the intercept is the wage a worker who had no schooling would earn in country j; w,=
W(O)}., the base wage for country j; and the rate of return to schooling is actually the rate of return

to capital in the economy, ;= r;

Thus in the Mincer model the rate of return to schooling says nothing about the scarcity
of skill, just the scarcity of capital! And variables reflecting the quality of schooling do not
belong in the specification, even if inputs to schools vary a lot across countries or even
individuals. The reason is that the Mincer wage equation is an equilibrium condition that always
holds no matter what happens to school quality or in labor markets, so long as the return to
capital or the base wage is not affected. Consider, for example, a country in which the
government raises the quality of its universities. This higher quality, by definition, increases the

wages of university graduates compared with the wages earned by them in the past, but the
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higher wages of graduates then attract more students to the universities (remember that there are
no entry barriers to schooling in the model), and thus eventually the wages of the university
graduates are driven down, until the return to schooling for everyone again equals the discount
rate and the return to capital.

If the actual world conformed to the Mincer model, analysts would need to know the
country-specific heterogeneity in base wages, returns to capital, and schooling to fully account
for world wage inequality. Existing data sets provide information on average years of schooling
across countries (e.g., Barro and Lee 2001). The average years of schooling for the population
aged 15 and over vary from about 3 to 14 years across countries. Estimates of returns to
schooling (capital) from Mincer wage regressions estimated from labor force data from 52
countries, as reported in Bils and Klenow (2000), suggest a range from 0.024 to 0.28.
Interestingly, Bils and Klenow do not report the intercepts (base wages) from those regressions.
However, it would be a straightforward exercise to back out the intercepts (base wages) given the

information on average wages, average schooling levels, and the estimated ,B].’s for the 52

countries.

That said, this imputation exercise is not worth carrying out for three reasons. First, it is
not at all clear that the data used for each of the 52 countries are comparable. They were obtained
by different researchers, who may have dealt differently with the thorny problem of attributing
wages to, for example, the self-employed (a large part of low-income country labor forces), or
who are using data sets that differentially exclude certain workers such as part-time or informal.
Second, this sample of 52 countries represents less than one-third of countries. Third, and
perhaps most important, the Mincer model may be inappropriate to characterize the determinants
of wages around the world.

Putting aside the issue of data for the moment, two alternative approaches to the highly
restrictive Mincer model exploit the relationships given in equations (9.1), (9.2), and (9.3). The
first approach uses aggregate data on outputs Y, the labor force L, and schooling S across
countries. For example, assume that the aggregate production function (9.1) is Cobb-Douglas, so
that

Y, = AL/ TIK, 9.7)
where Aj characterizes the technology level (TFP) of the country, K, is the vector of capital stock
and natural resources, and L; = N; (s(x;)), where N; is the total number of workers in country j

and the s function relates the average skills of the work force in j to observables such as



schooling
years and school inputs—the inverse of (9.3). The skill price for country j, the marginal product
of a unit of skill, is then
;= a¥; /N (s(xi). 98)

Taking logs of (9.8) yields

log(coj) =loga + Ln(Y;/N;) — Ln(s(xi}.)) . (9.9)
Thus assuming the popular Cobb-Douglas functional form, all that is needed to compute skill
prices across countries are data on output per worker, estimates of the coefficients o (labor share)
from aggregate production function estimates, and information on schooling, given assumptions
about the s function.

Equation (9.9) is also useful in showing how skill prices are related to per capita GDP,
which is typically used to characterize both global income inequality and the determinants of
migration. As can be seen, the skill price of a country is positively associated with its GDP per
worker, which is only imperfectly correlated with its GDP per capita. More important, the skill
price, given GDP per worker, is negatively associated with the average level of human capital.
Thus high-GDP countries with unusually high levels of schooling will have a relatively low skill
price. Conversely, poor countries that have unusually low levels of schooling will have high
returns to skill. Differences in per capita GDP across countries are therefore not very informative
about the efficiency of the distribution of skilled workers around the globe, nor are they good
measures, used alone, of the gains from international migration for workers of different skill
levels.

A second approach to estimating global, country-specific skill prices uses individual
worker data from different countries on wages and human capital inputs, including schooling
years and schooling quality variables. For example, assume that the skill production function has
the form

X = ,ul.jexp(ﬁjS,j Ly t Hl.jngn), (9.10)
where 1 is an unobserved component of skill for a worker i in country j. Note that the coefficient

ﬂj is not the return to schooling (capital) as in the Mincer model, but expresses how a unit

increase in schooling years augments skill. Replacing (9.10) in (9.2) and taking logs yields
lOg(m/Z) = lOg wj + ﬂJSU + Iljky/k +Hl'jn on +log,u,j . (911)
The estimated country-specific intercepts from wage relationship (9.11) estimated across

individual workers from different countries yield directly the (log) skill prices, one for each
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country represented. With multiple workers for each country, it is also possible to allow the
coefficients on schooling and the other human capital variables to vary across countries.

Note that in this one skill case, the wage equation (9.11) looks identical to the Mincer wage
equation (9.4) except that inputs to schooling appear in the specification. Of course, if the skill
production function had a different functional form, the specification would look very different.
With the specific functional form for the skill production function chosen in (9.10), the Mincer
model is then nicely nested within the specification (9.11). If the Mincer model is correct, the

coefficient vector g associated with the vector of school quality inputs H, should be zero (school

quality does not matter in the Mincer model). Using appropriate comparable data on wages of
workers around the world one can thus also test the Mincer model.*

It is also possible to obtain estimates of the relationships between skill prices and
aggregate country variables and test the Cobb-Douglas functional form of the aggregate
production function. Substituting (9.9), the skill price relationship with aggregate income, into
(9,11), yields

log(Wyz) = log a. + Ln(YyN;) — Ln(s(xy) + BiSy + Lk + Hyyndy + log py. (9.12)
This hybrid equation contains both individual worker variables, characterizing the worker’s own
schooling years and school quality, and country-level variables, characterizing output and the
quality of the country’s aggregate work force. If the Cobb-Douglas functional form is true, the
coefficient on per worker GDP should be equal to one in this global wage regression. More
important, estimates of equation (9.12), obtained from a subsample of countries for which there
is both individual wage and human capital information as well as aggregate income and labor
force variables, can be used to predict skill prices for countries in which there are no individual
worker wages but only the aggregates, which are more generally available.

Up to this point, I have assumed that there is only one type of skill. In the Mincer model
it does not matter, again, how many different types of skill there are; the equilibrium relationship
between years of schooling and wages characterized by the Mincer wage equation remains the
same. For any integrated domestic economy, as assumed in the model, there is only one rate of
return, that to capital. In the more agnostic approach in which markets can be imperfect, one can
easily incorporate multiple skill types, but for empirical applications it is necessary to take a

stand on how many skill types there are and which laborers fit into which category of skill. For

* There are other tests: the returns to capital should equal the Mincer schooling return and the Mincer schooling
return should be the same for every schooling level.
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example, with suitable data it is possible to distinguish skill prices for, say, those workers with
less than a high school education and those with at least some college. Then the parameters of

equations (9.11) and (9.12) would have to be estimated for each of the two groups.’

2. Global Wage Data Sets

To quantify the global inequality in wages and to account for how much of world wage
inequality is due to variations across countries in skill prices and how much to differences in
human capital, data are needed that provide comparable wage and human capital information for
representative workers for most countries—that is, a global wage data set that is comparable,
comprehensive, and representative in countries and workers. Only three data sets, all of which
have become available in recent years, can be used to obtain estimates of world skill prices and
their determinants and to carry out tests of the Mincer model. They are the New Immigrant
Survey Pilot, Occupational Wages Around the World, and the New Immigrant Survey.

The New Immigrant Survey Pilot (NISP) is a random sample of new permanent resident
aliens in the United States who obtained the permanent visa (green card) in 1996 (Jasso et al.
2000). The relevance of this sample for gauging global inequality in wages is that the survey
obtained information on the earnings of these new immigrants in their last jobs in their home
countries before coming to the United States and on their complete employment histories. Thus
information on wages worldwide is taken from a common questionnaire, which provides
information as well on workers’ schooling, including the location of schooling, and work
experience. The disadvantage of the data set is that it is a small sample—it consists of only 332
workers who worked prior to coming to the United States (the total number of respondents is
800), and these workers represent only 54 countries. However, the subsample of countries with
wage data on migrants and aggregate information on incomes and the labor force can be used to
estimate hybrid equation (9.11), enabling predictions of skill prices for those countries on which
information on per worker GDP and aggregate schooling measures is available. This procedure
was carried out in Jasso and Rosenzweig (2009), and the predicted skill prices for 125 countries
were used to examine the determinants of immigration in both Australia and the United States.

The other drawback of this sample is that it is selective, including only workers who were able to

> This discussion ignores how heterogeneity in unobservable skills might affect schooling choices, which has
implications for how the relevant parameters are estimated.
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emigrate to the United States.

The data set Occupational Wages Around the World (OWW) is based on International
Labor Organization (ILO) labor force surveys, put together and made more comparable by
Freeman and Oostendorp (2000). Many years are covered, and there are a large number of
observations in any given year—for example, 4,942 observations in 1995. Each survey is meant
to represent the workers in each country. The main shortcoming of this database is that the
observations are average wages in an occupation. There are no other variables characterizing
human capital—that is, there is no information on age, work experience, or schooling. The
number of countries represented in any given year is also small; the maximum number is 67.
However, there is an incomplete overlap in country coverage across years, so that one can,
combining years, achieve a larger set of countries. Again, using the hybrid equation relating
aggregate country variables to wage data it is possible to estimate skill prices for many more
countries, but it is necessary to assume that the one occupational variable captures all of a
worker’s human capital attributes.

The New Immigrant Survey (NIS) baseline data set is a larger and more comprehensive
version of the NISP. It contains information on a probability sample of new immigrants to the
United States in 2003. Home country wages, adjusted for purchasing power parity (PPP) and
inflation, for over 4,000 workers representing 140 countries are contained in these data, along
with comprehensive migration and schooling histories. Thus it is possible to use the NIS data to
estimate skill prices, without any information on aggregate country variables, for as many as 140
countries.

Table 9.1 provides descriptive statistics for the three data sets. The average annualized
earnings of the sampled immigrants is predictably higher than the earnings of those respondents
represented in the OWW data set, given that immigrants to the United States have higher
schooling levels than the average person in the world—in the NISP and NIS samples average
years of schooling are 14.4 and 13.8, respectively. These figures can be compared with the
population-weighted world average, based on the Barro-Lee data (Barro and Lee 2001) of 6.3
years. That immigrants are positively selected for schooling is an implication of most standard
migration models (see later discussion), because the United States has a higher skill price than
most countries of the world (Jasso and Rosenzweig 2009). When estimating country-specific

skill prices from these data, as noted, schooling and other human capital variables are controlled.

3. Estimates of Worldwide Skill Prices and Tests of the Mincer Model
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Using the three global wage data sets, it is possible to estimate country-specific skill
prices. In this section I report results from estimating skill prices using the NIS data. Country-
specific skill prices were obtained based on a specification of the log wage equation (9.11) in
which each country is allowed to have a unique intercept (the skill price) and a unique coefficient

on the individual schooling (,Bj) and labor force experience variables (the ij)' Working within

the constraints of missing variables, I obtain 139 estimated skill prices. The estimates indicate
that, unsurprisingly, I can soundly reject the hypothesis that skill prices are the same across
countries, but I cannot reject the hypothesis that the schooling and work experience coefficients
are identical across countries. Bils and Klenow (2000) do not carry out a statistical test of
whether the schooling coefficients estimated for each of the 52 countries were not statistically
significantly different, so that it is not clear whether the global variance in schooling returns is
essentially zero or my estimates of schooling returns by country lack precision.

The NIS data can also be used to test whether the Mincer model is the appropriate model
for specifying and interpreting the relationship between wages and schooling. To carry out the

test, I allow the country-specific schooling coefficient ﬁj to vary with measures of school quality

in each country. Eight measures are used: average class sizes, average teacher salaries, and
pupil/teacher ratios in primary and secondary schools and the number of ranked universities and
the average rank of the ranked universities based on the Times Higher Education survey. As
noted, in the Mincer equilibrium model school quality should be unrelated to the returns to
schooling, which is anchored by the return to capital. Table 9.2 reports estimates of the log wage
equation. In the first column, a bare specification is used in which the coefficient on schooling is
assumed to be the same across countries and no school quality variables are included, but
intercepts differ by country. Interestingly, in this Mincer specification the global coefficient on
schooling of 0.095 is almost identical to the average of the 52 country schooling returns in the
Bils and Klenow collection of estimates—0.096. However, based on the test statistic reported in
the second column of the table, I strongly reject the hypothesis that the schooling coefficients do
not vary by schooling quality. The Mincer model, assuming perfectly functioning labor, credit,
and capital markets, is thus rejected.

Rejection of the Mincer model means that the country-specific intercepts can be
interpreted as skill prices and that it is necessary to account for schooling quality variables in

estimating the determinants of wages. However, by estimating one skill price per country I am
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assuming there is only one type of skill. To see whether ignoring skill type heterogeneity will
seriously affect inferences about either world inequality or incentives for migration, I reestimated
wage equation (9.11) separately for two groups of workers, those with 12 years of education or
less and those with 16 years of education or more—yielding two sets of country-specific skill
prices. Figure 9.1 shows the correlation between the college graduate skill prices and the skill
prices obtained assuming one skill. As can be seen, the two series co-move strongly; the
correlation is over 0.74. Given this high correlation, it is not possible to assess the contribution of
variations in the pricing of skills across countries by skill type. As will become clear, however,
cross-country differences in skill prices in the one skill price framework account for a large
component of the variance in earnings across countries as well as the quantity and human capital

intensity of cross-border labor flows.
4. Proximate Determinants of Global Earnings Inequality

It is useful to compare the cross-country variation in estimated skill prices from the NIS
with the global variation in average years of schooling from Barro and Lee (2001), the schooling
returns from the 52-country table in Bils and Klenow (2000), and the GDP per adult equivalent
in order to understand the proximate determinants of world inequality in incomes.® Because
differences in GDP across countries reflect differences in schooling levels and the rewards to
skills as well as the variability in labor force participation, it is expected that the global variation
in GDP will exceed that of the other variables, unless there are strong negative covariances
across human capital levels, skill prices, and returns.’

Table 9.3 reports three inequality statistics for each variable: the coefficient of variation
(CV), the span (ratio of highest to lowest value), and the ratio of highest to lowest value in the
interquartile range (IR). The three statistics generally show the same patterns across the four
global variables: GDP per adult equivalent and country-specific skill prices exhibit the most
global variation, and schooling levels and returns the least. Indeed, the coefficient of variation of
schooling is less than 60 percent of that for GDP, whereas the CV for skill prices is over 85

percent of the CV for GDP. Thus variability in schooling levels across countries is 44 percent of

® Nine outliers were removed from the set of skill price estimates. The formula was to remove the topmost and
bottommost values obtained from countries with only one person represented in the data. Thus my estimate of the
global variation in skill prices is conservative.

’ Both the schooling level and the schooling return variables are positively correlated with skill prices.
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the variability in country-specific skill prices. The span statistic, in which the variation in skill
prices exceeds the variation in incomes across countries, suggests that despite trimming there
may be outliers in the set of skill price estimates, which will in part contaminate the CV
comparisons. The IR measure is insensitive to outliers in any of the variables. However, the
patterns are similar for this inequality measure—the IR statistic for average schooling is only 44
percent of the IR of GDP, while the IR for skill prices is 73 percent of the IR of GDP. For this
statistic, then, the cross-country variability in skill prices is 66 percent higher than the
intercountry variability in schooling attainment.

Based on equation (9.11), the set of estimated worldwide skill prices can be used to
compute the hourly wage of any worker of given schooling for any rate of return (5). Thus, for
example, the earnings of high school or college graduates for 140 countries could be constructed.
To illustrate the importance of skill price variability in world wage inequality relative to both
variability in schooling levels and schooling returns (the coefficient on schooling), I use the skill
price estimates to predict earnings for persons with both 12 and 16 years of education for a given
schooling return, using equation (9.11), for a subset of countries. I then alter the schooling
coefficient differentially across countries to assess how such a change would affect cross-country
earnings gaps by schooling level. For this comparison, I select five countries with low and
intermediate levels of skill prices: Nigeria, India, Indonesia, Mexico, and Korea. Figure 9.2
reports the predicted annualized earnings for high school and college graduates for each of these
countries based on their estimated skill prices and an assumed schooling return of 0.07.

Four features of figure 9.2 are notable. First, earnings differences across the countries, for
either schooling level, are enormous. For example, a Korean high school graduate earns 10 times
more than a high school graduate in India; a college graduate in Mexico earns almost three times
more than a college graduate in Indonesia, and so on. The cross-country misallocation in skill is
evidently very high. Second, a pattern evident in figure 9.2 is that differences in earnings across
countries within each schooling level dominate differences in earnings within countries across
schooling levels. Providing a Nigerian high school graduate with a college education (with a 7
percent return), for example, raises his or her earnings by $200 a year. If that high school
graduate migrates to Indonesia or Mexico, his or her earnings rise by $1,200 or $5,400 a year.
Put another way, if everyone in the world obtained a college degree but stayed in place, even
ignoring standard within-country general equilibrium effects that would depress the return to

schooling, world wage inequality would not be substantially altered. The gaps in wages between
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persons in poor (low—skill price) and rich (high—skill price) countries would not be affected
significantly by improvements in schooling attainment in poor countries, unless such
improvements affected skill prices positively.

A third feature of figure 9.2 is that the higher the skill price the larger are the absolute
gains from increasing schooling. In India, for example, the annual gain in earnings from
obtaining a college degree over a high school diploma is just $190. The same additional four
years of schooling yields a gain of $1,600 a year in Korea and $500 a year in Indonesia, but only
$120 a year in Nigeria. Yet the rate of return to schooling is the same in all four countries. These
cases illustrate the point that rates of return to schooling provide no information on differences in
the productivity or value of schooling across countries. It is necessary to know how skills are
priced in each country—skill prices.

Finally, figure 9.2 shows that the absolute differences in earnings across the countries are
always higher for the college graduates compared with the high school graduates. The gap
between what a high school graduate earns in Korea and Indonesia is $3,700 a year; the cross-
country earnings gap for the same two countries for a college graduate, however, is $4,850 a
year. Similarly, a high school graduate working in Mexico earns $2,900 more a year than one
working in Indonesia; a college graduate would earn $3,800 more. Put another way, the absolute
gains from migration are higher for the more educated. As I discuss and test more formally
shortly, as long as schooling is not strongly positively correlated with migration costs,
international migration will tend to be positively selective—that is, the more educated in a
population are more likely to emigrate to a country with a higher skill price.

The patterns of earnings by country and schooling level depicted in figure 9.2 were
constructed based on the assumption that the return to schooling was identical across countries.
How is intercountry inequality, and the gains from crossing borders by schooling level, affected
if heterogeneity in schooling returns is increased, leaving skill price differences the same? Figure
9.3 reports the results of this counterfactual for two countries, Bangladesh and Korea, again
based on their estimated skill prices. However, in this case earnings are computed for the two
schooling groups within each country for two rates of return to schooling, 0.07 (as before) and
0.10. For both rates of return the patterns in figure 9.2 are apparent in figure 9.3—the differences
in earnings across the two countries within schooling groups dominate strongly differences in
earnings across schooling groups within each country; the gains from schooling investment are

higher in the higher—skill price country; and the gains from moving to the higher—skill price
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country are higher for the more educated.

The most interesting experiment is one in which the return to schooling in the lower—skill
price country, in this case Bangladesh, is increased, while leaving the return at the same (lower)
level for the higher—skill price country, Korea. Does this experiment alter any of the conclusions
made under the assumptions of equal returns? First, the figure reveals that the increase in the
return to schooling increases both high school and college graduate earnings in Bangladesh and
lowers the earnings gap between the two countries for both groups. However, despite the
relatively larger increase in the earnings of college graduates, the gap in earnings between
Korean and Bangladesh college graduates is still larger than the gap between high school
graduates across the two countries. And despite the fact that the return to schooling is 43 percent
higher in Bangladesh than in Korea, the gains from migration are still higher for the college

graduates than for the high school graduates.

5. Skill Prices, GDP, and International Migration

In this section I use the estimated skill prices, combined with other country-specific
information, to examine the determinants of international migration. This exercise is useful from
two perspectives. First, if one accepts the estimates of skill prices as being accurate, they can be
used to appropriately test models of migration and to assess how differing prices of skill across
countries affect the quality and amount of migration. Or, accepting models of migration, one can
view this exercise as validating the skill price estimates, which should significantly affect the

choices of migrants.

A. Framework.

The simplest framework for understanding the forces affecting migration and that
incorporates skill prices begins with agent i residing in country j with a given number of skill

units x,. That agent earns W= w x. at home, from (9.2), but can earn ¥, = @ x,in country u. The
y J 1 u u i
net gain from migration Gl.j, ignoring issues of skill transferability, is then
Gl'j = [Cl)u - a)j]xi - C!'/‘ s (913)
where Cl.j is the direct cost of migration. The agent migrates fromj to u if Gij> 0.

Equation (9.13) has several testable implications for both the quantity and selectivity of

migration. Given a distribution of private costs within a country, it can be shown easily that, first,
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the larger the skill price gap w, — w;, the greater is the gain from migration and thus the more
migration. Countries with the lowest skill prices will experience the highest rates of out-
migration. Second, agents with more skill units have greater gains from migration, as was seen in
figure 9.2. As a consequence, for given fixed costs of migration, as the skill price gap narrows,
migration becomes more positively selective—only those agents with the highest levels of skills
still experience a gain from migration net of costs. Migrants from countries with the highest skill
prices will be highly skilled, but there will be fewer of them. Third, increases in the cost of
migration will lower the number of migrants, but also increase the average skill levels of those
who migrate, because only those with the highest levels of skill will experience a net gain from
migration. Migrants from nearby countries will be numerous and relatively low skill. A key point
is that changes in the skill price gap and in the costs of migration will have opposite effects on
the quantity and quality of migration flows.

A more elaborate model would incorporate country-specific amenities in a utility-
maximizing framework, but the basic implications from (9.13) would still hold (see Jasso and
Rosenzweig 2009). In an empirical study of international migration, (9.13) suggests that
variables are needed that measure skill prices at destination and origin, the determinants of
human capital production, as in (9.3), as well as migration costs. A major issue in examining the
determinants of international migration is that, unlike domestic migration in most countries,
international migration is heavily regulated, subject, for example, to quotas by country of origin
and restrictions based on family relationships to destination country citizens. Characterizing the
costs and opportunities of international migration are thus complex. In addition, the model
ignores uncertainty and thus the costs of search. One related important aspect of migration is that
it tends to depend on networks, which play an important role in reducing search and other
migration costs. Therefore migration is a dynamic phenomenon, with today’s migration costs
related to past migration histories to particular destinations.

U.S. immigration is an example of a heavily regulated system. More than 90 percent of
U.S. immigrants qualify for a visa because of a family relationship. To minimize the
complexities associated with international migration, I look at two types of international
migrants to the United States: migrants who obtain an employment visa and migrants who obtain
a student visa. Migrants who obtain an employment visa are not required to have family
members in the United States to qualify, and visa qualification in this category is based on the

human capital characteristics of the potential migrant and the willingness of a U.S. employer to
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hire the migrant. Jobs that qualify in this category are the kinds in which the role of networks is
minimal. Those who qualify can also bring their immediate relatives (children and spouses). The
appropriate category that comes closest to the “economic’ migrant to which the model pertains is
the “principal applicant”—that is, the person who receives the job offer as opposed to the relative
of someone who does. Principal applicant visas make up less than 5 percent of all U.S.
permanent resident visas. Fortunately, the NIS oversampled immigrants in this category, so that
sufficient numbers represent most countries. Moreover, country quotas were not binding in the
period covered by the NIS for this category of immigrant. Because the NIS provides the number
of employment principal immigrants by country and their schooling, it is possible to look at the
determinants of both the quantity and quality of immigrants in this category.

U.S. student visas are relatively unregulated and not subject to country quotas. Generally,
all that is necessary to qualify for a student visa is to have obtained admission to one of the
thousands of qualifying U.S. educational institutions. The two sources of annual information on
foreign students by country of origin are (1) the student visas issued by the State Department
each year and (2) the number of foreign students studying in the United States by both U.S.
institution and country of origin, which is provided in the Student and Exchange Visitor
Information System (SEVIS). The United States is the most popular destination for foreign
students; approximately 250,000 came to the United States to study in 2004.

A somewhat different model is required to examine student migration decisions—that is,
the decisions on where to acquire schooling. The model incorporates, besides the attributes of the
schools at both the origin and the potential destinations, the skill prices at home and in potential
destinations because of the possibility that acquiring schooling abroad increases the probability
of obtaining a job offer where one is studying (this model is set out in Rosenzweig 2007, 2008).
If so, part of the gain from acquiring schooling in destination country u as opposed to in home
country j will be determined by the gap in skill prices between the two countries, as in (9.13).
Based on the NIS information on the prior visas held by immigrants and the SEVIS data on
stocks of foreign students, I constructed country-specific measures of the fraction of foreign
students who were able to stay permanently in the United States (Rosenzweig 2008). On average,
20 percent of students stayed, suggesting that studying in the United States hugely increases the
probability of immigrating there. Stay rates, however, differed greatly across countries. It is
possible to use these measures of student stay rates to also examine determinants of the fraction

of U.S. foreign students returning to their home countries.
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To estimate the determinants of migration to the United States incorporating country skill prices,
I use two measures of migration costs: distance of each country’s capital to the nearest port of
entry to the United States and GDP per adult equivalent. I expect that the distance from origin to
destination is positively associated with the costs of migration. For GDP, I expect that wealthier
households are more able to bear the immediate costs of migration, so that richer countries,
among those with the same skill prices, will experience higher rates of outmigration. I also
include as determinants the school quality variables used in the tests of the Mincer model and the
size of the home country population. To extend the number of countries beyond the 139 for
which I have direct estimates of skill prices in order to minimize country selectivity, I estimated
an auxiliary equation predicting skill prices based on equation (9.12), using information on each
country’s per worker GDP, its average schooling levels, and the school quality variables. Based

on these estimates, I predicted skill prices for 168 countries.
B. Estimates

Table 9.4 reports the estimates of the effects of origin country skill prices per adult-
equivalent GDP and distance, all in logs, on the log of the number of employment visa principal
migrants to the United States in 2003 and the log of the average years of schooling of those
migrants.® The coefficient signs conform perfectly to the model: skill prices are negatively
related to the number of migrants but positively related to their average schooling; distance
reduces migration but raises the quality of those who do migrate; and GDP is positively
associated with outmigration but negatively associated with the schooling of the outmigrants.
Thus GDP and skill prices have opposite effects on the quantity and quality of migration. Studies
that use only origin country GDP as a determinant of migration are thus confounding the effects
of financial constraints with the gains associated with increased wages.

What do these estimates imply for a “brain drain” from low— and high—skill price
countries? One measure of skill outflow is the total number of years of schooling of the
migrants—the number of migrants multiplied by their average schooling. Although the point

estimate of the effect of variations in the skill price on the number of employment migrants is not

® The number of countries in the analysis of the schooling of the employment migrants is reduced because some
countries did not have any employment migrants. A more sophisticated analysis would take into account the
selectivity associated with nonmigration. However, it is an implication of the model that factors affecting the
decision to migrate also affect who migrates (selectivity).
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estimated with precision, the magnitude is high in absolute value, suggesting that a doubling of
the skill price would reduce outmigration by 83 percent. The average schooling of the
outmigrants, column (2), would increase by 50 percent, however. The net effect of increasing the
origin country skill price on the total outflow of human capital, measured by the total years of
schooling of all migrants, is thus negative. Doubling the skill price reduces the total human
capital outflow by 33 percent. Thus less human capital flows out of high—skill price countries
compared with low—skill price countries. Put another way, even though outmigration is more
skill-intensive in high— than in low—skill price countries, because far more migrants leave from
low—skill price countries the total loss in human capital is greater. From the perspective of poor
countries that subsidize education, this is a loss. From the perspective of global efficiency,
however, that more human capital flows out of places where skill is rewarded less to places
where it is more valuable is good news.

What about the flows of foreign students to rich countries and back? Table 9.5 reports
estimates from Rosenzweig (2008) that look at the effects of skill prices (estimated from the
NISP and OWW), per capita GDP, and distance on the number of foreign students to the United
States and their return rates. The first two columns indicate that higher skill prices at origin,
whether estimated from the NISP or the OWW world wage data sets, reduce the number of
students who seek schooling abroad. Because these estimates control for measures of school
quality, the estimates suggest that foreign schooling is in part a job-seeking phenomenon. The
estimates also suggest, parallel to those obtained for permanent migrants, that for given skill
prices countries that are richer experience greater outflows of migrants. Countries with lower
skill prices experience more student outmigration. Moreover, the students from these countries
are also less likely to return. As seen in the third and fourth columns of table 9.5, student return
rates are higher back to countries that have higher skill prices, that reward skill.

Outsourcing of schooling may be a benefit for poor countries, which cannot afford to
supply a sufficient quantity of high-quality schools, but only if students return. Is foreign
schooling relatively beneficial for poorer countries? The point estimates suggest that a doubling
of the home skill price lowers the outflow of students by from 26 to 73 percent and also increases
their return rates by from 1.5 to 1.9 percent. The net effect is that the total number of students
who receive their higher levels of schooling abroad are significantly greater in low—skill price
countries. Although such countries lose a greater fraction of their best and brightest because they

“outsource” far more students compared with high—skill price countries, the total numbers that
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return are higher. Outsourcing higher education thus appears to benefit, on net, poorer countries.

6. Conclusion

Global inequality in incomes can be viewed from various perspectives—for example, as
an indicator of global unfairness, as a measure of the challenge for development policy, or as a
measure of the inefficient global allocation of labor or capital. Understanding the proximate
determinants of income inequality is useful for all of these perspectives. In this chapter, I use
newly available data on the wages and human capital of workers across the countries to shed
light on how much of inequality in incomes across countries is due to inequality in human capital
and how much from differential rewards to the same skills—that is, the cross-country variation
in skill prices. I showed how the global wage data can be used to identify skill prices worldwide
and to test the Mincer model of schooling and wages that has been used pervasively to specify
and interpret wage functions estimated within countries. I also used estimates of the set of
country-specific skill prices to quantify the relative importance of skill and skill price variation in
explaining income inequality and to assess how variation in the rewards to skill across countries
affects the quantity and quality of cross-border migrant flows, including permanent employment
and student migrants to the United States from around the world.

The data reject the model underlying the Mincer wage specification, which assumes
perfect capital and labor markets and no barriers to schooling acquisition (and no permanent
differences in lifetime earnings), suggesting that a framework incorporating the determinants of
the supply and pricing of skills is better suited to accounting for wage inequality. My estimates
also indicate that domestic rates of return to schooling across countries are relatively
uninformative about differences in the rewards to skill across countries. To fully characterize the
global wage distribution, one needs to know how schooling affects wages, levels of schooling,
and skill prices for each country. My estimates indicate that the global variation in skill prices is
significantly greater in magnitude than either the variation in schooling levels or schooling
returns. In particular, my estimates of country-specific skill prices suggest that global inequality
in the price of skill exceeds global inequality in either average per country schooling levels or
returns by as much as 70 percent, depending on the measure. That most of global inequality in
incomes is due to intercountry differences in the prices of skills suggests that greater equalization
of schooling levels arising from domestic schooling policies will have only marginal effects on

global inequality, that domestic development policies in poor countries should focus on the
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underlying reasons skills are less valued, and that, given the structure of skill prices, labor is
poorly distributed across countries based on global efficiency criteria.

My estimates based on patterns of migration to the United States indicate that skill price
variation is an important determinant of the variation in the number and schooling levels of
migrants. In conformity with a simple model of migration choice, the estimates indicate that
among countries with similar levels of per capita income, countries with low skill prices
experience greater rates of outmigration than countries with high skill prices, but the average
schooling levels of those leaving low—skill price countries are lower than those from high—skill
price countries. Despite this selectivity, the estimates suggest that the total amount of human
capital—the total schooling years of migrants—exiting countries is greater per capita in low—
than in high—skill price countries. By contrast, low—skill price countries appear to gain more
from the migration of persons to acquire schooling abroad. Although more students from low—
skill price countries study abroad and the return rates of those students are also lower for such
countries compared with those for countries in which skills are more favorably rewarded, on net
larger stocks of foreign-trained, tertiary-educated persons are in low—skill price countries than in
high—skill price countries. Existing estimates of the brain drain from low-income countries thus
need to take into account both phenomena—the permanent outflow of those who have acquired
their schooling in the home country and the numbers of persons in home countries who received
their subsidized schooling elsewhere. Finally, my estimates indicate that rising incomes
accompanied by stagnant skill prices will lead to greater outmigration. Thus, for example,
humanitarian aid, which increases incomes in poor countries but does little to increase the
rewards to skills, can worsen the brain drain, although it would also increase global efficiency
and therefore output. How individual countries increase incomes will then significantly affect the

global mobility of workers and total world output.
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Figure 9.2 Predicted Annual Earnings (PPP-Adjusted) of High School and College Graduates Based on NISP Skill Prices, across Selected
Countries (r =0.07)
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Figure 9.3 Predicted Annual Earnings (PPP-Adjusted) Based on NISP Skill Prices by Schooling Level and Schooling Return, Bangladesh
and Korea
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Table 9.1 Characteristics of Global Earnings Data Sets

NISP home country NIS home country
Data set/variable workers OWW, 1995 workers
Mean annualized earnings of respondents 14,719 10,208 17,803:
(US$) (2,602) (13,289) (29,410)
Mean age of respondents 34.6 — 39.7

(8.53) (11.5)
Mean years of schooling of respondents 14.4 — 13.8

(4.5) (3.82)
Number of industries — 49 —
Number of occupations - 161 —
Number of countries 54 67 140
Number of workers 332 4,924 4,455

Note: NISP = New Immigrant Survey Pilot; OWW = Occupational Wages Around the World; NIS = New Immigrant Survey.

* PPP-adjusted.
® Exchange rate-adjusted, country-specific calibration with lexicographic imputation.
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Table 9.2 Test of Mincer Model: Fixed Effcts Country Log Wage Regression Coefficients from NIS using Bartik School Quality Data and Log of
Hourly Wage for Men at Last Job before Coming to United States

Origin country variable (1) 2)
Total years of schooling completed 0.0948 0.0721
(6.12) (3.30)
Work experience 0.0298 0.0339
(2.24) (2.30)
Work experience squared (x 107) —0.0697 —0.0664
(2.59) (2.19)
Interactions with Bartik school quality No Yes
variables?
F-test: E = 0 [p-value] - 2.50 [0.006]
(d.f,d.f) (10, 1,226)
Number of sending countries 112 112

Sources: New Immigrant Survey (NIS) and Bartik 2008.
* Absolute value of t-ratio is in parentheses.

® The school quality measures are pupils per teacher, spending per pupil, and average teacher salaries in primary and secondary schools; the
number of ranked universities; and the average rank of ranked universities, if any.
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Table 9.3

Global Inequality: Comparisons of the Global Variation in Schooling, Schooling Returns, Per Capita GDP, and Skill Prices

Number of countries Coefficient of variation Span (ratio) Interquartile range (ratio)
Average years of 106 0.474 14.4 2.2
schooling, 15+ population
Mincer schooling return 52 0.494 11.7 1.7
GDP per adult equivalent 139 0.948 76.7 4.9
Skill price 130 0.807 108.9 3.6

Sources: Average years of schooling: Barro and Lee 2001; Mincer schooling return: Bils and Klenow 2002; GDP: World Tables 2003; skill price:

estimated by the author using the New Immigrant Survey.

30




Table 9.4

Effects of Home Country Skill Price, GDP, and Distance on Log of Number and Average Schooling Attainment of U.S. Employment Visa

Principal Immigrants in 2003

Log number of employment visa principal

Log average schooling of employment visa

immigrants principal immigrants
Log skill price (NIS, 2003) —0.827 0.499
(1.23) (2.83)
Log GDP per adult equivalent 0.604 —0.108
(2.74) (1.60)
Log distance of country to the United States —0.248 0.0377
(4.98) (4.43)
R-squared 0.611 0.112
Number of sending countries 168 94

Source: New Immigrant Survey.

Note: The specification also includes whether there is a military base in the home country, the log of the home country labor force size, and
measures of the quality of primary and secondary schools.

* Absolute values of bootstrapped t-ratios in parentheses are based on the multiple imputation method.
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Table 9.5
Effects of Home Country Skill Price, GDP, and Distance on Log of Number and Exit Rate of Foreign University Students in United States, 2004

Dependent variable Log number of U.S. foreign students Log exit rate of foreign students
Basis for skill price NISP oOwWwW NISP OWW
Log skill price —0.259 —0.730 0.0152 0.0193
@.17) (2.14) 2.31) (3-61)
Log GDP per adult equivalent 0.516 1.06 0.00145 —0.00137
(2.85) (2.71) (0.56) (0.42)
Log distance of country to United States —0.298 —0.309 0.00163 0.00237
(4.30) (4.44) (0.52) (0.75)
R-squared 0.766 0.766 0.183 0.202
Number of sending countries 125 125 125 125

Source: New Immigrant Survey Pilot, Occupational Wages Around the World, and the Student and Exchange Visa Information System, 2004.

Note: The specification also includes the log of the home country population and measures of the number and quality of home country

universities. NISP = New Immigrant Survey Pilot; OWW = Occupational Wages Around the World.

* Absolute values of bootstrapped t-ratios in parentheses are based on the multiple imputation method.
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