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Returns to Scale of Production Function: Pooled, Within and 

Between Quantile Regression Approach 
 

1. Introduction 

In the last century, the United States, regional and state’s agriculture have undergone an 

impressive transformation with much debate about changes in their farm economic structure.  

This paper examines the changes in input resource use in the production of crops and livestock 

and the relationship between the uses of inputs to produce outputs using a primal production 

framework.  Apart from this functional relationship, there is a growing interest in how these 

relations (linear or non-linear) have evolved across cross-section units, over time and across 

quantiles due to changes in technology. 

Changes in the input and output variables has been examined for the U.S. agriculture 

sector using the primal production function [Marschak, and Andrews (1944); Mundlak (1963); 

Hoch (1958, 1962); Zellner, Kmenta, and Dreze (1966); Schmidt (1988)], and the dual cost 

function [Nerlove (1963); Fuss, and McFadden (1978); Diewert (1974); McElroy (1987)] or the 

profit function [Weaver (1983); Lopez (1985); Dixon, Garcia, and Anderson (1987); Antle 

(1984)].   There is a widespread use of ordinary least square (OLS) in examining the changes in 

farm economic structure accounting for autocorrelation and heteroscedasticity, alternative 

functional forms, and estimation techniques.  Most research involved estimation of the 

relationship between endogenous and exogenous variables at the mean.  With the introduction of 

quantile regression (QR) methods by Koenker and Bassett (1978), the relationship between 

endogenous and exogenous variables can be estimated and examined at each quantile.  In 

general, QR proves to be extremely useful whenever one is interested in focusing on particular 
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segments of the analyzed conditional distribution.  QR has been developed and applied to cross-

section data; here quantile regression is applied to cross-section time-series data to examine the 

shape across cross-section units, linear or non-linear relationship over time between the 

endogenous and exogenous variables.  Recently, Marroquin and Shaik (2009) have estimated the 

production, restricted cost, and restricted profit functions using North Dakota agriculture sector 

time-series data from 1960-2004.   They have applied to time-series data to examine the shape 

and the linear or non-linear relationship between the endogenous and exogenous variables in the 

estimation of the production, cost, and profit functions.  Finally the difference between the 

traditional OLS and quantile regression results suggest a non-linear relationship between the 

endogenous and exogenous variables. 

Since the theory related to panel QR has yet to be established, here the spatial and 

temporal variation is accounted with the use of between and within regression (Mundlak et al.) 

and extended to QR framework.  This would allow the differentiation of the contribution of 

between time-series (TS) and cross-section (CS), and within to parameter coefficient at each 

quantile.  Second, this methodology would allow the estimation of panel QR using traditional 

alternative panel estimation.  As a step in this direction, the paper presents the pooled, between 

and within QR returns to scale estimates of a production function. 

The rest of this paper is organized as follows: Second section presents the conceptual 

framework and data used in the empirical application.  The third section focuses on the specific 

features of the empirical model and the results of the production, cost, and profit functions.  

Finally the conclusions are presented and scope for future research is proposed. 
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2. Conceptual framework 

Past and current econometric estimates have focused on the estimation of the production function 

using the traditional time-series and panel procedures.  Here, an extension to estimate the 

production function using QR is presented. 

2.1. Pooled Production function 

Production theory assumes that the relationship between multiple outputs and inputs is reflected 

by the concept of a transformation function.  With some additional assumptions and aggregation 

of all outputs, the input-output relationship is often reduced to a production function (Fuss and 

McFadden, 1978).  The production function represents the relation between nonallocable input 

vectors,  1 1, ,...., N
nx x x x    used in the production of an output vector,

 1 1, ,...., M

my y y y   .  Different functional forms can be applied in the context of agricultural 

production functions.  This research uses the Cobb-Douglas function to represent the production 

function characterized as: 

(1) 

 
   , ,

1
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K

it k it it k it

k

f x or y A xy 


  
 

where k = 1…K  is the number of inputs, cross-section i=1 … N and time-series t=1 … T. 

Following Koenker and Bassett (1978), a single equation econometric model can be 

extended to quantile regression to examine the changes in coefficients across the distribution of 

endogenous model.  The quantile regression provides parameter coefficients estimation for any 

quantile in the range of zero and one (0, 1) conditional on the exogenous variables.  Following 

Koenker and Hallock (2001, p. 146) the QR for production function can be represented as: 
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The quantile regression as defined in equation 2 is used as the basis for the empirical 

model presented here: 

(3) 
k,it ,τy | x = +it 0, k k,itτ τQ α α x    

where y is aggregate output, |τ kQ y x   is the 
th  quantile of y conditional on covariate matrix, 

Xk that includes the quantities of capital, land, labor, materials, energy, and chemicals.  The 

coefficient 
,k   represents the returns to covariates or inputs at the 

th quantile. 

2.2. Between Cross-section Production function 

The Cobb-Douglas function to represent the between cross-section production function can be 

characterized as: 

(4) 
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where 
1

T

i itt
y y T


 , 

k = 1…K  is the number of inputs, and cross-section i=1 … N. 

The quantile regression as defined in equation 4 is used as the basis for the empirical 

model presented here: 

(5) 

 
k,i ,τy | x = +i 0, k k,iτ τQ α α x  
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2.3. Between Time-series Production function 

The Cobb-Douglas function to represent the between time-series production function can be 

characterized as: 

(6) 

 
   , ,

1

| k

K

t k t t k t

k

f x or y A xy 


  
 

where 
1

N

t itn
y y N


 , 

k = 1…K  is the number of inputs, and time-series t=1 … T. 

The quantile regression as defined in equation 6 is used as the basis for the empirical 

model presented here: 

(7) 

 
k,t ,τy | x = +t 0, k k,tτ τQ α α x  

 

2.4. Within Cross-section and Time-series Production function 

The Cobb-Douglas function to represent the within cross-section, time-series production function 

can be characterized as: 

(8) 

 
   , ,

1

| k
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t k t t k t
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
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where 
1 1

N T

t it i t itn t
y y y y y and y y NT

 
      , 

k = 1…K  is the number of inputs, and 

time-series t=1 … T. 

The quantile regression as defined in equation 8 is used as the basis for the empirical 

model presented here: 

(9) 

 
k,t ,τy | x = +t 0, k k,tτ τQ α α x  
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3. Data and variables used in the analysis 

The U.S. Department of Agriculture’s Economic Research Service (ERS) constructs and 

publishes the state and aggregate production accounts for the farm sector2. The features of the 

state and national production accounts are consistent with gross output model of production and 

are well documented in Ball et al. (1999). Output is defined as gross production leaving the farm, 

as opposed to real value added. Price of land is based on hedonic regressions. Specifically the 

price of land in a state is regressed against land characteristics and location (state dummy). Prices 

of capital inputs are obtained on investment goods prices, taking into account the flow of capital 

services per unit of capital stock in each state (Ball et al, 2001). In the primal production 

function, physical input and output quantities are used in the estimation.   

4. Empirical Model and Results  

To measure the farm input and output change characterizing the U.S. agriculture from the time 

period 1960-2004, the pooled, between and within production function is estimated using QR.  

Second the time varying parameter coefficients estimated by the QR are also presented. 

4.1 Production function 

Empirical representation of the Hicks-neutral technical change of the production function as 

defined in equation 3 can be represented as: 

(10) 

0 1 2

3 4

5 6

_ ln _ ln _

ln _ ln _

ln _ ln _

ln t t t

t t

t t T

AO QI cap QI land QI

lab QI mat QI

eng QI chem QI T

  

 

  

  

 

    

                                                            
2 The data are available at the USDA/ERS website http://www.ers.usda.gov/data/agproductivity/.  
 

http://www.ers.usda.gov/data/agproductivity/
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where AO_QI, Cap_QIt, Land_QIt, Lab_QIt, Mat_QIt, Eng_QIt and Chem_QIt and T characterize 

aggregate output, capital, land, labor, aggregate materials, energy, chemicals, and technology, 

respectively.  The parameter coefficient and the significance for each quantile ranging from 10 to 

90 percent are presented.  Because quantile regression presents snapshots at different points of a 

conditional distribution, they represent a parsimonious way of describing the whole distribution. 

4.2  Results 

The parameters obtained from the QR for the pooled, TS, CS and Within QR estimation 

expose statistical significance between the agricultural inputs and aggregate output for the period 

1960-2004 using state-level data.  Table 1 presents the average parameter coefficients of 6 input 

quantities and technology across nine quantiles. The rows in the table represents pooled, between 

cross-section, between time-series, and within cross-section time-series quantile. The results in 

the table are striking in several respects. The measurement of technology “year” is significant 

across all quantiles and in particular for pooled data and between time series (bottom block of 

table). One thing that stands out here is that the elasticity estimates are very close ranging from 

0.9 percent for the first quantile to almost 1.3 percent for the 90
th

 quantile, in the case of pooled 

data.  Similar estimates are obtained for between time series production function quantile 

regressions. 

The pooled production function estimates are significant for the first five quantiles, the 

fifth quantile representing the average regression. For example, an additional unit of capital 

increases output by about 6 percent in the first and third quantile, whereas on average (5
th

 

quantile) it only increases output by about 3 percent. On the other hand, when considering 

between times series production function results in table 1 show that capital significantly affects 

output in the second, eighth, and ninth quantile. Results indicate that a 1 percent increase in 
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capital increases output by more than, 8, 13, and 15 percent, in eighth and ninth quantile. Capital 

may have a significant impact in the higher quantiles because the farms with higher production 

tend to substitute more of capital for labor. 

With regard to chemicals, results in table 1 show that increase in chemical inputs increase 

output. This is true across all quantiles and different time and space production function, in 

particular, pooled, between time-series, and within cross-section and time-series. The elasticity 

estimates are pretty consistent across all quantiles as well. For example, an additional unit of 

chemical increases output by 5 percent on average (5
th

 quantile) to as high as 8 percent in the 8
th

 

and 9
th

 quantile, for pooled data. On the other hand, such estimates are little higher for within 

cross-section and time-series, anywhere from 8 percent in the 9
th

 quantile to 11 percent in 4
th

 

quantile. The impact of chemicals on aggregate output is however, significantly higher for 

between times-series estimates for all quantiles, with exception to first two quantiles. Elasticity 

estimates in table 1 indicate that an additional unit of chemical increase aggregate output by 

about 9 percent in the 3
rd

 quantile and to as high as 14 percent in the 7
th

 quantile, with an average 

increase in out of 12 percent (5
th

 quantile).  

Parameter estimates on energy input is similar to that of chemicals. For example, across 

all quantiles pooled and within cross-section and time-series table 1 shows that all energy has a 

significant effect on output. Results indicate that an additional unit of energy, on average (5
th

 

quantile) increase output by 10 percent. Interestingly the estimates are higher for output in the 1
st
 

quantile in the pooled, between times-series, and pooled and within cross-section and time-series 

types of production function estimated, ranging from 12-15 percent.  Except of the 1
st
 and 2

nd
 

quantile in the between time-series production function estimation, parameter estimates on labor 

input is significant across all quantiles for pooled, between time-series, and within cross-section 
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and time-series (table 1). A consistent and smaller estimate of labor on output is observed when 

the output is estimated through within cross-section and time-series model. Elasticity estimates 

range from 6.6 percent, on average, to about 9 percent in the 2
nd

 quantile. However, these 

estimates are higher when output is estimated through pooled and between time-series model. 

Elasticity estimates range from 9 percent, on average, to about 16 percent in the 8
th

 quantile. 

Land and materials are other inputs used in production of agricultural output.  

Unfortunately, land elasticity is not significant for much of the quantiles and across pooled, and 

between production function estimated, with the exception of within cross-section and time-

series. In some cases, for example, in between cross-section production function estimation are 

negative for some quantiles. This may indicate that land may have lost importance in modern 

agriculture, especially is the U.S. However, land has a significant effect on output when 

estimating output through pooled data. Specifically, elasticity estimates are significant for the 2
nd

 

to 8
th

 quantile. Estimates indicate that a unit change in land increases output by 16.7 percent on 

average, to as little as 6 percent for output in the 2
nd

 quantile.  The parameter estimates are very 

consistent for the within cross-section and time-series. Elasticity estimates indicate that land 

increase out by 9 and 8 percent in the upper quantile (8
th

 and 9
th

), at the lower end and about 16 

percent on average, (5
th

 quantile).   

 Finally, parameter in table 1 show that materials have a significant impact on output 

across all quantiles and various types of production function estimated.  A surprising finding 

here is that the estimates are much bigger than any other input. Although the estimate very much 

consistent over the quantiles and across various types of production function estimated (between 

cross-section, pooled, between time-series, and within cross-section and time-series).  Results in 

table 1 show that a unit change in materials increases output by 32, 43, 37, and 48 percent, on 
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average (5
th

 quantile) when output is estimated between cross-section, pooled, between time-

series, and within cross-section and time-series, respectively. 
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Table 1. Pooled, Between TS and CS, and Within Quantile Regression 

Production function results by Quantile, 1960 to 2004 

Model Parameter 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Between CS Capital 0.350 0.283 0.178 0.154 0.092 0.153 -0.051 0.012 -0.094

POOL Capital 0.058 0.049 0.058 0.036 0.033 0.031 0.030 0.004 0.024

Between TS Capital 0.045 0.084 0.020 0.002 -0.006 0.004 0.016 0.125 0.147

WITHIN Capital 0.067 0.021 0.028 0.032 0.024 0.043 0.042 0.074 0.078

Between CS Chemicals 0.101 0.091 0.052 0.044 0.068 0.037 0.083 0.122 0.129

POOL Chemicals 0.062 0.047 0.050 0.050 0.049 0.065 0.073 0.084 0.083

Between TS Chemicals 0.036 0.038 0.092 0.102 0.124 0.130 0.139 0.113 0.115

WITHIN Chemicals 0.099 0.098 0.103 0.105 0.093 0.094 0.099 0.097 0.082

Between CS Energy 0.302 0.323 0.366 0.365 0.485 0.495 0.756 0.335 0.487

POOL Energy 0.119 0.085 0.098 0.118 0.104 0.141 0.149 0.169 0.134

Between TS Energy 0.152 0.105 0.046 0.011 -0.037 -0.017 0.082 0.154 0.146

WITHIN Energy 0.121 0.124 0.103 0.099 0.098 0.080 0.066 0.065 0.114

Between CS Labor -0.031 -0.015 0.020 0.033 0.007 -0.050 -0.043 -0.008 -0.054

POOL Labor 0.100 0.123 0.105 0.098 0.092 0.078 0.059 0.059 0.049

Between TS Labor 0.034 0.056 0.095 0.103 0.118 0.093 0.096 0.161 0.154

WITHIN Labor 0.084 0.086 0.081 0.077 0.066 0.064 0.068 0.073 0.065

Between CS Land -0.176 -0.144 -0.008 0.000 -0.073 0.072 -0.046 -0.114 -0.066

POOL Land 0.007 0.057 0.092 0.133 0.167 0.120 0.115 0.088 0.050

Between TS Land 0.004 0.048 0.001 -0.022 -0.038 -0.045 -0.096 -0.122 -0.118

WITHIN Land 0.112 0.148 0.148 0.151 0.158 0.139 0.131 0.090 0.075

Between CS Materials 0.276 0.327 0.324 0.345 0.319 0.292 0.253 0.492 0.469

POOL Materials 0.392 0.434 0.424 0.430 0.429 0.432 0.448 0.467 0.502

Between TS Materials 0.286 0.269 0.303 0.359 0.373 0.384 0.388 0.397 0.439

WITHIN Materials 0.491 0.491 0.476 0.472 0.480 0.474 0.476 0.481 0.453

Between CS RTS 0.821 0.865 0.931 0.940 0.898 0.999 0.952 0.839 0.871

POOL RTS 0.746 0.805 0.837 0.876 0.887 0.878 0.885 0.884 0.856

Between TS RTS 0.568 0.612 0.567 0.565 0.546 0.558 0.635 0.841 0.895

WITHIN RTS 0.973 0.968 0.939 0.935 0.919 0.893 0.881 0.879 0.866

Between CS Year

POOL Year 0.009 0.010 0.011 0.011 0.012 0.012 0.012 0.013 0.013

Between TS Year 0.011 0.012 0.011 0.011 0.011 0.010 0.009 0.012 0.012

WITHIN Year 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Quantile

 


