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Contemporary Issues in Estimating Yield Distributions 
 

 

Abstract : In the research area of crop yield density estimation and in particular in risk analysis, 

little emphasis has been given to the appropriateness of transformation methods (e.g., removing a 

linear trend) and how such transformations impact the reliability of the empirical distribution 

functions and the resulting probability estimates. Similarly, there is little consensus on the impact 

of environmental variables (e.g., rainfall and temperature) on empirical distributions of yields. 

Using historical county corn yield data for Arkansas and Louisiana and nonparametric methods, 

this empirical analysis shed light on the importance of data transformation in crop risk analysis. 

Results demonstrate that inappropriate data treatment can lead to misestimation of probability 

density estimates. 

 

Keywords: Probability Density Estimation,  Nonparametric, Kernel, Nonstationary, Unit Roots, 

Data Tranformations, Corn Yields, Weather.  

 

I. Introduction 

Crop yield density estimation has been the subject of much empirical research in risk 

analysis. Initial methodological efforts were confined to identification of parametric density 

functions, and these were later extended to the more flexible nonparametric methods. It seems 

that the bulk of the recent literature has converged to nonparametric methods, and these methods 

have found their way into the estimation premia in yield-based insurance programs. In fact, 

nonparametric estimation of yield densities via some sort of univariate ARIMA models appears 

to be the state-of-the art approach in risk analyses. While clear arguments tend to favor 

nonparametric methods, it still remains unclear whether the flexibility of these methods is 
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vulnerable to the time series properties of historical yield data. Numerous papers have been 

published arguing for the existence of nonnormality, skewness, kurtosis, heteroskedasticity, 

stochastic trends, etc. Surprisingly, however, applications have been void of a rigorous analysis 

of the filtering procedures used prior to density identification either via parametric or 

nonparmetric methods in the context of time series data. Therefore, the modest contribution of 

this paper is to propose that the ambiguity in deciding which filtering methods are most 

appropriate can be solved through the application of unit-root testing procedures and that the 

reliability of density estimation can be enhanced through the adoption of these methods with 

historical yield data. 

The paper is structured as follows. The second section provides a summary of the 

literature on crop density estimation and is broken down into three parts: 1) transformation 

techniques, 2) crop yield density estimation, and 3) impact of environmental variables. The third 

section describes the data, and section four explains the methodology for identifying time series 

properties and for the estimation of yield densities. Section five provides the results. The last 

section of the papers summarizes the findings via some empirical recommendations. 

 

II. Literature review 

1. Transformation techniques 

The existence of (stochastic and deterministic) trends in crop yields have been addressed 

in numerous papers (e.g., Moss and Shonkwiler, 1993 inter alia). As underlined by Enders (1995) 

the assumption that an upward trend of a series can be represented by a linear time trend is 

“controversial”. Unfortunately, it is often the case that crop yields are analyzed assuming a linear 

trend. A deterministic trend is basically a time trend that is often specified as linear and included 



3 

 

as a regressor. The stochastic trend corresponds to a unit root process and is interpreted as a 

shock that has a permanent effect on the series. It is captured by the moving average operator. A 

process can also have both a stochastic and a deterministic trend. For instance, in the case of a 

random walk process: 

(1)𝑦𝑡 = 𝛼 + 𝑦𝑡−1 + 𝜀𝑡  

It is easily shown that this process can be represented as: 

(2)𝑦𝑡 = 𝑦0 + 𝛼𝑡 +  𝜀𝑖
𝑡
𝑖=1  

Thus, the deterministic trend is materialized by the term 𝛼𝑡 and the stochastic trend by 

 𝜀𝑖
𝑡
𝑖=1 . The presence of one another trend makes the sequence non-stationary as the mean of the 

series is not constant, it is time-dependent. One of the elements of interest for this paper is the 

transformation associated with each trend. The usual technique to make a process containing a 

deterministic trend stationary is detrending while in the case of a stochastic trend, the appropriate 

transformation is taking the first differences. Hamilton (1994) mentions that “a final difference 

between trend-stationary and unit root processes that deserves comment is the transformation of 

the data needed to generate a stationary time series.” Enders (1995) also insists on this important 

fact by claiming that: “the form of the trend has important implications for the appropriate 

transformation to attain a stationary series.” Nelson and Kang (1981) have illustrated, carrying 

out a Monte Carlo experiment, the consequences of inappropriate transformations and in 

particular the spurious periodicity implied by detrending a random walk series. One of the first 

empirical and Monte Carlo studies illustrating the relevance of nonstationarity in yield data is that 

of Zapata and Rambaldi (1989) who found that an arbitrary transformation to commodity prices 

and yields data such as detrending can generate series with different properties than those of the 
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underlying stochastic process. They were the first to suggest testing for unit roots to assess the 

appropriateness of the transformation to be employed. Surprisingly, however, the empirical 

literature to date has remained silent on this issue. Enders (1995) and Hamilton (1994) give 

several theoretical examples of erroneous transformations implications. For instance, the model:  

(3) 𝑦𝑡 = 𝛼𝑡 + 𝑦0 + 𝜀𝑡  

Contains a deterministic trend and taking the first differences will introduce a unit-root 

into the moving average component: 

(4)∆𝑦𝑡 = 𝛼 + 𝑦0 + 𝜀𝑡 − 𝜀𝑡−1 

In short, by taking the first differences the process implies shocks. The correct 

transformation is, as previously argued, detrending by subtracting the deterministic time trend 𝛼𝑡 

from 𝑦𝑡  or, as commonly done, by regressing 𝑦𝑡  on a linear or polynomial trend. The residuals of 

this regression are stationary and become the variable of interest. Another empirically relevant 

point is that, considering again the random walk with drift model, if the series 𝑦𝑡  is detrended, as 

noted by Hamilton (1994), the time-dependence of the mean is successfully eliminated but not 

the variance. Enders (1995) adds that the stochastic trend component is not removed and as a 

consequence the series remains non-stationary with the consequences implied.  

It is well-known that non-stationarity is the cause of spurious regressions (Enders, 1995; 

Hamilton, 1994; Hill et al., 2008) meaning that the regression appeared to be significant when in 

fact it is not. In other words, variables may be wrongly found to be highly related. Beyond this 

crucial issue, inappropriate transformation may be important in other cases and in particular in 

crop yield density estimation. It begins to become apparent, then, that probability density 
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functions and the resulting probability estimates may be biased if the wrong transformation is 

applied.  

2. Crop yield density estimation 

Foote and Bean (1957) followed by Day (1965) have first brought the issue of skewness 

in crop yield distributions. Their findings have been the starting point to a vast literature on crop 

yield density estimation ranging from parametric to non-parametric techniques. Researchers have 

naturally tried to use distributions that can capture the non-normality of crop yields. In the 80’s 

Gallagher (1986, 1987) used a Gamma distribution to estimate corn and soybean yields and found 

evidence of negative skewness. Although the nature of the trend (deterministic or stochastic) was 

not tested and determined, Gallagher applied a detrending transformation to the data. Recently 

most of this literature has been developed for risk analysis purpose and in particular for crop 

insurance premia estimation. The controversy has been centered on the impact of the choice of 

the distribution on crop insurance premia. Nevertheless, little emphasis has been given to the 

appropriateness of transformation methods and their implication on crop yield density estimation. 

Nelson and Preckel (1989) opted for a beta distribution to estimate corn yield distributions 

conditional on fertilizer application. The beta distribution appears to be flexible enough to 

capture the first three moments of the distribution. Issues linked to non-stationarity have not been 

considered in this paper and, as a consequence non-stationarity tests and data transformations 

have not been performed. In 1990, Nelson compared the estimated crop insurance premiums from 

two distributions: normal and gamma. Although he recognizes the flexibility of the non-

parametric approach, he did not consider this method in his study due to the lack of 

computational power at that time. Showing significant premium differences between the two 

distributions estimates, he brings for the first time the issue of the impact of the distribution 
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choice on probability estimates. According to the authors, as they use farm level data the time-

series were not long enough to detrend data. Hence, levels data have been used to compute crop 

yield distributions. Moss and Shonkwiler (1993) use a stochastic trend model to estimate corn 

yield distribution. In order to take into account the nonnormality of crop yields, the authors have 

applied an inverse hyperbolic sine transformation to the regression residuals. Such a 

transformation allows converting a non-normal distribution to a standard normal one (Moss and 

Shonkwiler, 1993). They found evidence of non-normality (negative skewness) and also of the 

presence of a stochastic trend in corn yields sequences. Goodwin and Ker (1998) have carefully 

determined the Data Generating Process (hereafter DGP) and found that an ARIMA (0,1,2) best 

represents the crop yield series and in consequence, have applied first differencing transformation 

to the data before generating non-parametric (Kernel) crop yield distributions. In line with the 

previous literature, they found negative skewness and significant evidence between Group Rate 

Program (hereafter GRP) premium rates from a non-parametric distribution compared to a 

parametric one. One limit to this work is that the DGP has been generalized to all the county/crop 

combinations. This choice was primarily practical but we believe that the DGP should not have 

been generalized to all counties and, as a consequence, first differences may have been, for some 

counties, inappropriate. Turvey and Zhao (1999) applied three parametric distributions (Normal, 

Gamma and Beta) and one non-parametric (Kernel) to five different crops farm-level yields. 

They conclude that, in the context of crop insurance premium estimation, the non-parametric 

approach is the most flexible and also the most efficient. However, they point out the complexity 

of such methods. For their estimation, they use detrended data (“since these data were already 

adjusted for trend by the [Ontario Crop Insurance] commission no further adjustments were 

made” (Turvey and Zhao, 1999)). Just and Weninger (1999) confront the evidence of crop yields 

non-normality. They interestingly depict the role of transformation methods in testing crop yield 
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normality. Misspecified trends or inadequate detrending can “cause non-stationarity of yield 

deviations and incorrect assessment of skewness and Kurtosis” (Just and Weninger, 1999). 

Normality can be failed to be rejected when crop yield non-normality is today unquestionable. 

Ramirez et al. (2003) revisit these methodological problems raised by Just and Weninger along 

with enhanced techniques (allowing for different distributional characteristics) confirming 

nonnormal and left skewed Corn Belt corn and soybean yields. Later authors highlighted that 

“nonrejection does not prove yield normality, because the magnitudes of the type-two errors in 

their normality tests are unknown” (Ramirez et al., 2003). In 2004, Norwood et al., bring new 

elements that may close the debate around the distribution choice by comparing the out-of-

sample six yield densities used in the literature. They found that the semi-parametric (Kernel) 

approach of Goodwin and Ker (1998) has the greatest performance in forecasting county average 

yields. This result constitutes the motivation for using non-parametric methods in the present 

research.   

3. Impact of environmental variables 

Few authors have considered including weather information in crop yield distribution and 

crop insurance coverage estimations. It is interesting to notice that most of the studies that have 

taken into account weather variables have included what we will characterize as long-term effect 

weather events (shocks) like El Niño and la Niña (e.g. Ker and McGowan, 2000). To our best 

knowledge, besides Kaylen and Koroma (1991), there is no study that has tried to determine the 

impact of environmental variables such as monthly temperature and precipitation, using weather 

station data, on empirical distributions of yields. Our hypothesis is that such approach has not 

been adopted because monthly weather data are not considered as exogenous and random 

variables in crop yield distribution estimation. We do not pursue a complete analysis of the effect 
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of environmental variables on yield density estimation. The preliminary findings reported here 

are based on a regression model of yields on average, minimum and maximum temperatures and 

cumulative precipitation over the growing season. For additional literature on the subject, refer to 

Ker and McGowan (2000), Nadolnyak et al. (2008), Kaylen and Koroma (1991), Schlenker and 

Roberts (2006), Tannura et al. (2008), Martin et al. (2001), Vedenov and Barnett (2004), Turvey 

(2001), and Patrick (1988).  

 

III. Data description 

Although a complete analysis by crop and region would be appropriate, we confine the 

study to corn yields to illustrate the importance of filtering methods in density estimation.  Corn 

yield (bushels/acre) data have been obtained from the National Agricultural Statistics Service 

(NASS) web site, for the period of 1960-2008 in Arkansas and Louisiana (two states crossed by 

the Mississippi river). Analyzed yields are indifferently irrigated or non-irrigated (Total for 

Crop). In Arkansas and Louisiana corn yields are characterized by an upward trend (figure 1).  

 

Figure 1: Corn Yield Overtime in Madison Parish, LA 

 

In Louisiana, 19 counties have been studied for corn yields distribution estimation. The 

maximum yield (185 bushels/acre) has been reached in 2007 in Natchitoches Parish (county) 
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while the minimum yield of the series corresponds to Washington Parish corn yield in 1960 (17 

bushels/acre). The average yield of the series is around 76 bushels/acre. In Arkansas, 23 counties 

have been studied. The maximum and minimum corn yields are 191 (Lonoke, 2007) and 17 

(Conway, 1964) bushels/acre. The average corn yield is higher than in Louisiana (80.21 

bushels/acre).  

Climate data are from the U.S. National Weather Service (NCDC) stations of Arkansas 

and Louisiana counties during the 1960-2008 period. The Thompson model (1969).uses monthly 

data and is ideal in explaining the influence of weather on yield. Indeed, in the agronomic 

literature, we can find that weather variables have a different effect on crop yields according to 

the stage of development of the crop. For example, precipitations have the greatest impact on 

yield during the corn flowering. Even if calendar months do not correspond exactly to plant 

growth stages, the use of monthly weather variables can capture the uneven impact of weather 

variables over the growing season. However, in the present work, because yields are estimated by 

county, it has been impossible to include monthly weather variables. The number of exogenous 

variables would have been too high compared to the number of observations and thus reducing 

unacceptably the degrees of freedom. Unlike the Thompson model, pre-season weather has not 

been taken into account as most of studies showed that weather variables have a much greater 

influence on crop yields during the growing season (Tannura et al, 2008). For all these reasons 

weather variables have been averaged over the growing season. Growing season minimum, 

maximum and average surface air temperatures (Fahrenheit) as well as cumulative precipitation 

(Inches) have been used. In this study, the minimum temperature corresponds to the minimum 

daily temperature that has been registered during the growing season. Similarly the maximum 

temperature corresponds to the maximum daily temperature that has been registered during the 
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growing season. The average temperature has been computed by first calculating monthly 

temperatures averaging the daily minimum and maximum temperatures over a month and then by 

averaging the monthly temperatures over the growing season. County climate data have been 

calculated by averaging the data over the weather stations belonging to a same county. For 

reasons that will become clear further, only the counties that have at least 30 years of 

observations have been studied.  

The minimum and maximum temperatures that have been registered since 1960 in 

Louisiana are respectively 47.7 (Madison, 1973) and 102.4 (Bossier, 1998) Fahrenheit. It is 

important to notice that this exceptionally high temperature that occurred in Bossier corresponds 

to an unusually low yield (46.9 bushels/acre). The average temperature is 76.57 Fahrenheit. 

Concerning rainfall, the average cumulative precipitation is 23.51 inches. The minimum 

cumulative precipitation is 7.65 inches (Franklin, 1965) while the maximum is 51.6 inches (East 

Baton Rouge, 1989). In Arkansas, the maximum, minimum and average temperatures are 

respectively: 106.5 (Conway, 1983), 29 (Conway, 1989) and 74.1 Fahrenheit. The average 

cumulative precipitation is 19.85 inches. The minimum and maximum cumulative precipitations 

are 1.03 (Conway, 1989) and 43.77 (Ashley, 1975) inches.  

 

IV. Methodology 

In order to generate crop yield densities and the corresponding probability estimates, an 

adequate DGP for yields has to be identified. The Box-Jenkins model selection (1976) is a 

common strategy to select a model (Enders, 1995; Maddala and Kim, 1998). All the models can 

be generalized as an ARIMA model and the focus of the Box-Jenkins methodology is to specify 
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the ARIMA model. The first step, also called as the identification stage corresponds to a visual 

analysis of series time plot. This step allows identifying the presence of non-stationarity. If the 

series shows a trend or seems to wander with no real pattern, it may be a sign of non-stationarity.  

The autocorrelation and partial autocorrelation functions (hereafter ACF and PACF) of 

the series can also be computed. Enders (1995) summarizes the different processes with their 

corresponding ACF and PACF. For example, a correlogram with a gradual decay is characteristic 

of a non-stationary time series. This is the case of Madison Parish, LA (figure 2) and most of the 

counties in Arkansas and Louisiana.

 

The visual inspection of non-stationarity is however not rigorous enough and the use of 

formal test is necessary to determine the presence of a trend and if the trend is stochastic or 

deterministic. Enders (1995) proposes to use of unit-root test to identify nonstationary properties 

of time series. One test statistic is the Augmented Dicky-Fuller test (hereafter ADF). It is a test 

for unit-root and trends as it allows determining the presence of a unit-root, a unit-root with a 

drift or a unit-root with a drift and a trend. One of the issues linked to unit root tests is the choice 

 
Figure 2: ACF Corn Yield, Madison, LA Figure 3: PACF Corn Yield, Madison, LA 
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of the regression equation. Based on Doldado et al. (1990), a strategy has been developed to test 

for unit root when the DGP is not known. In the first step of this procedure the most complete 

model (trend and drift) is used to test for the presence of a unit root. For details of this procedure, 

refer to Enders (1995). Additionally, as suggested by Hamilton (1994), the choice of the test 

(three equations for Dickey Fuller tests) also depends “on a plausible description of the data.” In 

our case, due to the well known 20
th

 century technological advancements in agriculture, the 

presence of stochastic trends in corn yields is almost unquestionable. However, there is no theory 

that would justify the presence of a deterministic time trend in weather variables sequences 

although some research, suggest that temperatures are globally increasing. To verify the “climatic 

theory”, we have plotted cumulative precipitations, average, maximum and minimum 

temperatures over time. It turns out that out of these four weather variables, only minimum 

temperature series seem to exhibit a (upward) deterministic time trend (figure 4). 

 

Figure 4. Minimum Temperature Overtime, Madison, LA 

 

In short, unit root tests allow determining the presence of unit root while giving guidance 

on the appropriate transformation to be applied to the data. The procedure has been followed for 

the crop yield series as well as weather series. Once the data have been transformed, the 

researcher has to decide if the adequate process is an AR(p), MA(q) or ARMA(p,q). This can be 
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done by examining the ACF and PACF of the transformed data. For univariate ARIMA model, a 

moving average (MA) process typically presents an ACF with a spike at the first lag and a PACF 

with an oscillating decay. An AR(p) process has an ACF that decays toward zero and a PACF 

with spikes up to lag p. Finally an ARMA process has an ACF that decays up to lag q and a 

PACF that declines beginning at lag p (Enders, 1995).  In the next steps of the Box-Jenkins 

methodology, the estimation of the ARMA model and forecasting of future values of the crop 

yield series are computed which is not the purpose of this paper. We have chosen to use Kernel 

density estimation technique to estimate crop probability distribution functions because of its 

popularity in empirical work of crop insurance programs. We believe that the effect of 

inappropriate transformations will be more visible if a flexible distribution is used. A Kernel 

density estimate includes a variable Y (crop yield) and a symmetric weighting variable W. For n 

identically independently distributed (i.i.d.) observations of a univariate series, the Kernel density 

estimate is given by:  

(5)𝑓  𝑦 =
1

 𝑊𝑖
𝑛
𝑖=1

  𝑊𝑖
𝑛
𝑖=1 𝜑 (𝑦 − 𝑌𝑖) 

There are different methods to choose the appropriate smoothing scale (bandwidth -h in the 

equation-), in this paper bandwidth selection is carried through plug-in formula as recommended 

by Jones et al. (1996). 

(6) =  
𝑅𝜑

𝑛𝑅𝑓 ′′ 𝑔  ( 𝑌2 𝜑 𝑌 𝑑𝑦 )2  
1

5  

Where 𝑅(𝜑) =  𝜑 𝑦 𝑑𝑦. This equation is solved by first evaluating it on a grid of values 

spaced equally on a log scale. The largest two values from this grid that bound a solution are then 
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used as starting values for a bisection algorithm” (SAS Institute, 2003). If the density turns out to 

be normal then the model simplifies to: 

(7) = 𝜎 [4/(3n)]1/5
 

 

The impact of data transformation is measured by computing and comparing probability 

estimates. The best way is to calculate the probability that a low yield occurs, particularly 

important in risk management analysis. In this paper, we decided to adopt a slightly different 

methodology than the one used by Goodwin and Ker (1998) who have computed the probability 

that crop yields fall below a certain percentage of the county average yield using the trapezoidal 

rule. Instead, we calculate different percentiles of the distribution. The results are as useful as the 

traditional methodology in illustrating the effect of data transformations but also the implication 

for risk analysis and in particular crop insurance rating. In order to show the impact of 

inappropriate transformations, the methodological framework has been based on the following 

scenarios (table 1): 

Table 1. Methodological Framework (scenarios) 

True process Correct 

transformation 

Wrong 

transformation 

Random walk Differencing Detrending 

Random walk + drift Differencing Detrending 

Random walk + drift + linear trend Differencing Detrending 

Trend stationary Detrending Differencing 

Stationary None Differencing 

 

The random walk scenario in table 1 implies that if actual yields follow a random walk 

process then the appropriate transformation is first differencing and not detrending. We assess 

what happens to the empirical density functions under these two transformations and calculate the 



15 

 

“percent error” which is the percentile difference between the two transformations. Other 

scenarios are analyzed similarly.  

Percentiles estimates calculated based on distributions of correctly transformed data are 

compared to the ones computed from distributions of crop yield series that have been 

inappropriately transformed. The hypothesis is that percentiles estimates will be significantly 

different if a wrong transformation is used.   

One of the objectives of this paper is to determine if the inclusion of weather variables 

was relevant in probability density estimation using non-parametric techniques. The simplest way 

is to generate crop yield distribution conditional on weather variables.  According to Nelson and 

Prekel (1989), linear regression models with crop yields regressed on input can be considered as 

conditional probability distribution of crop yields. Consequently, weather is taken into account by 

regressing weather variables (also appropriately transformed) on crop yields. 

 

V. Results 

Unit root tests have been carried out on crop yield and weather variables series. Tables 2 

and 3 summarize the results of the unit root tests on corn yield series. In Louisiana, 21% of the 

studied counties are characterized by corn yield series that are trend stationary while 79% present 

random walk sequences. In Arkansas, 13% of the studied counties are characterized by trend 

stationary corn yield sequences, 65% by random walk sequences and finally 22% by random 

walk plus drift plus linear trend sequences. Also note that in four Arkansas counties (Arkansas, 

Lee, Lonoke and White) and one Parish in Louisiana (Ouachita) two differences were needed to 

achieve stationary in corn yields. 
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Tables 4 and 5 summarize the results of the unit root tests on weather variables. Overall, 

in Louisiana (Arkansas), 84% (74%) of the cumulative precipitation series are stationary and 

16% (26%) are best represented by a random walk. For average temperature, 58% (70%) of the 

series are stationary, 5% (0%) trend stationary while 37% (30%) are random walk. For maximum 

temperature 74% (61%) of the series are stationary, 5% (0%) trend stationary and 21% (39%) are 

random walk. Finally, 63% (39%) of the minimum temperature series are trend stationary, 5% 

(9%) stationary while 32% (52%) are random walk. This uneven repartition of the processes 

confirmed the hypothesis of spatial heterogeneity in terms of crop yield estimation. This shows 

the importance of not generalizing a process to an ensemble of series (for example counties of a 

same region) without testing rigorously before and in particular without carrying out unit root 

tests. As explained in the methodology, percentiles estimates of yield series inappropriately 

transformed have been compared to percentiles estimates of yields correctly transformed based 

on rigorous tests. Tables 6 and 7 summarize these results and present the percentage error of 

applying a wrong transformation to the series. The first important result is that the use of wrong 

transformations to estimate probability density functions of time series implies considerable 

percentage error that is sometimes larger than 10%. Another interesting result is that it seems that 

the direction of the error is characteristic of the type of process. For both Arkansas and Louisiana 

series, applying an inappropriate transformation to a random walk process will most of the time 

lead to an underestimation of the percentile estimates. On the contrary, when a trend stationary 

process is wrongly transformed, the percentiles will tend to be overestimated. Percentile 

estimates errors are also produced in the case of conditional distributions of corn yield on 

weather. However, a clear pattern of the direction of the misestimation does not appear when the 

effect of weather is included.  
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Table 2. Unit Root Test Results, Corn Yields, Arkansas 

County Conclusion 

/Process 

Transformation  

Arkansas Random Walk Differencing II 

Ashley Random Walk+drift+linear trend Differencing 

Benton No unit root Detrending 

Clark Random Walk Differencing 

Clay Random Walk Differencing 

Conway No unit root Detrending 

Craighead Random Walk Differencing 

Cross Random Walk Differencing 

Desha Random Walk Differencing 

Independence Random Walk Differencing 

Jackson Random Walk+drift+linear trend Differencing 

Jefferson Random Walk+drift+linear trend Differencing 

Lee Random Walk Differencing II 

Logan Random Walk Differencing II 

Lonoke Random Walk Differencing 

Miller Random Walk Differencing 

Mississippi Random Walk+drift+linear trend Differencing 

Monroe Random Walk Differencing 

Phillips Random Walk Differencing 

Prairie No unit root Detrending 

Randolph Random Walk+drift+linear trend Differencing 

White Random Walk Differencing II 

Yell Random Walk Differencing 

Note: Differencing II means that the yield series required second order 

integration to achieve stationarity. 

10% critical values (ττ, ϕ3, τµ, ϕ1, τ) were used. 

 

Table 3. Unit Root Test Results, Corn Yields, Louisiana 

County Conclusion 

/process 

Transformation 

Allen Random Walk Differencing 

Avoyelles Random Walk Differencing 

Beauregard Random Walk Differencing 

Bossier Random walk Differencing 

Caddo Random Walk Differencing 

East Baton Rouge Random Walk Differencing 

East Carroll Random Walk Differencing 

Franklin Random Walk Differencing 

Iberville Random Walk Differencing 

Lafayette Random Walk Differencing 

Madison Random Walk Differencing 

Morehouse No unit root Detrending 

Natchitoches No unit root Detrending 

Ouachita Random Walk Differencing II 

Pointe Coupee Random Walk Differencing 

Saint Landry No unit root Detrending 

Tangipahoa Random Walk Differencing 

Tensas No unit root Detrending 

Washington Random Walk Differencing 

Note: Differencing II means that the yield series required  

second order integration to achieve stationarity.  

10% critical values (ττ, ϕ3, τµ, ϕ1, τ) were used. 
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Table 4. Unit Root Test Results, Weather (Cumulative Precipitation, Average Temperature, Maximum Temperature and Minimum 

Temperature), Arkansas 

 Variables Cumulative Precipitation  Average Temperature Maximum Temperature Minimum Temperature 

County Conclusion 

/process 

Transf- 

Ormation 

Conclusion 

/process 

Transf- 

Ormation 

Conclusion 

/process 

Transf- 

Ormation 

Conclusion 

/process 

Transf- 

ormation 

Arkansas No unit root  None No unit root None Random walk Differencing No unit root Detrending 

Ashley No unit root None No unit root None No unit root None Random walk Differencing 

Benton No unit root None No unit root None Random walk Differencing Random walk Differencing 

Clark No unit root None No unit root None Random walk Differencing Random walk Differencing 

Clay Random walk Differencing No unit root None Random walk Differencing Random walk Differencing 

Conway Random walk Differencing Random walk Differencing Random walk Differencing No unit root None 

Craighead No unit root None Random walk Differencing No unit root None Random walk Differencing 

Cross Random walk Differencing No unit root None No unit root None No unit root Detrending 

Desha No unit root None No unit root None No unit root None Random walk Differencing 

Independence Random walk Differencing No unit root None No unit root None Random walk Differencing 

Jackson No unit root None No unit root None No unit root None No unit root Detrending 

Jefferson No unit root None No unit root None No unit root None No unit root Detrending 

Lee No unit root None No unit root None No unit root None Random walk Differencing 

Logan No unit root None Random walk Differencing Random walk Differencing Random walk Differencing 

Lonoke No unit root None Random walk Differencing Random walk Differencing No unit root Detrending 

Miller No unit root None No unit root None No unit root None No unit root None 

Mississippi No unit root None No unit root None No unit root None Random walk Differencing 

Monroe Random walk Differencing Random walk Differencing Random walk Differencing No unit root Detrending 

Phillips Random walk Differencing Random walk Differencing Random walk Differencing No unit root Detrending 

Prairie No unit root None No unit root None No unit root None Random walk Differencing 

Randolph No unit root None No unit root None No unit root None No unit root Detrending 

White No unit root None No unit root None No unit root None Random walk Differencing 

Yell No unit root None Random walk Differencing No unit root None No unit root Detrending 

Arkansas No unit root  None No unit root None Random walk Differencing No unit root Detrending 

Note: 10% critical values (ττ, ϕ3, τµ, ϕ1, τ) were used. 
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Table 5. Unit Root Test Results, Weather (Cumulative Precipitation, Average Temperature, Maximum Temperature and Minimum 

Temperature), Louisiana 

 Variables Cumulative Precipitation  Average Temperature Maximum Temperature Minimum Temperature 

County Conclusion 

/process 

Transf- 

Ormation 

Conclusion 

/process 

Transf- 

ormation 

Conclusion 

/process 

Transf- 

ormation 

Conclusion 

/process 

Transf- 

ormation 

Allen Random Walk Differencing No unit root None No unit root None No unit root None 

Avoyelles Random Walk Differencing No unit root None Random Walk Differencing No unit root None 

Beauregard Random Walk Differencing No unit root None No unit root None No unit root None 

Bossier Random Walk Differencing No unit root None No unit root None Random Walk Differencing 

Caddo Random Walk Differencing Random Walk Differencing No unit root None Random Walk Differencing 

East Baton Rouge Random Walk Differencing Random Walk Differencing No unit root None No unit root None 

East Carroll Random Walk Differencing No unit root None Random Walk Differencing No unit root None 

Franklin Random Walk Differencing No unit root None No unit root None No unit root None 

Iberville Random Walk Differencing No unit root None No unit root None No unit root None 

Lafayette Random Walk Differencing No unit root None No unit root None No unit root Detrending 

Madison Random Walk Differencing No unit root None Random Walk Differencing No unit root None 

Morehouse No unit root Detrending No unit root None No unit root Detrending No unit root None 

Natchitoches No unit root Detrending Random Walk Differencing Random Walk Differencing No unit root None 

Ouachita Random Walk Differencing2 No unit root None No unit root None No unit root None 

Pointe Coupee Random Walk Differencing Random Walk Differencing Random Walk Differencing Random Walk Differencing 

Saint Landry No unit root Detrending No unit root None Random Walk Differencing Random Walk Differencing 

Tangipahoa Random Walk Differencing No unit root None Random Walk Differencing No unit root None 

Tensas No unit root Detrending No unit root None No unit root None No unit root None 

Washington Random Walk Differencing No unit root None No unit root None No unit root None 

Note: 10% critical values (ττ, ϕ3, τµ, ϕ1, τ) were used. 
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The results would not have meaning without an applied context. One illustration would be 

to ask: what does a 10% percentage error means for a farmer buying crop insurance? In the U.S., 

several different types of crop insurance policies are available. In order to well illustrate our 

empirical results, we will refer to the GRP insurance as it is based on county yield. This type of 

coverage provides an indemnity to the farmer if the county average yield falls below a trigger 

yield or yield coverage that represents a percentage (70-90%) of the expected county yield (Kim 

et al., 2007). The level of coverage is chosen by the farmer. Let’s suppose that a farmer 

producing corn in Beauregard parish, LA buys a GRP insurance and chooses a 85% coverage 

level. If a correct transformation has been applied to the corn yield sequence and an 

unconditional distribution is generated, the expected yield for this county is 58.25 bushels/acre 

(table 7). A 85% coverage level would correspond to a trigger yield of 49.51 bushels/acre. 

Moreover, if the correct transformation is used, the 25
th
 percentile is 51.41 bushels/acre (table 7) 

which corresponds to 88% of the expected yield (51.41/58.25=88%). On the other hand, the 

expected yield based on the distribution generated with the inappropriate transformation, in this 

case detrending, is 56.31 bushels/acre. If the same farmer chooses a 85% coverage level, the 

trigger yield will be 47.86 bushels/acre. Finally, the 25
th

 percentile in this case is 46.68 

bushels/acre which represents 83% of the expected yield (46.68/56.31=83%).  
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Table 6. Unconditional Kernel Probability Estimates (Percentile Values), Arkansas 

County Differences to RW Detrending to RW Percentage Error (%) 

 
Percentiles 

 
25 50 75 25 50 75 25 50 75 

Arkansasa 74.51 86.01 98.51 70.39 87.44 101.00 -5.85 1.64 2.47 
Ashley 62.37 73.37 80.37 55.11 70.05 81.03 -13.17 -4.74 0.81 
Clark 41.69 50.99 65.69 38.77 47.22 62.29 -7.53 -7.98 -5.46 
Clay 93.38 105.00 116.00 93.10 101.00 109.00 -0.30 -3.96 -6.42 
Craighead 84.86 91.96 104.00 80.16 90.65 103.00 -5.86 -1.45 -0.97 
Cross 65.18 72.18 77.08 56.81 68.16 78.76 -14.73 -5.90 2.13 
Desha 81.24 92.54 106.00 76.39 92.65 101.00 -6.35 0.12 -4.95 

Independence 71.08 80.08 91.68 63.11 79.57 94.93 -12.63 -0.64 3.42 
Jackson 82.13 92.13 105.00 83.71 90.86 103.00 1.89 -1.40 -1.94 
Jefferson 80.70 90.70 103.00 76.67 89.18 99.79 -5.26 -1.70 -3.22 
Leea 68.07 82.67 106.00 72.20 88.15 100.00 5.72 6.22 -6.00 
Logana 59.37 73.37 86.37 50.55 73.05 85.17 -17.45 -0.44 -1.41 
Lonoke 80.47 90.97 100.00 74.47 84.43 101.00 -8.06 -7.75 0.99 
Miller 55.83 65.83 73.83 52.92 60.98 70.88 -5.50 -7.95 -4.16 

Mississippi 84.74 97.74 108.00 86.01 94.19 108.00 1.48 -3.77 0.00 
Monroe 80.56 90.21 101.00 71.92 85.38 98.65 -12.01 -5.66 -2.38 
Phillips 76.54 86.19 93.54 69.10 79.93 100.00 -10.77 -7.83 6.46 
Randolph 80.31 90.71 102.00 77.07 90.72 102.00 -4.20 0.01 0.00 
Whitea 54.75 71.75 84.75 58.99 67.45 78.64 7.19 -6.38 -7.77 
Yell 61.63 71.63 80.13 58.89 67.56 74.41 -4.65 -6.02 -7.69 

  Detrending to Trend 

Stationary Process 

First Differences to Trend 

Stationary Process 

Percentage Error (%) 

          
Benton 41.70 52.18 58.94 46.55 53.05 61.55 10.42 1.64 4.24 
Conway 67.56 75.13 85.57 65.67 76.67 88.67 -2.88 2.01 3.50 
Prairie 78.86 91.20 103.00 86.59 92.59 104.00 8.93 1.50 0.96 

Note: 10% critical values (ττ, ϕ3, τµ, ϕ1, τ) were used. 
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Table 7. Unconditional Kernel Probability Estimates (Percentile Values), Louisiana 

County Differences to RW Detrending to RW Percentage Error (%) 

 Percentiles 

 25 50 75 25 50 75 25 50 75 

Allen 39.67 44.87 50.27 38.30 46.56 50.82 -3.58 3.63 1.08 

Avoyelles 78.19 91.99 104.00 76.80 85.29 102.00 -1.81 -7.86 -1.96 

Beauregard 51.41 58.31 71.41 46.68 56.51 63.12 -10.13 -3.19 -13.13 

Bossier 42.23 52.23 64.23 42.68 47.99 62.86 1.05 -8.84 -2.18 

Caddo 65.00 76.50 93.20 63.93 76.43 87.63 -1.67 -0.09 -6.36 

East Baton Rouge 59.65 66.65 72.15 54.35 64.19 72.07 -9.75 -3.83 -0.11 

East Caroll 76.77 90.77 101.00 79.12 90.03 99.33 2.97 -0.82 -1.68 

Franklin 87.53 99.68 110.00 82.17 93.65 106.00 -6.52 -6.44 -3.77 

Iberville 68.77 83.77 98.77 67.64 83.86 93.06 -1.67 0.11 -6.14 

Lafayette 59.50 67.55 73.95 52.84 66.99 75.13 -12.60 -0.84 1.57 

Madison 77.13 87.98 98.18 76.25 86.56 92.14 -1.15 -1.64 -6.56 

Ouachita
a
 57.16 67.16 87.16 56.94 73.28 82.14 -0.39 8.35 -6.11 

Pointe Coupee 92.43 104.00 122.00 90.88 97.05 116.00 -1.71 -7.16 -5.17 

Tangipahoa 58.23 65.83 81.63 56.71 68.21 74.70 -2.68 3.49 -9.28 

Washington 52.70 66.80 77.70 55.95 63.98 74.42 5.81 -4.41 -4.41 

  Detrending to Trend 

Stationary Process 

First Differences to 

Trend Stationary 

Process 

Percentage Error (%) 

Morehouse 72.83 82.87 94.28 71.06 85.36 105.00 -2.49 2.92 10.21 

Natchitoches 67.50 77.88 89.04 68.12 79.82 99.02 0.91 2.43 10.08 

Saint Landry 77.83 86.80 97.76 84.64 88.99 98.84 8.05 2.46 1.09 

Tensas 76.47 83.95 96.73 72.55 86.80 106.00 -5.40 3.28 8.75 

Note: 10% critical values (ττ, ϕ3, τµ, ϕ1, τ) were used. 

 

Figures 5 and 6 summarize the issue just raised. We can see that if the GRP contract is 

based on a distribution misestimated because of inappropriate data transformations, the 

probability of falling beneath the trigger yield (47.86 bu/ac) is greater than 25% (figure 5). 

However, if the GRP contract is based on a correctly estimated distribution, the probability of 

falling below the trigger yield would be less than 25% (figure 6). In short, if a crop yield series 

corresponding to a random walk process is detrended instead of differenced, the probability of 

falling below the yield coverage is overestimated, and this has important implications for the 

insured and the insurance company. The contrary seems to be true: if a trend stationary crop yield 
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sequence is differenced instead of detrended, the probability of falling below the trigger yield is 

underestimated. 

 

Figure 2.Estimated Kernel PDF out of Inappropriately  

        Transformed Corn Yield Series for Beauregard County, LA 

 

 

Figure 3.Estimated Kernel PDF out of Appropriately  

Transformed Corn Yield Series for Beauregard County, LA 

 

A final objective of this paper was to assess the relevance of including weather variables 

in the estimation of crop yield probability density functions. Comparing the percentile estimates 
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of the unconditional and conditional distributions (tables 8 and 9) we can see that there is a 

significant difference between the two sets of estimates. Furthermore, the percentile estimates 

based on a conditional distribution seem to be generally lower than the ones computed from an 

unconditional distribution. If the inclusion of weather variables improves the estimation of corn 

yields or not is a question that was not in the scope of this paper but that could be answered by 

generating in-sample forecasts that would be compared to the actual crop yields.   

Table 8. Comparison of Probability Estimates Generated out of Unconditional and Conditional 

Yields, Arkansas 

County Unconditional Conditional on Weather Percentage Error (%) 

 
Percentiles 

 
25 50 75 25 50 75 25 50 75 

Arkansas 81.56 86.06 97.76 72.33 91.33 98.41 -12.76 5.77 0.66 
Ashley 62.37 73.37 80.37 60.65 71.23 76.23 -2.84 -3.00 -5.43 
Benton 41.70 52.18 58.94 42.96 50.09 58.46 2.93 -4.17 -0.82 
Clark 41.69 50.99 65.69 40.90 51.36 62.01 -1.93 0.72 -5.93 
Clay 93.38 105.00 116.00 89.70 102.00 113.00 -4.10 -2.94 -2.65 
Conway 67.56 75.13 85.57 67.59 76.00 83.40 0.04 1.14 -2.60 

Craighead 84.86 91.96 104.00 78.13 89.57 103.00 -8.61 -2.67 -0.97 
Cross 65.18 72.18 77.08 62.68 71.51 76.71 -3.99 -0.94 -0.48 
Desha 81.24 92.54 106.00 78.46 89.25 104.00 -3.54 -3.69 -1.92 
Independence 71.08 80.08 91.68 64.71 80.23 94.55 -9.84 0.19 3.04 
Jackson 82.13 92.13 105.00 77.62 92.68 104.00 -5.81 0.59 -0.96 
Jefferson 80.70 90.70 103.00 79.89 87.18 97.60 -1.01 -4.04 -5.53 
Lee 81.57 88.67 100.00 67.96 80.62 103.00 -20.03 -9.99 2.91 

Logan 65.37 74.37 82.37 59.12 69.56 78.66 -10.57 -6.91 -4.72 
Lonoke 80.47 90.97 100.00 74.95 89.15 99.49 -7.36 -2.04 -0.51 
Miller 55.83 65.83 73.83 52.39 60.61 75.26 -6.57 -8.61 1.90 
Mississippi 84.74 97.74 108.00 80.59 93.29 108.00 -5.15 -4.77 0.00 
Monroe 80.56 90.21 101.00 78.28 87.33 96.27 -2.91 -3.30 -4.91 
Phillips 76.54 86.19 93.54 76.17 81.05 91.71 -0.49 -6.34 -2.00 
Prairie 78.86 91.20 103.00 83.51 89.62 103.00 5.57 -1.76 0.00 
Randolph 80.31 90.71 102.00 78.38 87.92 100.00 -2.46 -3.17 -2.00 

White 61.80 73.30 79.55 49.65 65.99 82.67 -24.47 -11.08 3.77 
Yell 61.63 71.63 80.13 57.41 67.58 77.35 -7.35 -5.99 -3.59 
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Table 9. Comparison of Probability Estimates Generated out of Unconditional and Conditional 

Yields, Louisiana 

County Unconditional Conditional on Weather Percentage Error (%) 

 Percentiles 

 25 50 75 25 50 75 25 50 75 

Allen 39.67 44.87 50.27 38.97 44.45 52.26 -1.80 -0.94 3.81 
Avoyelles 78.19 91.99 104.00 77.64 91.30 101.00 -0.71 -0.76 -2.97 
Beauregard 51.41 58.31 71.41 46.83 54.70 66.94 -9.78 -6.60 -6.68 
Bossier 42.23 52.23 64.23 43.44 51.31 61.41 2.79 -1.79 -4.59 

Caddo 65.00 76.50 93.20 58.43 75.04 88.23 -11.24 -1.95 -5.63 
East Baton Rouge 59.65 66.65 72.15 52.05 65.15 77.14 -14.60 -2.30 6.47 
East Caroll 76.77 90.77 101.00 76.16 88.22 103.00 -0.80 -2.89 1.94 
Franklin 87.53 99.68 110.00 83.84 97.26 104.00 -4.40 -2.49 -5.77 
Iberville 68.77 83.77 98.77 73.08 81.80 95.01 5.90 -2.41 -3.96 
Lafayette 59.50 67.55 73.95 58.30 67.65 72.19 -2.06 0.15 -2.44 
Madison 77.13 87.98 98.18 76.28 85.15 96.24 -1.11 -3.32 -2.02 

Morehouse 72.83 82.87 94.28 65.78 79.79 90.82 -10.72 -3.86 -3.81 
Natchitoches 67.50 77.88 89.04 67.15 78.31 89.53 -0.52 0.55 0.55 
Ouachita 57.16 67.16 87.16 52.76 68.44 84.44 -8.34 1.87 -3.22 
Pointe Coupee 92.43 104.00 122.00 92.43 98.70 113.00 0.00 -5.37 -7.96 
Saint Landry 77.83 86.80 97.76 77.72 88.28 97.16 -0.14 1.68 -0.62 
Tangipahoa 58.23 65.83 81.63 53.73 65.80 77.19 -8.38 -0.05 -5.75 
Tensas 76.47 83.95 96.73 76.10 84.18 97.91 -0.49 0.27 1.21 
Washington 52.70 66.80 77.70 53.22 63.64 72.52 0.98 -4.97 -7.14 

 

VI. Conclusion 

Whereas the probability theory for nonstationary data is clear on the appropriate 

transformation techniques to use in identifying data generation processes for time series, the 

empirical adoption of these techniques are not pervasively used in empirical risk analysis 

research. The results from this very preliminary research, lead to some empirical guidance for 

current and future research and can be outlined as follows. First, ADF tests (or other unit-root 

tests such as Phillips-Perron) should be adopted in identifying time series properties of historical 

Parish/county level crop yields. Unit-root tests are objective tools of analysis and are widely 

available in most commercial econometric software. Second, the application to historical corn 

yields for Arkansas and Louisiana suggest that, given the complex unit-root behavior and 

deterministic trends, there is not one single transformation technique for universal adoption in 
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risk analysis and that the insured and insurer are to benefit from case-specific analyses. In other 

words, inappropriate data transformation can lead to large “percentile errors” in calculating risk 

premiums off yield distributions. Lastly, this study points to future Monte Carlo simulation work 

that should be designed to uncover the reliability of density estimation based on the empirical 

findings on the time series properties of yield data for all crops and counties in the South. One 

value of this research would be in the analysis of feedstocks yields used in ethanol production. 

The analysis can also be extended to the study of revenue densities in the assessment of feasible 

technologies for biofuel production. 
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