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Net Effect of Education on Technology Adoption by U.S. Farmers

Abstract

The objective of this study is to estimate the net effect of education on technology
adoption for U.S. farmers. Using 2006 Agricultural Resource Management Survey data, this
study develops a simultaneous equations model to integrate farmers’ labor allocation

decision with adoption of both time saving and management intensive technologies.
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Net Effect of Education on Technology Adoption by U.S. Farmers

I. Introduction

Adoption of technology is an extensively studied topic in agricultural economics. A
large volume of empirical literature has identified a wide range of factors that influence
technology adoption decisions by farmers. Among such factors, education may be one of
the most frequently used variables in empirical models perhaps because it also is one of the
most theoretically uncontroversial factors to positively influence technology adoption. In
general, farmers with higher education have better access to information and knowledge
that are beneficial to farming operation. They also tend to possess higher analytic
capability of the information and knowledge necessary to successfully implement new
technology and realize expected results. Hence, higher education allows farmers to make
efficient adoption decision (Rahm and Huffman, 1984) and be the early adopters who can
take advantage of new technology and profit most from it (Gardner and Rausser, 2001).
Highly educated farmers also tend to adopt technology with greater intensity (Saha, et al.,
1994).

The objective of this study, however, is to challenge this conventional brief. We
believe that it is theoretically possible that education could potentially have a negative
effect on technology adoption in agriculture. Education increases farmers’ human capital
and gives them more lucrative employment opportunities off the farm, which in turn
decreases the managerial time on farm to implement new technologies and realize the
expected results. This is particularly true for management intensive technologies. This
study empirically examines this theory.

Considering the facts that the number of farmers with college education has been
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steadily increasing over the last 50 years (Mishra, et al., 2009) and increasing share of farm
household income is from off-farm sources (Fernandez-Cornejo, 2007), it is crucial to
accurately assess the net effect of education on technology adoption in the context of labor
allocation between on and off the farm by farm households. In so doing, we estimate a
simultaneous equations model that coalesce labor allocation and technology adoption
models using 2006 Agricultural Resource Management Survey (ARMS) data. Technologies
considered in this study are precision farming as a representative of management intensive
technology and genetically modified (GM) crops as a representative of management saving
technology. We estimate this model following the procedure suggested by Nelson and
Olson (1978) to obtain asymptotically consistent estimates of parameters of our interest.
The rest of the paper is organized as follows. Section Il reviews existing literature
on the relationship between education, technology adoption and off-farm labor supply in
agriculture. Section III provides analytical framework, followed by empirical results in

Section IV. The final section offer concluding remarks.

IL. Literature Review

In order to lay a comprehensive theoretical foundation about the net effect of
education on technology adoption, we attempt to unite findings from three different topics
in agricultural economics literature. We first review empirical findings about the effect of
education on technology adoption, followed by the effect of education on off-farm labor
supply. Finally, we shed light on recent studies that account for these two effects in a single
model to explain simultaneous decision making process through which farmers allocate

their time between off-farm and on-farm labor, including technology adoption.



1) Education and Adoption

A number of empirical studies have shown the positive effect of education on
adoption of various types of technology in agriculture. For example, education is found to
have a positive impact on adoption of forward pricing methods (Goodwin and Schroeder,
1994), computer technology (Huffman and Mercier, 1991, Putler and Zilberman, 1988), use
of the internet (Mishra and Park, 2005, Mishra, et al., 2009), precision farming (Roberts, et
al., 2004), genetically engineered corn (Fernandez-Cornejo, et al., 2001), soil nitrogen
testing (Fuglie and Bosch, 1995), conservation practices (Traore, et al., 1998) and the level
of participation in government-supported conservation programs (Lambert, et al., 2007),
to name a few.

At the same time, there are also some empirical studies that found insignificant or
even negative effect of education on technology adoption. Farmers’ education has
insignificant effect on adoption of variable rate technology (Khanna, 2001) and GPS
guidance system for cotton farmers (Banerjee, et al.,, 2008). Nyaupane and Gillespie (2009)
identified factors affecting adoption of best management practices (BMP) for Louisiana
crawfish producers, but education was found to be insignificant for adoption of all but one
BMP, with which education found to be negatively correlated.

Gould et al. (1989) studied factors affecting adoption of conservation tillage for
Wisconsin farmers. They unexpectedly found that education is negatively correlated with
adoption, holding constant of other factors such as the proportion of off-farm work time to
on-farm work time, among others. This implies that highly educated farmers are less likely
to adopt conservation tillage, given the same proportion of off and on farm work time.

Because highly educated farmers are more likely to earn higher wages from off-farm work,
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they are expected to have a higher proportion of off-farm income to on-farm income given
the same proportion of on and off farm work time. Therefore, it seems sensible if highly
educated farmers, who are more reliant on off-farm income, have fewer incentives to spend
time and effort for farming, including adoption of technology such as conservation tillage.
As these examples show, the effect of education on technology adoption in empirical
literature has yet to reach consensus consistent with the economic theory. Nonetheless,
little attention has been paid to explore the reasons for such incoherent findings, perhaps

because the underlying theory seems intuitively too appealing to refute.

2) Education and Off Farm Labor Supply

One possible explanation for the inconsistent empirical results about the effect of
education on technology adoption may be attributed to the relationship between education
and off-farm labor. Highly educated farmers are expected to work more off the farm,
ceteris paribus, as human capital accumulated through longer years of formal education
becomes an advantage to find more lucrative off-farm employment opportunities, which
makes farming relatively less attractive. Theoretically, however, the effect of education on
off-farm labor supply is ambiguous; while higher education increases more attractive
employment opportunities off the farm, farms with highly educated operator may realize
higher productivity in farming operation and thus reservation wage to work off-farm for
such operators may be high (Hallberg, et al., 1991, Huffman and Lange, 1989). The existing
literature has mostly found that education is positively correlated with both off-farm labor
participation and the intensity of off-farm work (Huffman, 1980, Huffman and Lange,

1989), indicating that the marginal effect of education on off-farm wage is higher than the



marginal effect of education on the reservation wage. For instance, Goodwin and Mishra
(2004) found a strong and positive effect of education on off-farm labor participation; an
additional year of education leads an increase in annual off-farm labor supply by fifteen
hours. Huffman (1980) estimated the effect of education on the odds ratio of off-farm work
participation and the number of days worked off-farm by farm operators. The study found
a positive and significant effect of education on both the odds ratio and the number of days
working off-farm by operator.

From theoretical standpoint, there are two seemingly contradicting effects of
education on technology adoption. On one hand, higher education leads to more
technology adoption, but on the other hand, higher education increases off-farm labor
supply, which inevitably affects on-farm labor supply available for technology adoption.
Mixed findings about the effect of education on technology adoption in empirical literature
can perhaps be attributed to the fact that conventional technology adoption models do not

fully account for the role of off-farm labor supply.

3) Technology Adoption and Labor Allocation

Although studies that have combined these two seemingly distinctive topics into a
single model had been largely nonexistent until recently, exceptions are Fernandez-Cornejo
et. al. (2005) and Fernandez-Cornejo (2007). The former explored the simultaneous
process through which operators and spouses allocate their time between on and off farm
work and its relation to adoption of herbicide tolerant (HT) soybean as a representative of
time saving technology. The study found a positive correlation between education and off-

farm work for operators but not for spouses. Also, the impact of education on adoption of



HT soybeans was not statistically significant. The study by Fernandez-Cornejo (2007)
employed a model similar to Fernandez-Cornejo et. al. (2005) but it included adoption of
yield monitors, which is required for precision agriculture, as a representative of
management intensive technology. The study confirmed a negative correlation between
adoption of yield monitor and off-farm income. However, they did not specify if education
has a significant effect on adoption of yield monitor as it was not their primary interest.

In this study, we extend models developed by Fernandez-Cornejo (2007) and
Fernandez-Cornejo et. al. (2005) to estimate the net effect of education on adoption of two
different technology: herbicide tolerant (HT) crops and precision farming. We do so by
including in our model the interaction between farm size and education. The correlation
between adoption, education and farm size is of particular interest because small farms are
more likely to work off-farm (Fernandez-Cornejo, 2007) and less likely to adopt
management intensive technology (Fernandez-Cornejo, et al., 2001, Saha, et al., 1994).

Therefore, one can capture the net effect of education that varies across farm sizes.

III.  Analytical Framework

1) General Representation of Simultaneous Equations Model

Following Judge et al., (1984), a system of simultaneous equations that consists of |
equations (representing /] endogenous variables) each with T observations can be

generally expressed as follows:

YT+XB+E=0 (1)

,where Y isa T X | matrix of observations on endogenous variables, I is a J X ] matrix of

unknown parameters for endogenous variables, X is a T X K matrix of observations on
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exogenous variables, B is a K X J matrix of unknown parameters for exogenous variables, E
isa T X J matrix of error terms, and 0 isa T X J matrix all of whose elements are zero. For
the purpose of exposition, we partition= Y1 = ¥j), X = (X1 - Xg)and

E = (€1 " €)whereyj x and e; represents jth and kth column of corresponding
matrix. We also express elements of I' and B in corresponding lower case letters. Then, (1)

can be rewritten as follows:

Y11 0 Yy P11 Bl]
>+(x1 . . .

1 y,)(s wod x)| o
Yin o Yy Pix ,3]K

+€1  €)=0 (2)

Multiplying and summing up matrices on LHS of (2) yields a T X J matrix. We can rewrite

(2) as

T
(ravas + -+ yv51) [(x1511 + o+ )T
(yl)/IZ + ‘." + y])/]z) + (x1ﬁ12 + ":' + xKBZK) + (el vee e]) — 9

(y1vy + -+ yvy) (x1B1) + -+ + xkByx)

Further rearranging,

T
(J’1V11 + -t Y]V]1) + (111 + -+ xxPrx) + €1
(J’1V12 + ot J’]ij) + (x1P12 + - + Xk Pax) + €2 =0. (3)

(}’1)’11 + -t }’])’]]) + (x1ﬂ1] + -t xK.B]K) + e



Each element in the matrix on LHS of (3) isa T X 1 vector. For the purpose of
normalization, we set y;; = —1 and solve jth element in the matrix for jth endogenous

variable to obtain J equations

J

yi = ZJ’ﬂ/ﬂ + (X1f11 + -+ xgPik) t e (4)
=1

]. .
Jj#j

Estimating each equation in (4) by OLS or any appropriate form of limited dependent
variable models yields biased and inconsistent estimates because of endogenous
regressors. Also note that, in order for this system of equations to be identified, there must
be at least as many number of excluded exogenous variables as right hand side endogenous
variables in each equation (Kennedy, 2008).

In order to obtain consistent estimates for the system of equation, we post-multiply

(1) by I'"11 and solve for Y
YDr+&XBr1+ert=0
Y =—-XBr-!'-egr-!
Y=X1I+V. (5)

,where Il = —BI'"! and V = —ET 1. (5) represents reduced form equations of
simultaneous equations in (1). Estimating (5) by OLS or any appropriate form of limited
dependent variable models yields unbiased estimates as endogenous regressors are no

longer present. Replacing endogenous variables in the structural equations in (1) with

1 We assume that I' is invertible.



predicted values from reduced form equations in (5) also yields consistent estimates of

unknown parameters I' and B (Nelson and Olson, 1978).
2) Empirical Model

The purpose of this study is to build an empirically estimable system of
simultaneous equations that incorporates farmers’ labor allocation decisions into
technology adoption model. The system we consider here consists of three equations:
adoption of precision farming, adoption of GM crops and allocation of labor between on
and off the farm. Based on the general results above, we can express the technology

adoption and labor allocation model as follows:
y1=ay;+8X;+¢ (6)
y2=Bys+tn'Xz+e, (7)

* Y1 . g
vi=n v (5l) +0Xs+e (8)

ys3 = h(y3) = max(0,y3) (9)

, where y; is a dummy variable that takes 1 if the farm employs precision farming and 0
otherwise, y, is also a dummy variable that takes 1 if the farm adopts GM crops and 0
otherwise. y; is off-farm working hours for ith farm operators and y3 is the latent variable
of y;. @ and 8 are unknown constants and y, 8, 7 and @ are vectors of unknown parameters
to be estimated. X4, X, and X3 are vectors of exogenous variables. Note that (6), (7) and
(8) are equivalent to the set of structural equations solved for endogenous variables,

represented by (4) and the system of these three equations satisfies identification
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condition mentioned earlier. The error terms, €4, €, and €5 are assumed to be normally
distributed with zero means but we assume that €; and ¢, are correlated with each other at
p.

We first estimate the reduced form equation of (8) in which endogenous variables,
vy, and y,, are absent. We employ Tobit model as the dependent variable, annual off-farm
working hours by operators, is a censored variable bounded from below at zero. Then, we
obtain linear prediction of the latent variable, ﬁ, which is used as an instrument in the
second stage estimation of adoption of GM crops and precision farming by bivariate probit

model.
3) Interaction between Education and Farm Size

The primary interest of this study lies in estimating the effect on technology
adoption of the interaction between education and farm sizes. A common approach to
incorporate an interaction of two variables into a regression model is to assume that the
coefficient of one variable is dependent on the other variable. Following Ramanassan

(2002), suppose we have a simple regression model given by
Y=0F+p:1X+e (10)

and assume that f8; is dependent on another variable, Z. That is,
Br= o +1:2). (11)

Substituting (11) into (10), we have

Y=Bo+ (o +1r2)X +e
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(12) shows that Y is now dependent on X as well as a new regressor that is a product of the
two variables of interest, X and Z.

However, following this method and creating a product of education and farm size
would not allow us to fully capture the potential interaction between education and farm
size. This is because we expect that the coefficient of the interaction term, equivalent to y;
in (12) in the above example, will not be a constant.

Therefore, instead of simply creating a product of the two variables, we employed
the following steps to estimate the interaction between the two variables. First, as a
measurement of farm size, we select gross cash farm income (gcfi). Next, we create dummy
variables for each quartile of gcfi. Then we multiply each of the four dummy variables with
education to create four interaction variables each of which represents different levels of
farm size in terms of farm income. We include three dummy variables, each representing
second, third and fourth quartile of farm size, into the regression model and assume
coefficient of each dummy variable is associated with education as in (11)2.

For the lowest quartile interaction variable, for example, we expect the sign of
coefficient to be smaller than those for higher quartile interactions. This is because, for
smaller farms, more educated operators are likely to work more off-farm and thus adopt
fewer technologies. For the highest quartile, on the other hand, we expect the sign of

coefficient to be more elusive3. The point we wish to clarify here is that we expect the

2 We exclude interaction between 1st quartile of total acres and education from the model to avoid
multicollinearity. This excluded group will be the base group to be compared with other groups.

3 Large farms are less likely to work off-farm and more likely to be focused on farm operation. This implies,
for operators of large farms, that opportunity cost of farming is relatively unimportant for labor allocation
decisions as farming tend to be the most attractive employment opportunity. At the same time, the degree to
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effects of interaction between farm size and education to be different for small farms with
higher education and large farms with lower education. If this is the case, simply

multiplying education and farm size does not capture such conflicting effects.

4) Data

This study employs 2006 Agricultural Resource Management Survey (ARMS) data.
ARMS is conducted annually by the Economic Research Service and the National
Agricultural Statistics Service. The ARMS, which has a complex stratified, multiframe design,
is a national survey conducted annually by the Economic Research Service (ERS) and the
National Agricultural Statistics Service (for more detail, see
http://www.ers.usda.gov/Briefing/ARMS/). Each observation in the ARMS represents a
number of similar farms, the particular number being the survey expansion factor (or the
inverse of the probability of the surveyed farm being selected for surveying), and is
referred to henceforth as survey weight, or w; (/= 17, ..., n, where ndenotes sample size).
To demonstrate, the size of the samples considered in the analysis was 6,457 which when
properly expanded using survey weights yielded populations of farm operator households
totaling 387,651. The ARMS collects data to measure the financial condition (farm income,
expenses, assets, and debt) and operating characteristics of farm businesses, the cost of
producing agricultural commodities, and the well-being of farm operator households. The
2006 ARMS also collected information on farm households; in addition to farm economic

data, the survey contains detailed information on off-farm hours worked by spouses and

which large farm operators commit to farming may be even stronger for those operators with lower
education as they will not have as many attractive off-farm employment opportunities as highly educated
counterparts do.
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farm operators, the amount of income received from off-farm work, net cash income from
operating another farm/ranch, net cash income from operating another business, and net
income from share renting.

The target population of the survey is operators associated with farm businesses
representing agricultural production in the 48 contiguous states. A farm is defined as an
establishment that sold or normally would have sold at least $1,000 of agricultural
products during the year. Farms can be organized as sole proprietorships, partnerships,
family corporations, non-family corporations, or cooperatives. Data are collected from one
operator per farm, the senior farm operator. A senior farm operator is the operator who
makes the majority of the day-to-day management decisions. For the purpose of this study,
operator households organized as nonfamily corporations or cooperatives and farms run
by hired managers were excluded. Table 1 provides the complete list of variables used in
this study, their definitions and descriptive statistics.

Finally, following Goodwin and Mishra (2004) we adopt a bootstrapping approach
that consistently accounts for the stratification inherent in the survey design*. The ARMS
database contains a population-weighting factor that indicates the number of farms in the
population (i.e., all U.S. farms) represented by each individual observation. We utilize the
weighting (population-weighting factor) factor in a probability weighted bootstrapping
procedure. Specifically, the data (selecting N observations from the sample data) are
sampled with replacement. The models are estimated using the pseudo sample of data. This

process is repeated a large number of times and estimates of the parameters and their

4 Goodwin, Mishra and Ortalo-Magne (2003) point out that the jackknife procedure may suffer from
some limitations and they propose bootstrapping procedure as an alternative.
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variances are given by sample means and variance of the replicated estimates. We utilize

2,000 replications in the application that follows.

IV. Results and Discussion

Maximum likelihood estimate of the first stage Tobit model of off-farm working
hours is provided in Table 2. The results show that farm operators’ off-farm labor supply is
positively correlated with education, age, and whether the operator is a part owner
(powner). These findings are consistent with the human capital theory and empirical
findings in the literature. The effect of age on off-farm labor supply, however, is increasing
at decreasing rate, as the coefficient of age squared is negative and significant. The
negative coefficient on dairy indicates that operators from farms specializing in dairy are
less likely to work off-farm due to the high labor requirement for dairy operation
(Fernandez-Cornejo (2007) and Hallberg, et al., (1991)). The number of household
members between 7 and 13 years old is also found to have a negative effect on operators’
off-farm labor supply. Although this is consistent with the view that the presence of young
children requires more childcare (Fernandez-Cornejo, et al., 2005, Kimhi and Lee, 1996),
the need for childcare may have a bigger impact on off-farm labor supply by spouses rather
than operators (Fernandez-Cornejo, 2007). The negative coefficient on farminis consistent
with the expectation that a farm operator who report farming as their main occupation is
less likely to work off-farm. Direct and indirect farm program payments are also negatively
correlated with hours of off-farm labor participation, which is consistent with recent
findings by El-Osta et al., (2008) and Dewbre and Mishra (2007).

Next we estimate second stage bivariate probit model of technology adoption
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(precision farming and GM crops) using the predicted value of off-farm working hours,
ph_offop, as an instrument to off work by farm operators. Parameter estimates and
summary statistics are presented in table 3, while table 4 presents the marginal effects of
explanatory variables on probability of adopting precision farming or GM crops. The Wald
test statistic suggests that the null hypothesis of no correlation between two error terms
can be rejected at 1% significance level, which supports the use of bivariate probit model
instead of two separate probit models.

The predicted value of operator’s off-farm labor supply is not significantly
correlated with adoption of precision farming, contrary to our expectation that adoption of
management intensive technology like precision farming reduces off-farm labor supply.
This may be due to the relatively broad definition of precision farming in our data. The
2006 version of ARMS asks respondents if they adopt any precision farming practices to
reduce production costs. Because precision farming can involve a wide range of
technologies such as Global Positioning System (GPS), Geographical Information System
(GIS) and yield monitors, to name a few, some farmers may leave a positive response when
they practice relatively less management intensive technologies. We are not able to
capture the potentially heterogeneous perceptions about precision farming by respondents
in this study and this may have obscured the relationship between off-farm labor supply
and adoption of precision farming.

On the other hand, the predicted value of operator’s off-farm labor supply, ph_offop,
is negatively correlated with adoption of GM crops, which is also inconsistent with a priori
expectation that adoption of management saving technology such as GM crops would

increase off-farm labor supply. Although this result seems contradictory, it may not simply
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indicate that GM crops are not management saving. It can perhaps be attributed to the fact
that our model does not take into account off-farm labor supply by family members. Even
if adoption of GM crops is indeed management saving, operators’ off-farm labor supply is
least likely to increase in the family since operators are the primary decision-makers of
farm operation with comparative advantage in farming and thus they have the highest
opportunity cost of working off the farm of all family members®. If this is the case, adoption
of GM crops may increase off-farm labor supply by other family members, allowing the
operator to focus more on farming resulting in shorter off-farm working hours.

Coefficients of education and interaction between education and farm size are
partially inconsistent with our expectation but they nonetheless provide interesting results.
First, for adoption of precision farming, coefficient of education (educ) is found to be
insignificant in explaining adoption of precision farming (table 3). Note that this coefficient
represents the effect of education on adoption of precision farming for farms whose gross
cash farm income belongs to the first quartile (benchmark group). This means that, for
small farms whose income is lower than the 25t percentile, education has no significant
effect on adoption of precision farming. Coefficients of three interaction terms (educ g2,
educ g3, educ g4) are all positive and significant and the coefficients increase with farm
size (gross cash income). In other words, holding constant of off-farm working hours by
farm operator, education has no effect on adoption of precision farming for small farms, but,
for larger farms, the effect becomes positive and large. Marginal effects estimates in Table

4 shows that, for farms in the second, third and fourth quartile income, an additional year

5 Joint estimation of off-farm labor supply by operators and family members is an important empirical question as
suggested by Goodwin and Mishra (2004). However, the primary focus of this study is to estimate the net effect of
education on technology adoption and it is beyond the scope of this study to address such an issue.
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of education has 0.5%, 0.9% and 1.2% higher probability of adopting precision farming in
comparison to the farmers in the first income quartile.

The effect of education on adoption of GM crops is similar but different in one
important aspect. For farm operators in the first income quartile, the effect of education is
unexpectedly negative and significant. The marginal effect in Table 4 shows that an
additional year of education leads to a 1% decrease in probability of GM crop adoption. For
farms whose gross cash income falls in the second, third and fourth quartile, an additional
year of operator’s education increase probability of adopting GM crops increases by 0.5%,
0.95% and 1%, respectively, compared to the farmers in the first income quartile. This
indicates that, after controlling for off-farm labor supply, education has almost no effect on
probability of adopting GM crops for farms whose income is above 75t percentile and the
probability becomes negative for smaller farms.

In order to examine the robustness of our specification of farm size (proxy via gross
cash farm income), we estimated the same two stage models using interaction between
education and total operated acres instead of gross cash farm income, following Mishra and
Park (2005). Parameter estimates and marginal effects of education for two models are
summarized in Table 5. The results are similar when we replace farm income by total
operated acres except that the effect of education on precision farming adoption becomes
positive and significant for the first quartile income farms. The fact that all but one
interaction terms have significant coefficients and marginal effects in two different
specifications of farm size validates inclusion of the interaction between education and
farm size in our model. It also confirms our expectation that the effect of education on

technology adoption varies across farm sizes, holding off-farm labor supply by farm
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operators constant. As we expected, the effect of education is smaller for small farms for
adoption of both precision farming and GM crops and, contrary to our expectation, it
becomes negative for adoption of GM crops.

For both precision farming and GM crops, age has positive and age squared has
negative coefficients, as expected. For precision farming, the effect of age continues to be
positive until 50 years old and it becomes negative afterward. The turning point for GM
crops occurs approximately 10 years earlier at 39 years. Total operated acres in operation
has no significant impact on adoption of precision farming but has a negative and
significant impact on adoption of GM crops.

The degree of risk aversion® (risk), measured by ratio of crop insurance expenses to
total variable costs, as proposed by Goodwin and Rejesus (2008), has positive and
significant effect for both precision farming and GM crops. The positive coefficient of risk
indicates that as risk aversion increases operators are more likely to adopt these
technologies. This effect is more prominent for GM crops, which suggests that GM crops can
be seen as a risk reducing tool. This gives us another insight into the unexpected negative
effect of off-farm labor supply on adoption of GM crops. Because off-farm labor is often
seen as a means to diversify income risk, farmers may perceive risk reducing technologies
such as GM crops as a substitute of off-farm labor to manage risks, and thus having more of
one leads to less of the other as it may have been the case in our estimation.

[t is not surprising that farm specializing in dairy operations is less likely to adopt

precision farming and GM crops. Farmers with dairy operation are 4.7% less likely to

6 We use the share of crop insurance expense to total farm operating expenses as a measure of risk aversion-
higher share of crop insurance expense imply risk aversion (Goodwin and Mishra, 2004; Goodwin and
Rejesus, 2008).
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adopt precision farming and 6.7% less likely to adopt GM crops. On one hand, this is
consistent with a priori expectation that dairy farming is so labor intensive that dairy
farmers are less likely to adopt management intensive technology such as precision
farming, but on the other hand, the negative effect of dairy operation is unexpectedly larger
for GM crops which we assumed as management saving.

Estimates for pownerand tenantsrepresents effects of respective variables relative
to the effect of the excluded base group of full-owners who own all of the land they operate.
Descriptive statistics in Table 1 shows that part owners and tenants explain 45% and 11%
of the sample respectively and the rest of the 44% is represented by full-owners.
Coefficients and marginal effects of pownerand tenants are all positive and significant for
both precision farming and GM crops. Although one might expect the degree of land
ownership to be positively correlated with technology adoption, the results need to be
interpreted with caution. Our results is consistent with the fact that it is part owners who
operate the largest farms and account for the largest share of farm sales, followed by
tenants in the U.S. agriculture (USDA, 1998); part owners and tenants may face higher
profit opportunities and/or longer time horizon when considering adoption of precision
farming and GM crops than full-owners.

Government payment is also found to be positively correlated with adoption of both
technologies. A possible explanation of this finding is that farm program payments may
provide farmers with additional source of income that can be used to purchase newer
technologies and adopt newer practices (Caswell, et al., 2001, Lambert, et al., 2006,
Lambert, et al.,, 2007). Results indicate that farmers who receive any type of government

payments are 4% more likely to adopt precision farming and 25% more likely to adopt GM
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crops. The higher marginal effect of government payments on GM crops can be attributed
to the fact that farm program payments are tied to production of corn, soybean, cotton and
other cash grain crops.

Literature indicates that technology adoption is affected by regional location of the
farm (Mishra, et al., 2009). Parameter estimated in table 3 and marginal effects in table 4
show that most of the coefficients of regional dummy variables were statistically significant.
Note that the Mississippi Portal region serves as a base group and thus it is excluded from
the model. For precision farming, farmers in all of the eight production regions have higher
probability of adoption relative to farmers in the Mississippi Portal region except that the
effect is not significant for the Northern Great Plains region. For GM crops, farmers in all
but the Heartland region have a lower probability of adoption relative to the base group
and coefficient estimates are all significant at 1%. Higher probability of GM crop adoption
in the Heartland region where crop production is active is also expected as found by

(Fernandez-Cornejo, et al., 2005).

V. Conclusions

While the economic theory suggests that education has a positive influence on
technology adoption for farmers, existing studies on technology adoption have yielded
mixed results. We hypothesize that this is because conventional technology adoption
models do not account for the potentially negative effect of education on technology
adoption through labor allocation between on and off the farm.

The purpose of this study is to fill the gap between the economic theory and

empirical findings in agricultural economics. We built a simultaneous equations model that
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coalesce labor allocation and technology adoption decisions following Fernandez-Cornejo
et al. (2005) and Fernandez-Cornejo (2007) and included interactions between education
and farm size to estimate the net effect of education. The results confirm our expectation

that the net effect of education on technology adoption varies across farm sizes and it can

be negative for small farms.

Given the increasing federal spending on agri-environmental programs that
encourages farmers to adopt environmentally benign practices over the last two decades, a
precise assessment of the net effect of education on technology adoption is of great
importance for policy makers. Our findings suggest that simply targeting highly educated
farmer to adopt new farming practices on the basis of the conventional theory is not
sufficient to achieve an efficient outcome.

Finally, some limitations this study has encountered have to be noted. First, our
model did not yield expected results on adoption of GM crops. Although this was not our
primary objective, it would be necessary to expand our model to incorporate labor supply
of family members and address the risk reducing aspect of GM crops to obtain more
accurate estimates of the relationship between GM crops and off-farm labor supply. Second,
the definition of precision farming in our data is more broadly defined than previous
studies such as Banerjee, et al. (2008) and Roberts, et al. (2004). This may have obscured
the relationship between off-farm labor supply and adoption of precision farming. Third,
we have employed Nelson and Olson’s procedure to estimate a simultaneous equations
model with endogenous limited dependent variables. The simplicity of this procedure is a
tremendous advantage for practitioners. Although this procedure allows us to obtain

consistent estimates of unknown parameters, there exists an asymptotically efficient, but
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relatively more complicated, estimator suggested by Amemiya (1979). Future researches
will address these limitations to build on our first attempt to estimate the net effect of

education on technology adoption.
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Table 1: Variable Definitions and Descriptive Statistics

Variables Definitions Mean Std. Dev

pfarm = 1 if farm adopts any precision farming technologies 0.13 0.33
gm = 1 if farm adopts genetically modified (GM) crops 0.25 0.44
offwork annual hours worked off-farm by operator 46.23 75.59
educ operator's years of education 13.45 1.91
age operator's age 55.76 12.54
agesq operator's age squared 3266.84 1425.88
acres total number of acres 1276.53 5264.86
gcfi gross farm cash income 619716.30 1676277.00
dairy = 1 if farm has dairy operation 0.09 0.29
risk share of crop insurance premiums in total variable cost 0.01 0.03
tenant = 1 if operator is tenant 0.11 0.31
powner = 1 if operator is part owner 0.45 0.50
adarat2 debt to asset ratio 0.18 1.95
farmin = 1 if farming is the primary occupation of the farm operator 0.73 0.44
hhnw household net worth 202.41 659.00
hh_size6 number of household members younger than 6 years old 0.13 0.47
hh_sizel3  number of household members between 7 and 13 years old 0.48 0.95
metro 1 if farm is located in county classified as metro area 0.34 0.47
direct direct payments received in dollar 12902.82 39801.16
indirect indirect payments received in dollar 2434.23 11273.81
disaster disaster payments received in dollar 757.80 9109.48
govtpmt = 1 if farm receives any government payments 0.55 0.50
heart =1 if farm located in the Heartland region 0.12 0.33
northc = 1if farm located in the Northern Crescent region 0.15 0.36
northgp = 1 if farm located in the Northern Great Plains region 0.05 0.22
pgate = 1 if farm located in Prairie Gateway region 0.11 0.31
eupland = 1 if farm located in Eastern Upland region 0.10 0.30
ssboard = 1 if farm located in Southern Sea Board region 0.15 0.35
frim = 1 if farm located in Fruitful Rim region 0.20 0.40
basinr = 1 if farm located in Basin and Range region 0.06 0.24
educ_q1l interaction between educ and first quartile of farm income 3.32 5.84
educ_g2 interaction between educ and first second of farm income 3.31 5.82
educ_g3 interaction between educ and first third of farm income 3.37 591
educ_qg4 interaction between educ and first fourth of farm income 3.44 6.03
educ_a_qgl interaction between educ and first quartile of total acres 3.33 5.86
educ_a g2 interaction between educ and first second of total acres 3.30 5.79
educ_a g3 interaction between educ and first third of total acres 3.35 5.87
educ_a g4 interaction between educ and first fourth of total acres 3.47 6.07

Observations = 6457

Source: Agricultural Resource Management Survey, 2006
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Table 2: First Stage Tobit Estimates of Off-Farm Working Hours

Variables Coefficient  Robust Std. Err. P-value
constant -93.53 36.04 0.01
educ 3.12 0.99 0.002
age 10.24 1.28 0.00
agesq -0.12 0.01 0.00
acres 0.00 0.00 0.42
dairy -56.87 10.21 0.00
tenant 0.54 6.47 0.93
powner 12.54 4.09 0.00
risk 53.53 53.82 0.32
farmin -213.24 3.72 0.00
hhnw -0.02 0.01 0.02
hh_sizel3 -5.75 1.95 0.00
hh_size6 -2.72 3.87 0.48
metro -2.03 3.92 0.61
direct 0.00 0.00 0.00
indirect 0.00 0.00 0.02
dispayment 0.00 0.00 0.89
Observations = 6457 Pseudo R* = 0.1125
Log pseudolikelihood = -14346.627 F( 16, 6441) = 343.53

Prob > F =0.000
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Table 3: Parameter Estimates from Bivaraite Probit Model

Adoption of Precision Farming Adoption of GM Crops
Variable Coefficient Std. Err. p-value | Coefficient Std. Err. p-value
constant -3.44 0.41 0.00 -1.33 0.47 0.00
ph_offop -0.0008 0.0008 0.30 -0.0082 0.0028 0.00
educ 0.01 0.01 0.53 -0.05 0.02 0.00
educ_g2 0.03 0.01 0.00 0.03 0.01 0.00
educ_g3 0.06 0.01 0.00 0.05 0.01 0.00
educ_qg4 0.08 0.01 0.00 0.05 0.01 0.00
age 0.04 0.02 0.02 0.07 0.03 0.03
agesq -0.0004 0.0001 0.01 -0.0009 0.0004 0.01
acres -0.000003 0.000003 0.33 -0.00004 0.00001 0.00
farmin 0.08 0.18 0.67 -1.74 0.61 0.00
risk 2.54 0.72 0.00 6.41 1.18 0.00
adarat2 0.00 0.01 0.77 -0.01 0.01 0.34
dairy -0.36 0.09 0.00 -0.40 0.19 0.04
tenant 0.28 0.07 0.00 0.53 0.08 0.00
powner 0.24 0.05 0.00 0.64 0.06 0.00
govtpmt 0.25 0.05 0.00 1.29 0.07 0.00
heart 0.24 0.11 0.03 0.24 0.09 0.01
northc 0.47 0.11 0.00 -0.18 0.09 0.05
northgp 0.13 0.13 0.31 -1.11 0.12 0.00
pgate 0.21 0.12 0.06 -0.68 0.10 0.00
eupland 0.34 0.12 0.01 -0.73 0.10 0.00
ssboard 0.29 0.11 0.01 -0.24 0.09 0.01
frim 0.31 0.10 0.00 -1.39 0.10 0.00
basinr 0.34 0.13 0.01 -1.54 0.18 0.00
Log pseudolikelihood = -4319.5428 Wald Testof p=0
Wald chi2(46) = 1933.12 chi2(1) = 18.8296
Prob>chi2 = 0.0000 Prob > chi2 = 0.0000
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Table 4: Marginal Effects on Probability of Adoption
Adoption of Precision Farming Adoption of GM Crops
Variable dy/dx Std. Err  p-value dy/dx Std. Err  p-value

ph_offop -0.0001 0.0001 0.31 -0.0017 0.0006 0.01
educ 0.0015 0.0023 0.53 -0.0100 0.0034 0.00
educ_g2 0.0050 0.0011 0.00 0.0054 0.0013 0.00
educ_g3 0.0092 0.0011 0.00 0.0095 0.0014 0.00
educ_qg4 0.0127 0.0012 0.00 0.0103 0.0017 0.00
age 0.0057 0.0024 0.02 0.0140 0.0066 0.03
agesq -0.0001 0.0000 0.01 -0.0002 0.0001 0.01
acres 0.0000 0.0000 0.33 0.0000 0.0000 0.00
farmin* 0.0123 0.0278 0.66 -0.4935 0.1959 0.01
risk 0.4081 0.1164 0.00 1.3113 0.2506 0.00
adarat2 -0.0004 0.0014 0.77 -0.0012 0.0012 0.35
dairy* -0.0469 0.0094 0.00 -0.0667 0.0268 0.01
tenant* 0.0510 0.0154 0.00 0.1347 0.0225 0.00
powner* 0.0394 0.0090 0.00 0.1353 0.0146 0.00
govtpmt* 0.0395 0.0084 0.00 0.2504 0.0105 0.00
heart* 0.0435 0.0221 0.05 0.0553 0.0217 0.01
northc* 0.0924 0.0259 0.00 -0.0338 0.0158 0.03
northgp* 0.0234 0.0246 0.34 -0.1226 0.0080 0.00
pgate* 0.0384 0.0229 0.09 -0.1003 0.0102 0.00
eupland* 0.0658 0.0272 0.02 -0.1041 0.0102 0.00
ssboard* 0.0537 0.0229 0.02 -0.0438 0.0145 0.00
frim* 0.0567 0.0213 0.01 -0.1768 0.0094 0.00
basinr* 0.0659 0.0305 0.03 -0.1386 0.0074 0.00

* dy/dx is for discrete change of dummy variable from 0 to 1
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Table 5: Summary of Interaction between Education and Farm Size

Version 1: Interaction between Education and Farm Income

Adoption of Precision Farming Adoption of GM Crops
Variable Coefficient p-value dy/dx p-value | Coefficient p-value dy/dx p-value
educ 0.009 053 0.0015 0.53 -0.049 0.00  -0.0100 0.00
educ_g2 0.031 0.00 0.0050 0.00 0.027 0.00 0.0054 0.00
educ_g3 0.058 0.00 0.0092 0.00 0.047 0.00 0.0095 0.00
educ g4 0.079 0.00 0.0127  0.00 0.050 0.00 0.0103 0.00

Version 2: Interaction between Education and Total Acres

Adoption of Precision Farming Adoption of GM Crops
Variable Coefficient p-value dy/dx p-value | Coefficient p-value dy/dx p-value
educ 0.051 0.00 0.0086  0.00 -0.068 0.00 -0.0136 0.00
educ_aqg2 0.014 0.02 0.0024 0.02 0.037 0.00 0.0074 0.00
educ_aqg3 0.022 0.00 0.0038 0.00 0.052 0.00 0.0104 0.00
educ_aqg4 0.036 0.00 0.0060  0.00 0.064 0.00 0.0128 0.00
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