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ANALYSIS OF RANKED ORDERED DATA
WHEN THERE ARE COMPLETE AND
PARTIAL RANKINGS

Abstract

Many methods are available to analyze rank ordered data. We used a spectral density
analysis to identify most preferred options of Formosan Subterranean Termites (FST)
control as ranked by Louisiana homeowners. Respondents are asked to rank four termite
control methods form the most preferred option to the least preferred option. Spectral
analysis of both complete and partial ranked data indicates that the most preferred termite
control choice is a relatively cheap ($0.13 per square foot) option of a Liquid treatment.

Keywords: Complete and partial ranked data, Formosan Subterranean Termite, rank

ordered data, spectral analysis
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ANALYSIS OF RANKED ORDERED DATA WHEN THERE ARE COMPLETE AND PARTIAL

RANKINGS

Spectral analysis (or Fourier analysis) is a very useful tool to analyze time-series data. This
paper shows that spectral analysis is an equally powerful tool that can be applied in a non-
time series subject in economics such as to analyze preference ranking data. Ranked data
are frequently seen in categorical forms with each category reflecting the preference
intensity. A number of questions are asked to participants to rank items according to their
order of preference. For example, opinions about some objects often ranked as strongly
agree, agree, disagree, and strongly disagree. In research, rank order data are often coded
as consecutive integer from one to the number of category to their degree of preference,
but the number does not represent their distance. When intensity of preference is
presented, economists try to find the factors affecting these rankings but leave which of the
option provided is the most preferred option. This paper attempts to fill this void in
economics literature using a case of Formosan Subterranean Termite (FST) (Coptotermes

formosanus Shiraki) control options ranked by Louisiana homeowners.

A group of respondents may rank their choices as first, second, third, fourth preference
and so on. Existing research discusses the ranking of preference data in two cases: when
there are complete rankings and when there are partial rankings. A comprehensive review
of both complete and partial data is available in both Diaconis (1988) and Critchlow
(1985). If respondents rank all items available in a survey, it represents a complete ranking
or full ranking. However, some of the respondents in a survey only rank a few items and

leave others. In such a case, we do not know the ranks of remaining candidates in the



survey. This type of incomplete ranking represents a partial ranking. Hence, a partial
ranking is a preference list of r items out of n items. Generally, the way of analyzing the
data is to remove partial ranking and estimate the result using complete data and analyze
only the subset of complete rankings (Murphy and Martin, 2003). This type of practice
decreases sample size by removing partial ranking observations, which can result in a

significant decrease of estimation accuracy (Busse et al., 2007).

In this paper, we focus on the preference ranking of Formosan Subterranean Termite
control methods by Louisiana homeowners. Several states in the U.S. suffer significantly
from FST damage. In order to control FST, researchers and government agencies are
attempting to identify the most preferred option of FST control so that economic damage
can be minimized. Additionally, if needed, a subsidized treatment program can be
implemented based on preferences ranking information. We collected data using
contingent ranking method to find alternative FST control options. As discussed above, we
have both full and partial rankings in the data set. We will discuss complete details of data
features in the data section. A partial analysis of complete ranking is available (Paudel et al.,,
2009). In this paper, we will expand the analysis of complete ranking and extend the

analysis with partial ranking data.

Relevant Literature

There exist several approaches to analyze rank order data. A few examples include
nonparametric analysis of unbalance paired-comparison of ranked data (Andrew and

David, 1990). Andrew and David compared simple and nonparametric methods of
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analyzing unbalanced ranked data to an existing method of rank analysis for unbalanced
data. Busse et. al. (2007) used a cluster analysis of heterogeneous rank data and found that
the parameter estimation improved when incomplete ranking data were included in the
inference process. Another way of analyzing ranked data is to use a Markov Chain Monte
Carlo Technique (Eriksson, 2006). In addition, Lebanon and Mao (2008) improve analysis
of partial ranking data using nonparametric methodology and derive a computationally
efficient procedure which is also suitable when there are large numbers of items to be
ranked. In addition, Fagin et al. (2006) provided a broad image of methodology to compare
partial ranking using several metrics. Although all of the above methods are
computationally efficient to analyze, they are not easy to conceptualize in different
dimensions. Thompson (1993) applies a generalized permutation polytopes and
exploratory graphical method for ranked data. The author presents an exploratory
graphical method to display frequency distribution for fully and partially ranked data. In
addition, Kidwell and Lebanon (2008) build an approach for the visualization of ranking
data for large n, which is easy to use and computationally efficient to use too. An alternative
way of investigating preference ranked data is completely randomized factorial design
(Scheirer et al.,, 1976). However, this procedure as an extension of the Kruskal-Wallis rank
test allows for the calculation of interaction effects and linear contrasts. Paudel et al.
(2007) applied exploded logit and ordered probit models to identify the most preferred
Formosan termite control method in Louisiana. A new way, generalized spectral
decomposition by Diaconis (1988) and Diaconis (1989), is a very useful methodology to
analyze full and partial rank preference data. Lawson and Orrison (2002) used these ideas

to detect hidden coalition in the vote of nine judges of the United States Supreme Court.



Recently, Pedrotti et al. (2006) used generalized spectral analysis to find preference for
cars. As the theory of spectral analysis, they use first order and second order effects to

compare preference for different cars.

The Theory of Spectral Analysis

We applied a spectral density analysis to find the most preferred control method for FST
control as ranked by homeowners in Louisiana. We briefly outline a general theory of
spectral analysis applicable for rank order data. Most of the materials used in this section
are borrowed from Diaconis (1988) and Diaconis (1989).

Let us suppose we have n types of FST control methods denoted by i,i = 1,2,...,n.
Let (i) denotes the rank given to ith method. This type of data can be represented using
permutation. A permutation m is a bijective function m: {1,2..n}—{1,...,n} associated with
each item i€{1,...,n} a rank (i) € {1,...n} (Critchlow, 1985). Hence, the number of rankers
choosing ranking preference 1 form a data set which is denoted by f (7r) can be expressed

as

1 2 e n
f(m) = (n(l) 7(2) .. n(n))
If we are ranking n items, the permutation of the number of items gives the sample size of

the data for complete ranking. And for partial ranking, let q denote the number of ranking

option out of n, then the sample size for the partial ranking with each g < nis given by
n
q!(q). Suppose there are four methods of controlling FST. Then, there are 4! (=24)

complete rankings as shown in Table 1. The sample size for q=1 is 4 and q=2 is 12 as shown

in Table 2. From the theory of Group we can represent it as a symmetric permutation group



and denote it by S,,. Let G be a finite group operating transitively on X. And L(x) or M is the
space of all functions on X with values in R. This is a vector space on which G acts linearly
as a group transformation [gf(x) = f(g~1x)]. Then, if M is the vector space of function
defined on m, then subspace of N of V is invariant with respect to G (S,,) if for every feN and
every g&S ,which implies that gfeN.V decomposes into a direct sum of invariant
irreducible subspace, as follows.

M=V,0V,®.. &V

In other words, every function f €/ may be written uniquely as a sum

f=fo+ -+ fi Where fi eViand gf; €V, forall geS§

Let f(x) be a set (the number of times x appears in the sample), the spectral analysis is the
projection of f onto the invariant subspaces and the approximation of f by as many pieces
as required to give a reasonable fit. Sometimes rank data are not complete; therefore, we
have to set up for partially ranked data as described by Diaconis (1988). For the
decomposition, let 4 = (4, ..., 4,) be a partition of n, where 4; > 4, > A3 = -+ > A, and
A+ A, + A3+ -+ 4. =n. Then the Young's rules give the appropriate irreducible
subspace in the decomposition of M*, where M* represents a partially ordered data “in
configuration A.” To illustrate, M (n-mm) is the data vector of the form “Pick the best m of n”.
The decomposition of M(™~™™) gives spectral decomposition of the frequencies. According
to this rule

M(n—m,m) — S(n) @S(n—l,l) @S(n—z,z) P ... @S(n—m,m)

And dimensions of §(~™m) = (17:1) - (mi 1)

And the subspaces of S~ have the following interpretations:

S™ - The grand mean or number of people in the sample
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S(M=11) _ The effect of itemi, 1 <i <n

§(=22) _The effect of items {i, j} adjusted for the effect of i and j.

5.'(”""") -The effect of a subset of k items adjusted for lower order effects.

The procedural details to decompose higher dimension are available in Diaconis (1988).
Here, we are only interested on first order i.e. 4 = (n —1,1) and second order unordered
A = (n-2, 2) effects. Hence, If X is the set{1,2,...,n}and f(x) is the number of people
choosing x, then the decomposition with their dimensions are:

= “11
first order - L(Xg =S5 gsh-11)

1 n-1

L(x)— W g s-11) g 2§(-22)  gogn-211)
1 n—-1 n(n—-3)/2(n—-1Dn-2)/2

Second order -
As mentioned previously, the spectral analysis is the projection of f onto the invariant
subspaces. This type of projection is also called isotopic projection. Many researchers use
spectral analysis in time series data where the dimensions are lower and easy for
computation. However, ranked order data have higher dimensions compared to time series
data, so we cannot find the orthogonal basis to compute projection in the isotopic subspace
easily. Mallows (1957) provides an approach to deal with such difficulty. This paper uses

his approach to compute both first and second order analysis. We use inner product to

compute the final projection of the data by using the following mathematical expression.

(filf2) = 2x 1) f2 ()



First order analysis

The space V1 is the set of constant function that is the average frequency of the data, so it
has one dimension. The space V2 is the space of first order function evaluated using
Mallows' approach. Therefore, consider a function

=1lifn(j)=1

= O 0 Otherwise

Where i is the control method and j is the rank given to the control method.

The first order function becomes

2.i,j ij0in(j) - In order to get direct sum decomposition, the coefficients should satisfy the
following condition.

Zijai;=0.

If we consider our data set, it will consist of 3 dimensional space projected into 3

dimensional space, so it projects a 9 dimensional space, which can be shown using hook-

length formulae following Young’s rule as presented in Table 4.
Second order analysis

Second order analysis consists of ranking a pair of control methods to a pair of rank
methods. For example, someone can choose first and second methods in third and fourth or
fourth and third ranking positions. The position of rank can be considered in ordered or
unordered position. Therefore, there are two types of second order functions. Again

following Mallow’s approach, let



=1if {m(Dr()} = {i,i'}

™= (") = 0 Otherwise

Then, The general, unordered, second order function will be of the following form.

Zi,i’,j,jr aii’,jjr5{ii’}{n(j)n(j’)}

Where, a;; jj, are chosen so that V3 is orthogonal to V1®V2. In this case, the order does not
matter and it has 2 dimensional space each with 2 dimensional projection so, the total 4

dimensional space . In a similar way we can find the higher order function, which is beyond

the objective of this paper.

Data

Data were collected by means of a survey of homeowners regarding their preference of
Formosan FST control options in Louisiana. FST are invasive species of termites which is
currently present in more than 13 states in the U.S. It has been found that the damage by
the species is so severe that infested houses become uninhabitable if not controlled in time.
Damage estimates due to FST infestations reach approximately one billion dollars per year.

In this study, four FST control options were provided for each individual
homeowner to rank from the most preferred choice to the least preferred choice. The FST
control choices provided are i. No control option: cost $0/square foot, ii. Liquid treatment
option: cost $0.13/square foot, iii. Bait treatment option: $0.43/ square foot, iv.
Liquid+Bait treatment option: $0.56/square foot. Individuals ranked these options as their
first, second, third and fourth most preferred option to control FST. There were a total of
972 observations obtained from the survey. Out of those, only 747 respondents provided
complete rankings, which are shown in Table 1. Remaining respondents provided partial
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rankings as shown in Table 2. The entries of columns of Table 1 shows the control method
ranked in the given permutation. Thus, 1234 respondents ranked No control option
method as their first preferred method, Liquid treatment as their second preferred option,
Bait treatment as their third preferred option, and Liquid+Bait treatment as their fourth
preferred option. Zero or blanks in Table 2 indicate respondents did not rank all control
options. For example, 42 homeowners ranked first control method first and left others

unranked.

Results

Complete ranked data were analyzed first which is then followed with the analysis of
partially ranked data. The percentage of respondents ranking preference i in position j is
shown in Table 6. This table indicates that 52.2% of respondents preferred the Liquid
control method as the first choice and 55.7% of respondent favored Bait as their second

choice.

Complete Ranking

Let M be the space of all real valued functions on the symmetric group S4. This vector space
decomposes uniquely into the direct sum of five subspaces. These are shown with their
dimensions in Table 3. V1 is the set of constant functions with one dimension. Second space
V2 is the set of functions whose sum is zero with 9 dimensional space and orthogonal to V1.
Similarly, V3 is the second order unordered effect with 4 dimensional space and orthogonal

to V1+V2. The result of first order spectral analysis is shown Table 5. First order data
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G

decomposed in two parts, for first ranking, f is found by projecting f0(3’1)onto Mé3’1) and

f1(3,1) is found by projecting f G onto M1(3,1)_ This gives the following decomposition:

Where:
747 _m
142 747 853
f(3,1) _ 49030 0(3,1)= 727 f1(3,1)= ;75
112 71_7 B é‘?
4 4

The largest number, 213 in first the column, indicates Liquid control option received the
most votes as respondents’ first choice of control option. The largest number in the second
column, 213, shows that Bait received the most votes as the second most favorable control
option. The Liquid plus Bait treatment option is the third choice and 337 (what is 337) is in
fourth choice. This means that respondent homeowners want to control FST using some
form of control measure.

The result of the second order analysis is shown in Table 7. This is second order
unordered effects. The second order unordered effect decomposes in invariant subspace
with 1 dimensional subspace MO0, 3 dimensional first order effect space M1, which indicates
the number of items an option chosen in the given preference Finally, 2 dimensional second
order unordered effect space M2 gives pairs of control options, which is purely a second
order effect. In particular, the decomposition for the pair of No Control and Liquid Control
is illustrated below. The vector f(z,z) , the number homeowners who favor No control option and
Liquid control option as first or second preference, uniquely can be written as sum of

fo(z'z), /‘1(2'2), 2(2'2), and they are orthogonal to each other.
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2,2 2,2 2,2 2,2
F 2112 A2 1P 2+ 1A
188301 930015 666785 28621

180 124.5 /25.5 / 30

12 124.5 17 —95.5
| 1245 |4 | 180 | 4| 655
370 1243 | 180 65.5
\124 5/ \ ) \—95.5)
120/ \1243 25.5 30

f(2.2) — f0(2,2) +f1(2'2) +f2(2'2)
Details of all pair choices are shown in Table 7. Each pair can be chosen as 6 easily interpreted
functions. Geometrically, the function projects to 36 points in a 4 dimensional space. This means
there are only four independent values in the table consisting 36 values. It is easy to interpret
second order unordered effects when there are more choices (greater than four, see
Diacons,1989). Since we have only four dimensional second order decomposition this gives
some equal values as shown in Table 7. The largest value 141 indicates that there is huge effect
between corresponding method and rank preference. For example, there is a great effect between
methods No Control and Bait in ranking (1,3) and (2,4). For pairs of methods like Liquid and
Liquid+ Bait, there is an opposite effect: Every homeowner likes both or hates both, because the

row entry begins and ends (-,-) with the same value.

Partial Ranking

The subspace decomposition, dimensions, sum of squares and first and second ordered
projections are illustrated in Table 8. There are 131 respondents who only ranked q=1 of
the 4 control methods. Thus, f (i) the number of homeowners who ranked control option I

first. The space of all such functions is denoted by M*1, There are two invariant subspaces

13



in the isotopic decomposition with constant function and first order function (summing
zero). These are denoted by S°, S*1.

Table 8 illustrates that the first order coefficient is highest for the Liquid control
method. Therefore, homeowners prefer the Liquid method. The value for Liquid + Bait is -
27.7, which is considered to be a "hate vote" because it has the highest negative value. This
indicates that homeowners do not want both Liquid + Bait control methods applied in FST

deterrence. This result coincides with the complete ranking result.

Conclusions

A generalized spectral analysis method is applied to identify the preference of Louisiana
homeowners for four FST control option. The first and second order analysis shows that
the Liquid control method is the most preferred option to control FST termite. The results

are consistent in both partial and complete ranking cases.
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Table 1. Preference of Formosan Subterranean Termites (FST) control option in Louisiana —
Complete Ranking

Combinations

Ranking(m)

Number

First

second Third Fourth

O 00 N O U1 B WIN -

N NN NNRRRRRRRRB R R
B WNERP, O WVWOWNOO UM WNRO

Total

A A DA P P P WWWWWWNNNNNMNNNMNNRRRRRPR

N
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P NP WN W R NP DN WOER R PRRWOWDEDNONDPE WD

123

N 2 Ao -

15
305
24

48

39

20

88
747
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Table 2. Preference of Formosan subterranean termites (FST) control options in Louisiana.

g=1 q=2

Partial Ranking No. of votes cast on this type Partial Ranking No. of Votes cast of this type

1000 42 1200
100 67 1020
10 17 1002
1 5 2100
2010

2001

120

102

210

201

12

21

O OO OO OO oo oo =
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Table 3. Decomposition of the regular representation.
M11111=§4 @ 3531y 2 S22 @ 35211 @ SLLLL

M =Vl ¢ V2 & V3 & V4 & V5

Dim 24 1 9 4 9 1
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Table 4. Young Tableaux for subspaces.

Sub Space Young Tableaux notation
Constant [4] V1
First Order [3,1] V2 4]2]1] 3[1] [4]3]2]
3 1
Second Order [2,2] V3 43 2
(Unordered) 2|1 1
Second Order [2,1,1] V4 413 1 412
(Ordered) 2 3
1 1
[1,1,1,1] V5 4
3
2
1
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Table 5. First order effects - complete ranking.

Rank
Method 1 2 3 4
No Control -45 -127 -166 337
Liquid 213 9 -50 -173
Bait -94 231 42 -180
Liquid +Bait -75 -114 173 15
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Table 6. Percentage of respondents ranking preference i in position j.

Rank
Method 1 2 3 4
No Control 22.8 7.98 2.8 70.2
Liquid 52.2 26.5 18.3 1.9
Bait 12.6 55.7 30.7 0.9
Liquid +Bait 12.5 9.8 48.2 27
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Table 7. Second order, unordered effects.

Rank
Method 1,2 1,3 14 23 24 34
No Control and Liquid 30 -79 49 49 -79 30
No Control and Bait -96 141 -45 -45 141 -96
No Control and Liquid+Bait 66 -62 -4 -4 -62 66
Liquid and Bait 66 -62 -4 -4 -62 66
Liquid and Liquid+Bait -96 141 -45 -45 141 -96
Bait and Liquid+Bait 30 -79 49 49 -79 30
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Table 8. Spectral analysis for q=1, n=131.

M3,1 — 5.4- @53,1
Dim 4 1 3
SS/4 1073 570

Option Projection
No Control 9.25
Liquid 34.25
Bait -15.75

Liquid +Bait -27.75
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Table 9. Spectral analysis for q=2, n=1.
M2,1,1: 54@253'1®52'2®52'1'1

Dim 12 1 6 2 3
SS/4
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