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ABSTRACT 

DOES ECONOMIC ENDOGENEITY OF SITE FACILITIES IN RECREATION 

DEMAND MODELS LEAD TO STATISTICAL ENDOGENEITY? 

By 

Min Chen 

Random Utility Models of recreation demand are widely used to relate demand 

and value to the characteristics of recreation sites. Although some kinds of endogeneity 

problems have been studied in previous literature, no study has addressed the potential 

problem with site characteristics that are endogenously supplied. Some site 

characteristics, like facilities, could be endogenous in an economic sense due to the 

interplay of supply and demand. That is, more popular recreation sites tend to have better 

site characteristics since managers with limited budgets would be more willing to invest 

in them. If recreation site improvements are more likely to occur at the more popular sites, 

then this economic endogeneity might cause problems for econometric models linking 

site demand to facilities.  In this paper, we use Monte Carlo simulations to investigate 

under what situations this economic endogeneity will lead to statistical endogeneity. 
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Section 1 

 INTRODUCTION 

Random Utility Models (RUMs) are widely applied in the travel cost technique 

for valuing recreational activities, relating visitation to travel costs and site characteristics. 

Discrete response models, like multinomial logit or conditional logit, are used to estimate 

people’s choice behaviors. From an econometric standpoint, obtaining consistent 

estimates requires the exogeneity of the independent variables like travel costs and site 

characteristics. 

Specification problems potentially causing bias in travel cost methods were paid 

attention to as early as 1970s, especially the omission of travel time variable and 

congestion effects. Cesario and Knetsch (1970), Brown and Nawas (1973) and Gum and 

Martin (1975) discussed how to incorporate travel time and reduce its multicollinearity 

with travel cost at the same time; McConnell and Duff (1976) and Wetzel (1977) stated 

that congestion effects, if there were any, should be incorporated into the travel cost 

model to avoid estimation bias. Allen Stevens and Barrett (1981) found that the impact of 

excluding travel time and congestion varied from situation to situation. Caulkins, Bishop 

and Bouwes (1985) showed that the omission of cross-price variables did not necessarily 

cause bias, and the sign of the omission bias was determined by the true economic 

relationship.  

Recent studies have focused on the possible types of endogeneity in RUMs. 

Following Ben-Akiva and Lerman (1985), Haab and Hicks (1997) raised the issue that 

the set of alternatives, rather than defined by researchers, could be endogenously 
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determined by individuals. They added weighted probabilities to the log likelihood 

function to reflect the probability that certain sites are selected into the set of alternatives, 

and the estimation results turned out to be very different. Murdock (2006) studied 

unobserved site characteristics absorbed into the error term, which could be correlated 

with the travel cost variable. Monte Carlo simulations were used to test whether the 

proposed approach for addressing this endogeneity problem performed better than the 

traditional methods. Timmins and Murdock (2007) stated that the omission of a variable 

for congestion in the estimation would lead to significant endogeneity problems, since it 

depended on real visits. They supposed individuals made rational decisions given others’ 

choices and considered Nash equilibrium in repeated games. A quantile regression with 

instrumental variables was applied to get new estimates. Von Haefen and Phaneuf (2008) 

developed a combined revealed and stated preference approach to overcome the 

endogeneity of unobserved determinants. 

Those endogeneity problems addressed in this literature have mainly focused on 

the site selection, congestion and omitted variables, and are corrected to ensure the 

consistency of estimates. Now, let’s consider site characteristics that are supplied by 

managers in response to people’s use of a recreation site, for example, facilities. Many 

studies have found that facilities variables are often significant in explaining people’s 

recreational behaviors. Parson (2003) reported the presence of amusement parks and 

restroom facilities as explanatory variables in the latent utility equation, and their 

estimated coefficients were statistically significant at 95% level of confidence.  Lew and 

Larson (2005) included lifeguard presence and parking availability dummies as two 

explanatory variables for beach use, which were also statistically significant. Von Haefen, 
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Massey and Adamowicz (2005) used bathroom availability and public parking in their 

recreational demand estimation. Yeh, Haab and Sohngen (2006) took into account the 

effects of lifeguard and number of picnic tables when valuing recreation trips to beaches. 

Cutter, Pendleton and DeShazo (2007) considered the effects of toilets, trails, tables and 

benches in their model of recreational demand.  

While there is empirical evidence that facilities can affect estimated demand, the 

supply and types of facilities are also determined by people’s visitation as the literature in 

park management makes clear.  Lee and Driver (1999) compared three recreation 

resource management frameworks: activity-based management (ABM), experience-based 

management (EBM) and benefits-based management (BBM). BBM is an extension of the 

first two, aiming at providing public recreation opportunities which people benefit from. 

Shin, Jaakson and Kim (2001) pointed out that “Benefits-based management seeks to 

provide recreation benefits for recreation participants by managing the physical 

environments in which recreation occurs”, and they included facilities and their 

maintenance as one attribute of the setting of recreational sites. Faghri, Lang, Hamad and 

Henck (2002) mentioned a set of criteria for where to optimally locate park-and-ride 

facilities, one of which suggested that a site with lots of traffic passing through should be 

a suitable location. Cook (2008) used a benefit transfer method to estimate the value of a 

new long-distance walking trail in a tropical rainforest. If no people went for recreational 

activities in the forest, managers would not build a walking track since its value was low. 

All of these demonstrate that facilities are more likely to be built on sites where people go. 

This may appear similar to the congestion variable: congestion also happens on 

popular sites, discouraging future visitation though. But the mechanisms are not the same, 
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and the ways to model the endogeneity of congestion and facilities are different. The fact 

that congestion depends on visits comes from the externality problem: one person’s visit 

has negative effects on others. The level of congestion on one site is determined by 

people’s behaviors, so it looks more like a game theory context. For facilities, however, a 

site manager is involved. If we view the managers as the supply side and the 

recreationists as the demand side, managers change facilities in response to recreation 

demand, and recreation demand varies in response to facilities. The interplay of supply 

and demand makes facilities endogenous in the economic sense.  

Notice that facilities are site-specific, so they are endogenous at an aggregate 

level rather than the individual level. In fact, the endogeneity problem of facilities looks 

like the price endogeneity problem in market demand models, which has received lots of 

attention in market analysis literatures. Dhar, Chavas and Gould (2003) stated that price 

endogeneity was an issue in the estimation of aggregate demand functions, resulting in 

simultaneous equation bias. Yang, Chen and Allenby (2003) mentioned that researchers 

had found that failure to account for price endogeneity led to estimation bias in both 

aggregate and disaggregate data. Especially, Villas-Boas and Winter (1999) tested the 

endogeneity of market-mixed variables set by market managers in random utility models, 

and showed that even if those variables were common across all consumers, or 

individuals were price takers and strategically didn’t impact the price setting behavior of 

the sellers, endogeneity would still be a potential problem. Therefore, in recreation 

demand models, although everyone faces the same facilities on all sites, the economically 

endogenous facilities may lead to statistical endogeneity. Accordingly the objective of 
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this paper is to examine in what circumstances the economic endogeneity of facilities 

causes problems to the estimation results.  

To address this issue, Monte Carlo simulations are applied.  In the simulations, we 

set values for the “true” parameters, simulate choices, run regressions, and obtain 

estimates. If there is little bias in the estimates compared with true parameters, the 

economic endogeneity of facilities does not matter. If the differences between estimates 

and true parameters are huge, then facilities are not only economically endogenous but 

also statistical endogenous. The advantage of Monte Carlo simulations is that we know 

what the “truth” is; otherwise, with empirical data, we can test the statistical endogeneity, 

but we cannot judge whether an estimate is biased for sure without knowing its true value. 

In the following sections, we present the basic choice model for our recreation 

demand simulations, and state our extrapolation of possible factors having influence on 

how much economic endogeneity will be reflected on statistical results.  For the 

simulations, we assume all explanatory variables except facilities are exogenous, let 

facilities be determined by recreation demand and supply, and test whether the estimates 

are biased under a variety of situations. Also, some underlying attributes of simulations 

are changed in order to see how sensitive the results are. Finally, we conclude our 

simulation studies after a discussion of those simulation results.    
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Section 2 

METHODS 

Conditional Logit Models 

In RUMs, the latent utility that person i gains from visiting site j is: 

𝑈𝑖𝑗 = 𝑋𝑖𝑗𝛽 + 𝜀𝑖𝑗    

Where 𝑋𝑖𝑗  includes travel cost, which varies across people and sites, and site 

characteristics, which only varies across sites; 𝜀𝑖𝑗  is a random term counting for 

unobserved preferences. If there are J sites and individual i chooses to go to site k, utility 

maximization implies that:  

𝑈𝑖𝑘 = max 𝑈𝑖1,𝑈𝑖2,… ,𝑈𝑖𝐽   

The revealed choice variable for this person would be a set of binary responses 

indicating the chosen site: 

 𝑦𝑖1,𝑦𝑖2,… , 𝑦𝑖𝑘 ,… , 𝑦𝑖𝐽  =  0,0,… ,1,… ,0 . 

According to McFadden (1974), when 𝜀𝑖𝑗  follows a Type I extreme value 

distribution, the maximization of the random utilities yields site choice probabilities that 

are given by a conditional logit model where the probability that individual i chooses site 

k is: 

𝑃𝑟𝑖 𝑘 =
𝑒𝑋𝑖𝑘𝛽

 𝑒𝑋𝑖𝑗 𝛽𝐽
𝑗=1

 . 
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The log-likelihood function for the individual is: 

𝑙𝑖 = 𝑙𝑛    𝑃𝑟𝑖 𝑗  
𝑦𝑖𝑗

𝐽

𝑗=1

 =  𝑦𝑖𝑗 𝑙𝑛 𝑃𝑟𝑖 𝑗  

𝐽

𝑗=1

 

When we have the choices for all recreationists, we can sum their log-likelihood 

functions and apply maximum likelihood estimation method to get the estimated 

coefficients. 

 

Welfare Measures 

Researchers are often interested in how people value the loss of a certain site or 

the welfare change of recreationists corresponding to an environmental quality change. 

For individual i, if we know 𝜀𝑖𝑗 , where j = 1,2,…,J, we can calculate both of these welfare 

measures. Recall that recreation demand models can measure only use values and 

suppose site k is closed due to some reason; this person puts no value on its loss if site k 

does not give the highest utility (i.e., if site k is not being used). If site k is individual i’s 

choice, due to its closure, i would then go to the site with the second highest utility, say, 

site m. Let 𝑋𝑖𝑗 = [(𝑀𝑖 − 𝑇𝐶𝑖𝑗 ), 𝑥𝑖𝑗 ] , where (𝑀𝑖 − 𝑇𝐶𝑖𝑗 ) is individual i’s income minus 

travel cost to site j, which is also the expenditure on other commodities, and 𝑥𝑖𝑗  contains 

the covariates for site characteristics. The compensating welfare measure can be 

expressed by: 

𝑈𝑖𝑘 [(𝑀𝑖 − 𝑇𝐶𝑖𝑘 ), 𝑥𝑖𝑘 ] = 𝑈𝑖𝑚 [(𝑀𝑖 − 𝑇𝐶𝑖𝑚 + 𝐶𝑖), 𝑥𝑖𝑚 ] 
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Given the utilities are known, we have: 

𝛽𝑀(𝑀𝑖 − 𝑇𝐶𝑖𝑘 ) + 𝛽𝑥𝑥𝑖𝑘 + 𝜀𝑖𝑘 = 𝛽𝑀 𝑀𝑖 − 𝑇𝐶𝑖𝑚 + 𝐶𝑖 + 𝛽𝑥𝑥𝑖𝑚 + 𝜀𝑖𝑚  

𝑈𝑖𝑘 = 𝑈𝑖𝑚 + 𝛽𝑀𝐶𝑖  

𝐶𝑖 =
𝑈𝑖𝑘 − 𝑈𝑖𝑚

𝛽𝑀
 

Where 𝛽𝑀  is the income parameter, the monetary measure of utility, which is the absolute 

value of the travel cost parameter. So the access value of one site is equal to the reduction 

in utility divided by marginal utility of income if it is visited by someone; otherwise, its 

value is zero. When we average the values across people, we will get the average site 

value for each site in one sample.  

As for the value of environmental quality change, assume there is a change of 

quality l on site k, which is small enough to not to make individual i switch to another 

site if it is a bad thing. Following the example above, now we have m=k after the change, 

with 𝑥𝑖𝑚 = 𝑥𝑖𝑘
′ = 𝑥𝑖𝑘 + ∆𝑥𝑙 . Similarly, we will get: 

𝐶𝑞𝑖 =
𝑈𝑖𝑘 − 𝑈𝑖𝑘

′

𝛽𝑀
= −

𝛽𝑙
𝛽𝑀

∆𝑥𝑙  

If it is bad then the compensating welfare measure is positive, and vice versa. 

When it is a marginal change, this welfare measure becomes 𝛽𝑙 𝛽𝑀 . Given that we are 

measuring use values, for site j, where j≠k, there is no value for its quality change for 

individual i. Hence, we can get the welfare measure vector simply by multiplying the 

individual choice vector by 𝛽𝑙 𝛽𝑀 . Again, averaging the vectors across people gives the 

average welfare measures of marginal quality change for all sites. 
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In empirical studies, however, there is no way to know the individual error terms. 

We are able to get the estimated values of the welfare measures instead of true values. In 

general, under the conditional logit model, the estimated welfare change for individual i 

caused by any change in the covariates is: 

∆𝑊𝑖
 =

1

𝛽𝑀 
 𝑙𝑛   exp 𝑋𝑖𝑗

1𝛽  

J

j=1

 − 𝑙𝑛   exp 𝑋𝑖𝑗
0𝛽  

J

j=1

   

Where 𝑋𝑖𝑗
1 and 𝑋𝑖𝑗

0 represent the new status and the initial status respectively. 𝛽𝑀  is the 

estimated coefficient of income variable. 

The estimated marginal value of environmental quality change for individual i is:   

𝜕𝑊𝑖
 𝜕𝑞𝑗 =

𝛽𝑙 

𝛽𝑀 
𝑃𝑟𝑖  𝑗 , 𝑗 = 1,2,… , 𝐽 

Where 𝑃𝑟𝑖  𝑗  is the predicted probability of individual i to visit site j. The estimates 

won’t be zero for any of the sites due to the predicted probability. We can get the average 

estimates by averaging those individual estimates across people.   

 

Basic Steps 

To simplify the model, we assume there are three explanatory variables: travel 

cost (TC), quality (Q) which represents exogenous site characteristics, and facilities (F) 

which will serve as our potentially endogenous site characteristic. The latent utility 

equation becomes: 
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𝑈𝑖𝑗 = 𝑇𝐶𝑖𝑗𝛽1 + 𝑄𝑗𝛽2 + 𝐹𝑗𝛽3 + 𝜀𝑖𝑗  

Following the estimates reported in Parson (2003), we set “true” values for the 

population parameters: 

𝛽1 = −0.06,𝛽2 = 0.49,𝛽3 = 0.06 

Then the utility equation becomes: 

 1      𝑈𝑖𝑗 = 𝑇𝐶𝑖𝑗 ×  −0.06 + 𝑄𝑗 × 0.49 + 𝐹𝑗 × 0.06 + 𝜀𝑖𝑗  

 

Figure 2-1. Basic Landscape 

We also assume there are 10 recreation sites and 1,000 recreationists. Both sites 

and people are randomly spread out in a certain area. Figure 2-1 illustrates their locations, 

where the red dots represent sites and small black dots are individuals. 

In general, basic steps for the simulation under these settings with exogenous 

independent variables will be as follows:   
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Step I: Take 10,000 random draws for 𝑇𝐶𝑖𝑗  uniformly over the range from 0 to 100, since 

travel costs are varying across people and sites. Take 10 uniform random draws for 𝑄𝑗  

from 0 to 2, and 10 uniform random draws for 𝐹𝑗  from 0 to 5, both of which just vary 

across sites and are the same for all people. These random draws form the pseudo data set 

for explanatory variables. The ranges for the covariates are set to roughly correspond to 

the data in Parson (2003). 

Step II: For individual i, extract his/her 𝑇𝐶𝑖𝑗 , 𝑄𝑗  and 𝐹𝑗 , 𝑗 = 1,2,… ,10, and produce 10 

random draws for 𝜀𝑖𝑗  from a Type I extreme value distribution with a variance of 𝜋2 6 . 

Following Train (2003), the cumulative distribution function for 𝜀𝑖𝑗  is: 

𝐹 𝜀𝑖𝑗  = exp − exp −𝜀𝑖𝑗    

Then its inverse function is: 

𝜀𝑖𝑗 = −𝑙𝑛 −𝑙𝑛 𝐹 𝜀𝑖𝑗     

Since 𝐹 𝜀𝑖𝑗   falls between 0 and 1, we can take 10 random draws from a (0, 1) uniform 

distribution first and then use the inverse CDF function to compute 10 correspondent 

random numbers for 𝜀𝑖𝑗 . 

Step III: Use (1) to calculate 𝑈𝑖𝑗 , 𝑗 = 1,2,… ,10. Pick the maximum, mark it as one and 

others as zero, and we get the pseudo choice variable for individual i. 

Step IV: Repeat Step II and III for 1,000 people to obtain pseudo choices for all 

recreationists, which compose one random sample. 
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Step V: Regress the pseudo choice variable on the pseudo data set for 1,000 people and 

get 𝛽1
 , 𝛽2

  and 𝛽3
 . Do hypothesis tests, where the null hypotheses are that the estimated 

coefficients are equal to their “true” values, and the significance level is chosen to be 5%. 

With the sample size equal to 1,000, the critical value for t statistics at 5% significance 

level is 1.96. 

Step VI: Repeat Step II, III and IV 1,000 times to generate 1,000 random samples, where 

the explanatory variables remain the same but the error terms are newly drawn for each 

sample. Do Step V for each random sample, producing 1,000 𝛽1
 , 𝛽2

  and 𝛽3
 , which can be 

viewed as samples for three random variables.    

Step VII: For the 1,000 iterations, each with one random sample, calculate the percent of 

times in which the null hypotheses are rejected at 5% significance level, that is, the t 

statistics are greater than the critical value 1.96. For estimated coefficients from the 1,000 

random samples, calculate the descriptive statistics, such as mean, variance and mean 

squared error (MSE).  

Table 2-1. Simulating Individual i’s Choice 

Site 1 2 3 4 5 6 7 8 9 10 

TC 7.79 61.90 4.23 79.48 56.79 31.95 2.87 71.57 89.71 50.87 

Q 1.02 0.64 1.86 1.45 0.90 1.71 0.33 1.59 1.94 1.31 

F 0.98 4.34 3.48 4.62 2.48 4.98 0.76 1.42 2.45 4.20 

ε -0.12 0.54 3.61 0.17 7.25 0.62 1.02 0.23 -0.81 1.55 

U -0.03 -2.60 4.48 -3.61 4.43 -0.16 1.05 -3.20 -5.10 -0.61 

y 0 0 1 0 0 0 0 0 0 0 

 

Table 2-1 shows the process of simulating individual i’s choice in one iteration. 

Utilities are computed with the pseudo data for travel cost, site quality and facilities and 
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randomly drawn errors. This individual will choose site 3 since it provides the highest 

utility. Note that travel cost and errors vary across sites and people, but quality and 

facilities only vary across sites, so they stay the same for different people.   

According to Cameron and Trivedi (2005), usually there are two types of 

simulations, one with fixed regressors and the other with random regressors. The 

simulation above is the former.  As for the latter, the steps are very similar, only with a 

modification to step VI in which we will also repeat step I. In each iteration, not only the 

error terms but also the explanatory variables are different. 

 

What Matters? 

Normally, the endogeneity of a variable makes it correlated with the errors and 

thus the estimates are biased. Here, whether facilities become highly correlated with other 

explanatory variables also matters. As stated in the introduction, facilities only vary 

across sites. Their economic endogeneity occurs at an aggregate level, so there might not 

be a lot of correlations between facilities and errors, or to say, the individual choices may 

not affect the levels of facilities very much. The endogeneity effect could be wiped out in 

the regression of individuals. Thus, the fact that the facility variable is site-specific plays 

an important role. 

On the other hand, other site characteristics, like quality, are also the same for all 

people. Given managers build facilities based on past visitation partly determined by 

those characteristics, it won’t be surprising if we see a big correlation between facilities 

and those variables. If this happens, even though facilities are not correlated with 
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individual errors, the multicollinearity of regressors may cause problems to estimates, too. 

Usually, there are many other factors for managers to take into account while investing in 

facilities, like budget, cost of maintenance, etc. When the economic endogeneity of 

facilities is stronger, facilities are more likely to depend solely on past visitation, as a 

result of which the correlation between facilities and other site characteristics will be 

higher, and then we would see bigger bias in our estimates. Hence, in our simulations, we 

incorporate different levels of the strength of economic endogeneity through the supply 

of facilities to investigate whether the correlation between facilities and other site 

characteristics has substantial influence over the statistical results. 

Plus, how important facilities are in the utility equation could also take a part. In 

the utility equation: 

𝑈𝑖𝑗 = 𝑇𝐶𝑖𝑗𝛽1 + 𝑄𝑗𝛽2 + 𝐹𝑗𝛽3 + 𝜀𝑖𝑗  

𝛽1 is negative while the other two betas are positive. In many applications, it would not 

be uncommon to find that |𝑇𝐶𝑖𝑗𝛽1| > 𝑄𝑗𝛽2 and |𝑇𝐶𝑖𝑗𝛽1| > 𝐹𝑗𝛽3. That is, the travel cost 

portion of indirect utility is relatively large in magnitude and plays a major role in 

determining the utility level. But if facilities were relatively more important in utility, say 

for example, if facilities were scaled to be more important than travel costs, that is, 

𝐹𝑗𝛽3 > |𝑇𝐶𝑖𝑗𝛽1|, their economic endogeneity might cause more problems.   
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Section 3 

MONTE CARLO SIMULATIONS 

Simulations with Endogeneity 

Following the basic steps described in Section 2, in our simulations, we make 

facilities correlated with past visitation. The way we introduce their economic 

endogeneity is to assume there are no facilities at the sites and then managers determine 

the facility levels at each site based on past visitation. In order to account for some 

heterogeneity, two types of worlds are considered. In the first one, called Case I, people 

don’t care about facilities, and we examine whether the economically endogenous 

facilities would spuriously affect people’s choices (that is, will the estimated conditional 

logit models suggest a significant parameter estimate for the facilities variable even 

though the true parameter is zero). In the second one, called Case II, people do care about 

facilities, and we examine whether the economic endogeneity causes bias in the estimated 

coefficients. The true parameter of the facility variable is 0 in Case I and 0.06 in Case II. 

In Case I, the process of simulations with fixed regressors is somewhat different 

from the one stated in Section 2. We just list the differences below: 

Step I 3a: No data for facilities are created, since there is no facility at the beginning. 

Step III 3a: The utility equation used in this step becomes: 

 2       𝑈𝑖𝑗 = 𝑇𝐶𝑖𝑗 ×  −0.06 + 𝑄𝑗 × 0.49 + 𝜀𝑖𝑗  

Step V 3a: This step includes several sub-steps. 
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1) Average the pseudo choices across 1,000 people and get the averaged visit for site 

j, j=1,2,…,10, denoted by 𝑦 𝑗 : 

𝑦 𝑗 =
1

1000
 𝑦𝑖𝑗

1000

𝑖=1

, 𝑗 = 1,2,… ,10 

2) Suppose the manager’s supply is linearly related with past visitation, and we 

assume the supply equation is: 

 3       𝐹𝑗 = 𝑦 𝑗𝛼 + 𝑒𝑗  

Since only the relative magnitude of utility matters, we don’t include an intercept 

in (3). The error term for the facilities supply function is assumed to have a 

standard normal distribution, incorporating other factors that may affect facility 

supply, like budget constraint, cost of maintenance, etc.  

The coefficient α can be any number, and it is related to the correlation between 

facilities and average past visitation. 

𝐶𝑜𝑟𝑟 𝐹𝑗 ,𝑦 𝑗  =
𝐶𝑜𝑣(𝐹𝑗 ,𝑦 𝑗 )

 𝑉𝑎𝑟 𝐹𝑗  𝑉𝑎𝑟(𝑦 𝑗 )

=
𝛼 𝑉𝑎𝑟(𝑦 𝑗 )

 𝛼2𝑉𝑎𝑟 𝑦 𝑗  + 𝑉𝑎𝑟(𝑒𝑗 )

 

Due to the existence of the error term, the correlation increases as α gets bigger. 

We pick several values for α from 10 to 200 to test how sensitive the results are to 

the correlation. 

Take 10 random draws from the standard normal distribution and calculate the 

facility level using (3) for each site, which is obviously endogenous. 
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3) This is similar to Step V in part 2. We add the supplied facilities to the pseudo 

data set, and the true value for 𝛽3 is zero. 

In Case II, we assume that people do care about facilities, so after facilities are 

provided, people will update their choice of the best site within their choice sets. We need 

to account for this in the process of simulations by making the following modifications to 

the simulation steps: 

Step V 3b: After the calculation of endogenous facilities, we add them to the pseudo data 

set and repeat Step III and IV to get the updated pseudo choices for 1,000 people, where 

the error terms are kept the same and the true 𝛽3 is 0.06. Then the updated pseudo 

choices are used to get estimated coefficients and t statistics. 

For the two types of worlds, the rest of the simulations are the same as basic steps. 

We also run simulations with random regressors. Since the results are very similar, we 

don’t show them for these and the following simulations, and all discussions will focus 

on results from simulations with fixed regressors. 

From Table 3-1, the economic endogeneity of facilities seems to be more of a 

problem as the coefficient in the supply equation increases. Intuitively, the larger the 

correlation between facilities and past visitation is, the stronger the economic 

endogeneity is, as a result of which the statistical bias results become more substantial.

 Look at 𝛽1
  first. In all situations, it has a mean equal to its true value, so there is 

no bias in the estimated coefficient for the travel cost variable. It will have unbiased 

standard errors, too, for the variance and MSE are almost the same. The probability to 

reject the true value is very low, around 5%. 𝛽1
  is not affected by the endogenous 
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Table 3-1. Simulation Results with Endogeneity 

 Case I Case II 

  𝛽1
  𝛽2

  𝛽3
  𝛽1

  𝛽2
  𝛽3

  

α=10 True Value -0.06 0.49 0 -0.06 0.49 0.06 

Mean -0.06 0.49 0.01 -0.06 0.49 0.07 

Var. 4.3e-06 3.9e-03 2.1e-03 4.3e-06 3.9e-03 2.1e-03 

MSE. 4.3e-06 3.9e-03 2.3e-03 4.3e-06 3.9e-03 2.3e-03 

Percent(%)* 3.8 5.7 5.6 3.9 5.3 4.8 

α=25 True Value -0.06 0.49 0 -0.06 0.49 0.06 

Mean -0.06 0.47 0.02 -0.06 0.47 0.08 

Var. 4.3e-06 5.4e-03 2.0e-03 4.3e-06 5.5e-03 2.1e-03 

MSE. 4.3e-06 5.8e-03 2.5e-03 4.3e-06 5.9e-03 2.5e-03 

Percent(%) 4.3 5.5 8.0 3.9 6.0 7.8 

α=45 True Value -0.06 0.49 0 -0.06 0.49 0.06 

Mean -0.06 0.43 0.04 -0.06 0.43 0.09 

Var. 5.1e-06 0.008 1.4e-03 5.1e-06 0.009 1.4e-03 

MSE. 5.1e-06 0.012 2.8e-03 5.2e-06 0.012 2.6e-03 

Percent(%) 6.2 9.1 15.7 6.5 9.9 13.4 

α=70 True Value -0.06 0.49 0 -0.06 0.49 0.06 

Mean -0.06 0.38 0.05 -0.06 0.38 0.10 

Var. 4.2e-06 0.013 1.1e-03 4.2e-06 0.014 1.2e-03 

MSE. 4.2e-06 0.026 3.1e-03 4.2e-06 0.026 3.0e-03 

Percent(%) 4.7 15.9 23.8 4.8 14.3 21.0 

α=100 True Value -0.06 0.49 0 -0.06 0.49 0.06 

Mean -0.06 0.29 0.05 -0.06 0.30 0.11 

Var. 4.2e-06 0.015 6.3e-04 4.1e-06 0.016 7.0e-04 

MSE. 4.2e-06 0.055 3.1e-03 4.1e-06 0.051 2.7e-03 

Percent(%) 5.4 27.6 37.4 3.9 24.1 30.9 

α=200 True Value -0.06 0.49 0 -0.06 0.49 0.06 

Mean -0.06 0.23 0.03 -0.06 0.26 0.09 

Var. 4.4e-06 0.010 1.3e-04 4.5e-06 0.017 2.0e-04 

MSE. 4.4e-06 0.079 1.2e-03 4.5e-06 0.071 9.6e-04 

Percent(%) 4.5 38.8 49.1 4.5 30.0 34.4 

*Percent of times to reject null hypotheses at 5% significance level that the estimates are 

equal to their true values  

facilities. This makes sense, since travel cost varies both across people and sites and it 

has the biggest variation. In fact, if we set the sample size large enough, the fraction of t 

statistics can be compared with the level of significance to determine whether the 
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estimate is actually consistent, because when an estimate is consistent, the probability to 

reject its true value should be close to the chosen significance level. 

For 𝛽2
 , when α is 10, the mean is equal to its true value and the variance is equal 

to the MSE. There is no bias in the estimated coefficient for the quality variable and the 

standard errors. The percents are around 5%. So 𝛽2
  has a good performance in this 

situation. When α is 25, the percents are still around 5%; however, the bias in the mean 

starts to come out. The mean is smaller than the true value by 0.02, which is a 4% 

downward bias. The MSE is a little greater than the variance. When α increases to 45, 

there is a 12% downward bias in the mean, and the variance and MSE are also growing. 

The percents are close to 10%. Although this is bigger than 5%, more than 90% of the 

time we cannot reject the true value of 𝛽2
 . As α keeps increasing, the bias in the mean 

becomes larger. The difference between variance and MSE is also getting bigger, but 

both of them are in the same magnitude as those with α equal 45. When α goes up, it is 

more likely to reject the true value of 𝛽2
 . The probability is about one third with α equal 

to 200. 

 𝛽3
  is the estimated coefficient for the facility variable, which is hypothesized to 

be influenced by the endogeneity. When α is 10, the mean is greater than the true value 

by 0.01. In Case II, that is a 17% upward bias. The variance is smaller than the MSE, so 

there is also some bias in the standard errors. The probability to reject the true value of 𝛽3
  

is around 5%. When α is 25, the bias in the mean in Case II grows to 33%. The variance 

and MSE do not change much though. The chances to reject the true value of 𝛽3
  are still 

less than 10%. When α is 45, in Case II, there is a 50% upward bias. The variance and 
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MSE are lower to some extent. The percents now exceed 10%. When α is 70 or even 

bigger, the bias of the mean could reach almost 83%, or at least 67%. The variance and 

MSE are getting smaller as α gets bigger, but the differences between the two are very 

obvious in these situations. The percents are almost 50% in Case I when α is 200, and 

close to 40% in Case II. Thus, nearly half of the time we would reject the true value of 𝛽3
 . 

Based on the results, we can see that as the correlation between facilities and past 

visitation increases, there is more bias in the estimated coefficients, and the probability to 

reject their true values is getting bigger, too. When the coefficient in the facility supply 

equation is small, the economic endogeneity of facilities is not a big problem. When this 

coefficient is very big, not only the estimate for the facility variable, but also the estimate 

for the quality variable is affected. Facilities’ economic endogeneity has spillover effects. 

In addition, comparing the results derived in Case I and Case II, they are similar, but it is 

easier to reject the true values of the estimates in Case I. So if people don’t care about 

facilities and we still put that variable in the estimation, we are more likely to have 

trouble with economically endogenous facilities than when people do care about facilities. 

 

Correlations 

The correlation between facilities and past visitation becomes larger when the 

coefficient in the facility supply equation increases. As discussed in Section 2, the 

correlation between facilities and past visitation could lead to multicollinearity with other 

site-specific variables beside correlation with errors. When the endogeneity of facilities is 

at the aggregate level, the correlation with errors is small, but as the correlation between 



21 

 

facilities and past visitation increases, which is equivalent to saying that the economic 

endogeneity gets stronger, the correlation with other site characteristics may go up. 

Particularly, here an individual’s past visitation to each site is negatively 

correlated with travel cost and positively correlated with quality. Given facilities are built 

on average past visitation, they should also be correlated with travel cost and quality to 

some extent, although the correlations may not be in the same magnitude. And we would 

see larger correlations with a bigger α. To illustrate this point, we compute correlations of 

endogenous facilities with travel cost and quality. 

Table 3-2. Correlations of Facilities with Travel Cost and Quality 

 α=10 α=25 α=45 α=70 α=100 α=200 

TC-F* 0 0 0 0.01 -0.02 -0.01 

Q-F** 0.27 0.57 0.71 0.72 0.86 0.91 

*Correlation between travel cost and facilities; **Correlation between quality and 

facilities 

From Table 3-2, we could find that facilities and travel cost are almost 

independent, no matter how big the supply coefficient is. This is possible, since travel 

cost has a greater variation than facilities do. There are only 10 levels of facilities, but 

1,0000 different travel costs. Plus, in the landscape where both people and sites are 

randomly located, individual choices are very different. The best site for one person 

could be the worst for another. When we average them to get average past visitation, the 

effect of travel cost becomes minimal. Since facilities are built based on the average 

visitation, the correlation between facilities and travel cost is almost zero.   

When it comes to quality, another site characteristic, we see that the endogeneity 

of facilities can induce a multicollineartiy problem. Since all recreationists face the same 
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quality and prefer a site with better quality, the effect of quality will not be wiped out by 

averaging. When α is 10, the correlation is small, close to 0.30. When α is 25, the 

correlation is larger than 0.5, but we do not see much bias of the estimated preferences 

yet. The results become substantial when α grows to 45, and the correlation between 

facilities and quality is as high as 0.7. It keeps increasing as α gets bigger, which is what 

we would expect. So in this situation, the multicollinearity between facilities with quality 

needs to be very high to cause bias to the estimates. Then in empirical studies, we can use 

this correlation for the purpose of diagnosis when we have the landscape of random 

location. If the correlation is too high, we might suspect the facilities to be economically 

endogenous, and this economic endogeneity would be strong enough to cause problems 

to the estimation. 

 

Site-Specific Property 

In both Section 1 and Section 2, we mentioned that the fact that facilities are 

endogenous at an aggregate level plays an important role in whether the endogeneity is 

worth worrying about. To test this, we change the supply mechanism a little bit. Instead 

of averaging across all people in one sample, we divide 1,000 people into 10 groups and 

100 groups respectively. Under each division principle, we average past visitation within 

every group, and the facilities are correlated with the group’s average visits to each site. 

We do the regression for all groups as a whole, so facilities are no longer site-specific, 

but group-specific. We apply the new mechanism to Case I and Case II under the 

situation where α is 25.  



23 

 

Table 3-3. Simulation Results with Group-Specific Facilities 

 Case I Case II 

  𝛽1
  𝛽2

  𝛽3
  𝛽1

  𝛽2
  𝛽3

  

10 

Groups 

True Value -0.06 0.49 0 -0.06 0.49 0.06 

Mean -0.06 0.36 0.15 -0.06 0.37 0.20 

Var. 4.9e-06 3.8e-03 6.3e-04 5.0e-06 4.0e-03 6.8e-04 

MSE. 4.9e-06 2.0e-02 0.024 5.0e-06 1.9e-02 0.020 

Percent(%) 5.6 44.4 100 5.5 39.6 100 

100 

Groups 

True Value -0.06 0.49 0 -0.06 0.49 0.06 

Mean -0.06 0.14 0.33 -0.06 0.15 0.35 

Var. 4.9e-06 2.2e-03 1.4e-04 5.0e-06 2.4e-03 1.6e-04 

MSE. 5.6e-06 0.13 0.11 7.1e-06 0.12 0.083 

Percent(%) 5.9 100 100 8.0 100 100 

 

When we divide people into 10 groups, 𝛽1
  remains unaffected with no bias in the 

mean and standard error. The percents are a little bit greater than 5%. For 𝛽2
 , there is a 

more than 20% downward bias. The variance and MSE are different, and the probability 

to reject its true value is around 40%. For 𝛽3
 , the percents are 100%, so we can reject its 

true value for sure. In Case II, the upward bias is more than two times of the true value 

itself. The variance and MSE are not even in the same magnitude. 

When we further divide people in 100 groups, even 𝛽1
  gets affected. Although the 

mean is the same as its true value, there are some differences between the variance and 

MSE. The percents are still lower than 10%, but in Case II, the percent already grows to 

8%, which is quite big for 𝛽1
 . In this situation, the probability to reject the true value of 

𝛽2
  is 100%. Its downward bias in the mean is larger than 60%. The MSE is at least 100 

times of the variance. 𝛽3
  is severely biased with a greater bias. 
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Table 3-4 shows estimated correlations of facilities with travel cost and quality. 

Endogenous facilities are not correlated with the two exogenous variables very much, but 

the economic endogeneity definitely cause bias to at least 𝛽2
  and 𝛽3

 .   

Table 3-4. Correlations of Facilities with Travel Cost and Quality 

 10 Groups 100 Groups 

TC-F -0.01 -0.09 

Q-F 0.36 0.17 

 

When facilities are supplied on a more individual-specific basis, individual 

unobserved preferences become more important and endogenous facilities are more 

highly correlated with the errors than with other variables, which leads to the typical 

statistical endogeneity problem. That’s why the correlation of facilities with quality 

decreases as the number of groups increases, and the correlation with travel cost goes up 

a little bit, because travel cost is individual-specific. We don’t need the coefficient in the 

facility supply equation to be very big to see a huge bias in the estimates. On the contrary, 

when facilities are provided at the aggregate level, idiosyncratic effects are averaged out 

and other site characteristics become the key factors. But the induced multicollinearity 

has to be very severe to cause problems in the estimation, at least in the landscape with 

random location. Therefore, this site-specific property of facilities greatly diminishes the 

effect of the economic endogeneity.   
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Section 4 

SENSITIVITY ANALYSES 

To investigate how other basic settings in Monte Carlo simulations would 

influence the simulation results, we conduct sensitivity analyses by changing some 

elements of the simulation.  For example, we change the number of sites from 10 to 5 and 

to 15. We use discrete facilities instead of continuous ones. Also, we randomly pick 

numbers as the “true” population parameters rather than use the values from the Parson 

(2003) study. We pick several groups of randomly drawn parameters as the true values 

for βs. For each group of randomly drawn parameters, 𝛽1 is uniformly drawn over the 

range of -0.1 and 0; 𝛽2 is uniformly drawn over the range of 0 and 1; 𝛽3 is uniformly 

drawn over the range of 0 and 0.1. The ranges are chosen with respect to their true values 

in previous simulations, allowing variations to some extent. Simulations are done under 

situations when α equals 25 and 70. In the statistics below, we just show the means and 

percent of times we reject the null hypotheses that estimated parameters equal their true 

values. 

With a general view of these data, changing these settings of simulations does not 

change the results very much. When we assume the facilities to be discrete, or we change 

the true values of the parameters, the results are similar.  The mean of 𝛽2
  has a downward 

bias and the mean of 𝛽3
  has an upward bias. There is no bias in the mean of 𝛽1

 . Chances 

to reject the true value of 𝛽3
  are greater than those to reject the true value of 𝛽2

 . The 

results in Case I seem to be more substantial than in Case II.  
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Table 4-1. Results of Sensitivity Analyses  

 Case I Case II 

 𝛽1
  𝛽2

  𝛽3
  𝛽1

  𝛽2
  𝛽3

  

5 Sites α=25 True Value -0.06 0.49 0 -0.06 0.49 0.06 

Mean -0.06 0.45 0.03 -0.06 0.45 0.08 

Percent(%) 4.2 4.8 5.7 4.8 4.8 5.6 

α=70 True Value -0.06 0.49 0 -0.06 0.49 0.06 

Mean -0.06 0.34 0.03 -0.06 0.36 0.09 

Percent(%) 5.7 10.6 10.5 5.8 9.8 10.4 

15 Sites α=25 True Value -0.06 0.49 0 -0.06 0.49 0.06 

Mean -0.06 0.48 0.03 -0.06 0.48 0.08 

Percent(%) 6.1 5.8 11.1 5.1 5.1 9.0 

α=70 True Value -0.06 0.49 0 -0.06 0.49 0.06 

Mean -0.06 0.38 0.05 -0.06 0.39 0.11 

Percent(%) 5.6 15.8 37.7 5.2 15.8 30.6 

Discrete 

Facilities 

α=25 True Value -0.06 0.49 0 -0.06 0.49 0.06 

Mean -0.06 0.47 0.02 -0.06 0.48 0.08 

Percent(%) 5.2 4.8 8.1 5.0 5.0 7.0 

α=70 True Value -0.06 0.49 0 -0.06 0.49 0.06 

Mean -0.06 0.38 0.05 -0.06 0.39 0.10 

Percent(%) 3.7 16.6 27.8 3.8 15.2 21.8 

Random 

Parameter 

1 

α=25 True Value -0.01 0.24 0 -0.01 0.24 0.08 

Mean -0.01 0.22 0.02 -0.01 0.23 0.10 

Percent(%) 5.9 5.3 10.7 4.8 5.0 9.9 

α=70 True Value -0.01 0.24 0 -0.01 0.24 0.08 

Mean -0.01 0.16 0.05 -0.01 0.16 0.12 

Percent(%) 4.2 10.0 30.3 5.6 8.4 27.8 

Random 

Parameter 

2 

α=25 True Value -0.04 0.95 0 -0.04 0.95 0.04 

Mean -0.04 0.90 0.02 -0.04 0.90 0.06 

Percent(%) 4.1 6.6 6.8 4.4 6.1 7.2 

α=70 True Value -0.04 0.95 0 -0.04 0.95 0.04 

Mean -0.04 0.67 0.05 -0.04 0.68 0.09 

Percent(%) 4.1 24.1 29.2 3.9 22.5 25.9 

Random 

Parameter 

3 

α=25 True Value -0.03 0.53 0 -0.03 0.53 0.06 

Mean -0.03 0.50 0.03 -0.03 0.50 0.08 

Percent(%) 4.8 7.8 10.1 5.9 7.8 9.3 

α=70 True Value -0.03 0.53 0 -0.03 0.53 0.06 

Mean -0.03 0.37 0.04 -0.03 0.38 0.10 

Percent(%) 4.2 22.7 29.9 4.6 19.6 25.1 
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The number of sites matters to some extent. More sites tend to generate more bias. 

Although the bias of estimates is a little bit bigger in the situation of 5 sites, the 

probabilities to reject the true values are much bigger in the situation of 15 sites, 

especially for 𝛽3
 , and by almost two or three times. If we compare the correlations 

between facilities and quality from Table 4-2 in the two situations, we can see that with 

the same α, this correlation is higher with fewer sites. When there are more sites with 

fixed number of recreationists, there is more variation in facilities. The aggregation effect 

is reduced, and individual factors have more influence over the supply of facilities. Their 

economic endogeneity is more likely to cause bias. So the results are consistent with the 

argument in Section 3.    

Table 4-2. Correlations in Sensitivity Analyses 

 TC-F Q-F 

5 Sites α=25 -0.01 0.55 

α=70 -0.02 0.95 

15 Sites α=25 0 0.32 

α=70 0 0.67 

Discrete F α=25 0 0.50 

α=70 0 0.79 

Random Parameter 

1 

α=25 0 0.26 

α=70 0 0.55 

Random Parameter 

2 

α=25 -0.02 0.86 

α=70 0 0.86 

Random Parameter 

3 

α=25 0.01 0.62 

α=70 0 0.87 

 

Although the correlation between facilities and quality is lower in the situation 

with 15 sites than with 5 sites, it increases as α gets bigger. As before, this correlation 

needs to be very big to cause substantial bias in the estimates. In the situation with 

discrete facilities, the correlations also have a similar pattern. In the situations with 
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different true parameters, the correlation still grows when α increases, but the magnitude 

of correlations is different, which may be attributed to the change of the relative 

importance of variables in the utility equation. A higher parameter means that variable 

becomes relatively more important. So when the true parameter of the quality variable is 

larger, the level of its correlation with facilities increases. The smaller 𝛽2 is, the lower 

correlation that is needed to make the bias in the results substantial.  

Since the level of correlations between facilities and site quality that cause bias to 

estimates differs with different number of sites and different parameters, a general rule for 

judging whether there will be statistical endogeneity by simply checking how the facility and 

quality variables are correlated is difficult to offer; however, it is still the case that the coefficient 

in the facility supply equation determines whether the economic endogeneity of facilities is a big 

problem.        

Overall, the patterns observed in the above simulations appear robust for the types of 

sensitivity studies conducted here. Thus we continue using previous settings for the following 

simulations. 
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Section 5 

SIMULATIONS WITHOUT FACILITY VARIABLE 

Based on the results above, we notice one point: when the endogeneity causes 

bias to the estimated coefficient for facilities, the estimated coefficient for quality will 

also be affected. Thus we ask, will the endogeneity still influence that estimate when 

there is no facility variable in the recreation demand model? That is, can one simply drop 

the facilities variables? To test this, we do the simulations without the facility variable. 

That is, keeping other steps described in Section 2 to be the same, we regress people’s 

choices only on travel cost and quality, even if there are newly built facilities available. 

As we would expect, in Case I, no matter how large α is, the estimates are 

unaffected, as the probabilities to reject their true values are about 5%. There is no bias in 

the means and the standard errors. For both estimates, the variance and MSE are almost 

the same. When people don’t care about facilities, it is correct to not include the facility 

variable. 

In Case II, when people care about facilities but we do not put the facility variable 

in our regression, even though travel cost and quality are exogenous, we can see a big 

problem here. Again, 𝛽1
  is hardly affected. It remains unbiased with the percents around 

5%. The means are equal to its true value in all situations, and the variance and MSE are 

also the same. 𝛽2
  now has an upward bias, which grows very fast as α increases. When α 

is 200, the mean is almost twice the true value. The variance and MSE become larger, too, 

and their differences are also getting bigger. The probability to reject its true value grows 
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dramatically, from 9.8% to 99.3%. 𝛽2
  is biased in almost all the time when the economic 

endogeneity of facilities is very strong.  

Table 5-1. Simulations without the Facility Variable 

 Case I Case II 

𝛽1
  𝛽2

  𝛽1
  𝛽2

  

α=10 True Value -0.06 0.49 -0.06 0.49 

Mean -0.06 0.49 -0.06 0.52 

Var. 4.7e-06 6.23e-03 4.6e-06 8.2e-03 

MSE. 4.7e-06 6.23e-05 4.6e-06 8.8e-03 

Percent(%)* 4.7 5.2 4.9 9.8 

α=25 True Value -0.06 0.49 -0.06 0.49 

Mean -0.06 0.49 -0.06 0.54 

Var. 4.1e-06 6.3e-03 4.2e-06 9.5e-03 

MSE. 4.1e-06 6.3e-03 4.2e-06 0.012 

Percent(%) 4.6 4.6 4.8 14.1 

α=45 True Value -0.06 0.49 -0.06 0.49 

Mean -0.06 0.49 -0.06 0.59 

Var. 4.4e-06 4.6e-03 4.4e-06 7.9e-03 

MSE. 4.4e-06 4.6e-03 4.4e-06 0.018 

Percent(%) 5.9 5.6 5.3 36.8 

α=70 True Value -0.06 0.49 -0.06 0.49 

Mean -0.06 0.49 -0.06 0.65 

Var. 4.5e-06 6.7e-03 4.4e-06 0.013 

MSE. 4.5e-06 6.7e-03 4.4-06 0.039 

Percent(%) 4.7 5.0 4.5 47.2 

α=100 True Value -0.06 0.49 -0.06 0.49 

Mean -0.06 0.49 -0.06 0.69 

Var. 4.8e-06 4.8e-03 4.9e-06 0.012 

MSE. 4.8e-06 4.8e-03 4.9e-06 0.054 

Percent(%) 7.0 6.3 6.6 76.0 

α=200 True Value -0.06 0.49 -0.06 0.49 

Mean -0.06 0.49 -0.06 0.95 

Var. 4.6e-06 3.7e-03 4.8e-06 0.015 

MSE. 4.6e-06 3.7e-03 4.8e-06 0.23 

Percent(%) 5.0 5.2 5.8 99.3 
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The correlations between facilities and the two variables are shown in Table 5-2. 

Since the supply mechanism is the same as the previous simulations with endogeneity, 

the correlations should not be that different. Compared with those in Table 3-2, the 

results in Table 5-2 are similar, showing that the economic endogeneity is getting 

stronger as α increases. 

Table 5-2. Correlations of Facilities with Travel Cost and Quality 

 α=10 α=25 α=45 α=70 α=100 α=200 

TC-F* 0 0 0 -0.01 0.01 -0.01 

Q-F** 0.18 0.39 0.66 0.73 0.81 0.92 

 

As long as facilities have impacts on people’s choices, no matter whether the 

facility variable is included in the model or not, their economic endogeneity will 

influence the estimated coefficient of site quality. Actually, compared with previous 

results, the bias is a lot larger and in a different direction. Chances to reject the true value 

of 𝛽2
  are also much bigger when we don’t put facilities in the regression in Case II. 

Statistical endogeneity comes from the fact that regressors are correlated with errors. The 

economic endogeneity of facilities makes facilities correlated with the error term in the 

utility equation. In Case II of basic simulations, facilities are in the regression, so the 

correlation between regressors and errors is just the correlation between facilities and 

errors, which is not very big because facilities are endogenous at the aggregate level. The 

bias in the estimates mainly comes from the induced multicollinearity of facilities with 

site quality. In Case II of the simulations above, facilities become part of errors. Since 

facilities are highly correlated with quality, now the correlation between regressors and 

errors is much larger which explains why the bias is more remarkable in this case. 
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Section 6 

SIMULATIONS IN DIFFERENT LANDSCAPES 

The landscape we have used does not involve any spatial clustering of individuals 

which implies maximal variation in the individual specific travel costs. Both people and 

recreation sites are spread out.  Thus, the high variation in travel costs leads to very 

robust estimation of the travel cost parameter despite the level of facilities endogeneity. 

Also, as a result, on average, the probability of visitation should be almost the same for 

all sites. And it is the case in our simulation results. When we average the visits across all 

people, we find that each of the 10 sites has a probability of about 0.10 to be visited. So it 

does not make much difference from the case in which managers do not consider past 

visitation and construct similar facilities on all sites. Therefore, the landscape could also 

have effects on the simulation results. 

On the contrary, it would be common that recreationists cluster at some areas, like 

cities. Further, suppose sites are dispersed along a shoreline, such as beaches, rather than 

being randomly dispersed across the landscape. Now, by construction, there would be 

some sites that are more frequently visited than others. In fact, this situation is somewhat 

closer to reality. Based on empirical observations on the distribution of site visits, Lupi 

and Feather (1998) proposed an aggregation approach for recreation sites based on their 

popularity and potential for being altered by policy. In their survey of sport fishing in 

Minnesota, Lake Mille Lacs dominated all other lakes; Lake of the Woods, Lake 

Minnetonka and Lake Leech were the second popular; when it came to other lakes, the 
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number of visitors dramatically declined. So, in these cases, even if we focus on average 

past visitation, the popular sites would be more similar across choice sets.  

 

 

Figure 6-1. Four Landscapes with Clustering 

Now we randomly draw 10 points on y-axis as recreation sites, and take random 

points inside one or more circles as people living in cities. The landscapes are shown in 

Figure 6-1. Simulations are run under the four landscapes, with other settings the same as 

before. The results are shown in Table 6-1.  
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Table 6-1. Simulation Results under Different Landscapes 

 Case I Case II 

𝛽1
  𝛽2

  𝛽3
  𝛽1

  𝛽2
  𝛽3

  

One 

City 

True Value -0.06 0.49 0 -0.06 0.49 0.06 

α=25 Mean -0.06 0.49 0 -0.06 0.49 0.06 

Var. 2.1e-05 7.8e-03 2.3e-04 3.9e-05 0.012 3.5e-04 

MSE. 2.1e-05 7.8e-03 2.3e-03 3.9e-05 0.012 3.5e-04 

% 5.2 5.8 5.2 4.6 6.0 4.9 

α=70 Mean -0.06 0.49 0 -0.06 0.50 0.06 

Var. 4.4e-05 0.018 6.9e-05 1.7e-04 0.077 2.2e-04 

MSE. 4.4e-05 0.018 6.9e-05 1.7e-04 0.077 2.3e-04 

% 4.7 5.2 5.1 5.2 4.5 5.3 

Two 

Cities 

True Value -0.06 0.49 0 -0.06 0.49 0.06 

α=25 Mean -0.06 0.47 0.02 -0.06 0.47 0.08 

Var. 2.1e-04 7.1e-03 1.6e-03 2.2e-04 7.4e-03 1.6e-03 

MSE. 2.1e-04 7.4e-03 2.0e-03 2.2e-04 7.6e-03 2.0e-03 

% 5.1 4.8 8.0 5.3 5.1 8.0 

α=70 Mean -0.06 0.44 0.01 -0.06 0.45 0.07 

Var. 5.3e-05 6.8e-03 3.5e-04 5.7e-05 7.1e-03 3.5e-04 

MSE. 6.9e-05 9.1e-03 5.5e-04 7.0e-05 8.9e-03 4.9e-04 

% 10.2 10.1 12.4 8.6 9.6 11.2 

Five 

Cities 

True Value -0.06 0.49 0 -0.06 0.49 0.06 

α=25 Mean -0.06 0.46 0.02 -0.06 0.46 0.08 

Var. 1.3e-05 6.6e-03 1.2e-03 1.3e-05 6.8e-03 1.2e-03 

MSE. 1.3e-05 7.3e-03 1.5e-03 1.3e-05 7.4e-03 1.5-03 

% 4.6 7.0 7.4 4.4 6.3 6.1 

α=70 Mean -0.06 0.43 0.02 -0.06 0.43 0.07 

Var. 1.3e-05 7.5e-03 3.4e-04 1.4e-05 8.8e-03 3.9e-04 

MSE. 1.4e-05 0.011 6.1e-04 1.4e-05 0.012 6.0e-04 

% 4.7 10.9 14.8 4.6 9.2 10.4 

Ten 

Cities 

True Value -0.06 0.49 0 -0.06 0.49 0.06 

α=25 Mean -0.06 0.46 0.02 -0.06 0.46 0.08 

Var. 1.6e-05 7.1e-03 1.5e-03 1.6e-05 7.4e-03 1.5e-03 

MSE. 1.6e-05 7.9e-03 1.9e-03 1.6e-05 8.2e-03 1.9e-03 

% 4.8 6.8 9.6 5.3 6.0 8.8 

α=70 Mean -0.06 0.34 0.04 -0.06 0.35 0.10 

Var. 1.1e-05 0.015 7.5e-04 1.1e-05 0.017 8.3e-04 

MSE. 1.1e-05 0.038 2.5e-03 1.1e-05 0.037 2.3e-03 

% 4.9 19.4 26.4 4.6 17.8 22.4 
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When we increase the coefficient in facility supply equation, we expect the bias to 

be more and more substantial, as in the previous landscape. However, this is not the case 

in all the four landscapes. In the landscapes with five and ten cities, we can see the 

chances to reject the true values are growing and the bias in the estimates is getting 

bigger as the coefficient increases. This makes sense because when the number of cities 

increases, the landscape becomes closer to the previous landscape where both people and 

recreation sites are randomly located. In the landscapes with one and two cities, 

especially when there is only one city, even if the coefficient is very large, the results are 

not very different from those with the coefficient equal to 25. The bias is very close to 

zero; the variance and MSE are almost the same; the probabilities to reject the estimates’ 

true values are around 5% at 5% significance level. In other words, we don’t really see a 

problem with economically endogenous facilities in the landscape with only one city. 

Table 6-2. Correlations under Different Landscapes 

 One City Two Cities Five Cities Ten Cities 

α=25 α=70 α=25 α=70 α=25 α=70 α=25 α=70 

TC-F -0.72 -0.68 -0.02 -0.24 -0.07 -0.16 -0.09 0.01 

Q-F 0.42 0.25 0.39 0.56 0.54 0.84 0.54 0.85 

  

From the correlations, if we look at the last three big columns, correlations 

between facilities and quality grow as α increases, and also more statistical endogeneity 

comes out. In the landscape with only one city, the correlation between facilities and 

travel cost is as big as -0.6 or -0.7. This is because all people face similar travel cost 

besides quality and facilities. Given travel cost is the most important in the decision-

making process, nearly all people go to the same site. Past visitation highly relies on 

travel cost, as we mentioned in the beginning that travel cost is the most important in the 



36 

 

utility equation, or to say, people’s decision-making process. Even if a distant site has 

very good quality, most people won’t go there. Thus, facilities are more likely to 

correlate with travel cost than with quality in this case. However, this big correlation does 

not cause bias to the estimates at all, even including the estimated coefficient for travel 

cost! Comparing it with the fact that a big correlation between facilities and quality leads 

to biased estimates, we would suspect that when people have  almost the same choices, 

the effect of travel cost doesn’t go away when we derive the average past visitation. 

Facilities have little influence on people’s choices because they are built on sites which 

are already preferred by most people, so even a strong economic endogeneity won’t cause 

big bias to the estimates. 

To further prove this point, we create an extreme case: reducing the scale of travel 

cost to the same level as quality and facilities. Simulations before with only one city have 

the average value of travel cost about 150. The average values of endogenous facilities 

differ according to the coefficient in facility supply equation. They could be as low as 5 

and as big as 100. In the following simulations, we set the average value of travel cost to 

be around 5. Then as the coefficient in facility supple equation increases, the scale of 

facilities become larger and facilities will dominate travel cost in the utility equation. The 

results are shown in Table 6-3 and Table 6-4. 

For 𝛽2
  and 𝛽3

 , when α is equal to 10, the results are very similar to previous ones. 

Given the scales of travel cost and facilities are more or less the same, when all people 

cluster in one city, we could still get some bias in the estimates for quality and facilities. 

The variance and MSE are more or less equal. When α goes to 25, 45 or even bigger, the 
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bias increases, the probabilities to reject their true values increases and the differences 

between variance and MSE also become larger. 

Table 6-3. Simulation Results under the Landscape with One City 

 Case I Case II 

  𝛽1
  𝛽2

  𝛽3
  𝛽1

  𝛽2
  𝛽3

  

α=10 True Value -0.06 0.49 0 -0.06 0.49 0.06 

Mean -0.06 0.48 0 -0.06 0.48 0.07 

Var. 1.9e-04 5.7e-03 1.9e-03 1.9e-04 5.8e-03 2.0e-03 

MSE. 1.9e-04 5.8e-03 2.0e-03 1.9e-04 5.9e-03 2.1e-03 

Percent(%) 4.4 6.1 4.7 3.7 6.5 6.3 

α=25 True Value -0.06 0.49 0 -0.06 0.49 0.06 

Mean -0.06 0.45 0.02 -0.06 0.46 0.08 

Var. 9.9e-04 8.1e-03 1.9e-03 1.0e-03 7.8e-03 1.9e-03 

MSE. 1.0e-03 9.3e-03 2.5e-03 1.0e-03 9.0e-03 2.5-03 

Percent(%) 4.0 7.1 9.1 3.4 6.5 8.6 

α=45 True Value -0.06 0.49 0 -0.06 0.49 0.06 

Mean -0.05 0.41 0.04 -0.05 0.42 0.09 

Var. 2.5e-04 9.8e-03 1.3e-03 2.6e-04 0.010 1.3e-03 

MSE. 3.3e-04 0.016 2.6e-03 3.3e-04 0.016 2.5e-03 

Percent(%) 6.9 8.7 16.8 6.2 8.9 14.9 

α=70 True Value -0.06 0.49 0 -0.06 0.49 0.06 

Mean -0.05 0.33 0.04 -0.05 0.34 0.10 

Var. 4.4e-04 0.024 8.2-04 5.4e-04 0.029 1.0e-03 

MSE. 6.3e-04 0.049 2.4e-03 6.9e-04 0.051 2.3e-03 

Percent(%) 5.5 12.1 23.7 4.7 12.4 18.0 

α=100 True Value -0.06 0.49 0 -0.06 0.49 0.06 

Mean -0.04 0.31 0.03 -0.04 0.32 0.09 

Var. 2.8e-04 0.17 5.2e-04 3.3e-04 0.021 6.2e-04 

MSE. 7.4e-04 0.048 1.6e-03 7.6e-04 0.050 1.5e-03 

Percent(%) 19.4 25.3 28.8 15.7 21.0 19.5 

α=200 True Value -0.06 0.49 0 -0.06 0.49 0.06 

Mean -0.02 0.15 0.03 -0.03 0.21 0.09 

Var. 1.9e-04 0.012 1.0e-04 4.3e-04 0.026 2.2-04 

MSE. 2.0e-03 0.125 1.3e-03 1.6e-03 0.103 9.3e-04 

Percent(%) 41.7 47.2 56.3 25.3 30.0 33.9 
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For 𝛽1
 , when α is 10, there is no problem.  When α goes to 25, although the mean 

is still the same as its true value, MSE starts to differ from the variance, implying that we 

might see a bias in the mean if we have a bigger α. When α is 45, the mean is greater than 

the true value by 0.01, a 17% upward bias. The percent of iterations we can reject its true 

value is a little larger than 5%, but still less than 10%. MSE now exceeds the variance by 

about 40%. As α keep increasing, the bias becomes bigger, and MSE is almost ten times 

of the variance in Case I with α equal 200. Nearly half of the time we can reject the true 

value of 𝛽1
 .      

Table 6-4. Correlations of Facilities with Travel Cost and Quality 

 α=10 α=25 α=45 α=70 α=100 α=200 

TC-F -0.10 -0.03 -0.20 -0.83 -0.60 -0.61 

Q-F 0.22 0.53 0.60 0.89 0.79 0.76 

 

Therefore, under the landscape of only one city, even if the coefficient in the 

facility supply equation is very big and leads to a large correlation between facilities and 

travel cost, the results may not be very remarkable. When facilities become the most 

important preference variables in place of travel cost, their economic endogeneity causes 

problems, not only to the estimates of facilities and quality, but also to the estimate of 

travel cost.   
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Section 7 

WELFARE EFFECTS 

As stated in the introduction, whether the welfare estimates are biased or not has 

very important policy implications. Simulations make it possible to compute the true 

welfare measures. Kling (1988) compared the estimated welfare measures with the true 

welfare measures calculated from simulated data to examine the reliability of welfare 

estimates from recreation demand models. In our simulations, beyond the estimates for 

the parameters, we also calculate the true and estimated welfare measures under the basic 

landscape with random location and the landscape with only one city where the scale of 

travel cost is reduced. In the basic landscape, as the economic endogeneity of facilities 

gets stronger, there is a downward bias in 𝛽2
  and an upward bias in 𝛽3

 ; 𝛽1
  is unbiased. 

Simulations under other circumstances except the extreme case give similar results. In the 

extreme situation, when 𝛽2
  and 𝛽3

  are affected, there is also some upward bias in 𝛽1
 .  We 

want to see how the bias in estimated coefficients will affect the welfare estimates in the 

two cases. 

Following the formulas stated in Section 2, two types of values are considered: 

site value and marginal value for environmental quality change. For each random sample, 

the individual estimates are averaged across individuals to obtain the welfare estimates 

for each site. Then we average these estimates across 1,000 iterations and use those 

averages to compare with the true values. In addition, we compute the parameter ratio of 

𝛽2 𝛽1 , both true values and estimates.  
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Table 7-1. Site Value in Basic Simulations with Endogenous Facilities 

#Site 1 2 3 4 5 6 7 8 9 10 

α=10 Case 

I 

WTP 2.43 1.86 2.97 1.20 1.10 2.18 1.31 2.65 1.81 2.74 

𝑊𝑇𝑃  2.43 1.84 2.98 1.20 1.11 2.18 1.31 2.64 1.81 2.75 

Case 

II 

WTP 2.45 1.84 3.03 1.18 1.07 2.18 1.28 2.68 1.80 2.79 

𝑊𝑇𝑃  2.45 1.83 3.03 1.17 1.08 2.18 1.29 2.67 1.79 2.79 

α=25 Case 

I 

WTP 1.53 1.42 1.52 2.97 2.71 2.87 2.39 1.53 1.32 1.93 

𝑊𝑇𝑃  1.52 1.42 1.51 2.97 2.72 2.87 2.39 1.52 1.32 1.95 

Case 

II 

WTP 1.47 1.35 1.46 3.12 2.80 3.01 2.42 1.47 1.26 1.91 

𝑊𝑇𝑃  1.46 1.36 1.45 3.11 2.81 2.99 2.42 1.46 1.26 1.93 

α=45 Case 

I 

WTP 2.21 3.19 1.61 1.54 1.23 1.78 2.64 1.74 2.50 1.77 

𝑊𝑇𝑃  2.21 3.23 1.62 1.52 1.22 1.77 2.69 1.74 2.45 1.77 

Case 

II 

WTP 2.25 3.55 1.53 1.44 1.11 1.72 2.80 1.68 2.60 1.71 

𝑊𝑇𝑃  2.24 3.57 1.53 1.42 1.11 1.72 2.83 1.68 2.54 1.70 

α=70 Case 

I 

WTP 1.60 2.25 2.26 1.87 1.67 1.37 2.78 2.55 1.95 1.84 

𝑊𝑇𝑃  1.62 2.30 2.22 1.85 1.67 1.57 2.83 2.53 1.97 1.81 

Case 

II 

WTP 1.48 2.33 2.33 1.82 1.57 1.22 3.10 2.75 1.92 1.78 

𝑊𝑇𝑃  1.51 2.37 2.29 1.79 1.57 1.22 3.14 2.72 1.93 1.75 

α=100 Case 

I 

WTP 1.79 1.53 1.93 1.26 2.08 2.43 2.96 2.71 1.67 1.84 

𝑊𝑇𝑃  1.77 1.56 1.96 1.27 2.02 2.43 3.02 2.69 1.63 1.85 

Case 

II 

WTP 1.67 1.32 1.86 1.02 2.06 2.61 3.62 3.10 1.50 1.73 

𝑊𝑇𝑃  1.65 1.34 1.88 1.03 2.00 2.61 3.65 3.06 1.47 1.73 

α=200 Case 

I 

WTP 1.39 2.68 1.97 1.80 2.50 1.42 3.04 1.47 1.50 2.44 

𝑊𝑇𝑃  1.44 2.76 1.87 1.70 2.49 1.42 3.11 1.44 1.55 2.43 

Case 

II 

WTP 0.95 3.44 1.82 1.54 2.89 1.00 4.40 1.06 1.09 2.83 

𝑊𝑇𝑃  0.99 3.48 1.73 1.45 2.86 0.99 4.43 1.04 1.13 2.80 

 

Based on the results in Table 7-1, estimated site values are not very different from 

the true values. Only one or two deviate from the truth by more than 10%. Most are 

greater or smaller than their true values by around 2%, even in the case with quite 

remarkable bias in 𝛽2
  and 𝛽3

 . This is not surprising though. There is a downward bias in 

𝛽2
 , but an upward bias in 𝛽3

 . Maximum likelihood seeks parameters that are most likely 

to generate the observations, so although the estimates are different, the predicted  
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Table 7-2. Site Value in the Landscape with One City 

#Site 1 2 3 4 5 6 7 8 9 10 

α= 

10 

Case 

I 

WTP 2.01 1.15 1.58 1.91 1.55 1.19 2.77 1.69 1.33 2.44 

𝑊𝑇𝑃  2.15 1.26 1.69 2.01 1.66 1.29 2.95 1.83 1.43 2.60 

Case 

II 

WTP 2.02 1.12 1.56 1.91 1.53 1.17 2.85 1.68 1.31 2.49 

𝑊𝑇𝑃  2.17 1.22 1.67 2.02 1.64 1.26 3.05 1.81 1.40 2.65 

α= 

25 

Case 

I 

WTP 1.69 1.43 1.43 1.40 1.42 2.27 1.76 2.96 1.24 2.04 

𝑊𝑇𝑃  3.23 2.58 2.77 2.60 2.62 4.05 3.29 5.57 2.24 3.87 

Case 

II 

WTP 1.67 1.37 1.38 1.34 1.37 2.34 1.74 3.25 1.17 2.08 

𝑊𝑇𝑃  1.57 1.30 1.27 1.19 1.17 2.19 1.56 3.00 1.11 1.93 

α= 

45 

Case 

I 

WTP 2.16 1.34 1.68 1.68 1.69 1.94 2.52 2.40 1.17 1.05 

𝑊𝑇𝑃  3.01 1.90 2.39 2.38 2.33 2.68 3.55 3.36 1.69 1.51 

Case 

II 

WTP 2.26 1.24 1.63 1.63 1.64 1.95 2.77 2.61 1.05 0.93 

𝑊𝑇𝑃  2.52 1.34 1.83 1.92 1.75 2.19 3.15 2.87 1.23 1.05 

α= 

70 

Case 

I 

WTP 1.03 2.89 1.66 1.70 1.14 3.08 0.88 2.09 1.61 1.62 

𝑊𝑇𝑃  1.46 3.99 2.24 2.22 1.62 4.30 1.29 2.79 2.12 2.15 

Case 

II 

WTP 0.81 3.52 1.51 1.57 0.92 3.92 0.67 2.11 1.45 1.46 

𝑊𝑇𝑃  1.73 7.28 3.11 3.23 2.71 8.27 1.49 4.31 2.54 2.68 

α= 

10

0 

Case 

I 

WTP 0.86 2.02 2.04 1.36 1.49 1.05 2.14 1.43 3.36 1.93 

𝑊𝑇𝑃  1.86 4.01 4.16 2.86 3.15 2.25 4.40 2.84 7.13 3.84 

Case 

II 

WTP 0.57 1.99 2.03 1.08 1.23 0.75 2.18 1.16 5.28 1.83 

𝑊𝑇𝑃  1.01 3.19 3.44 1.61 2.01 1.28 3.06 1.91 8.42 2.73 

α= 

20

0 

Case 

I 

WTP 2.58 1.19 1.29 1.72 2.45 2.57 1.82 1.08 1.67 1.27 

𝑊𝑇𝑃  47.4 23.8 22.3 32.4 49.3 47.3 34.7 21.5 30.0 22
1
 

Case 

II 

WTP 3.85 0.69 0.80 1.42 3.33 3.78 1.61 0.59 1.33 0.78 

𝑊𝑇𝑃  -22 -3.5 -5.1 -12 -8.4 -22 -6.8 -3.1 -3.5 -2.8
2
 

 

                                                            
1 In Case I when α=200, 𝛽1

  is severely biased. In total, 86 in 1,000 iterations produce positive 𝛽1
 , the 

maximum of which is 0.04. Particularly, there are 30 𝛽1
 s distributed within (-0.001, 0.001), among which 

18 is negative and 12 is positive. The estimated WTPs correspondingly are extremely large. The negative 

𝛽1
 s dominate the positive ones, so the average WTPs are positive. Take the estimated WTP for site 1 as an 

example, among the 1,000 WTPs, the minimum is -3141, the maximum is 17,440. The median is 7.93.  
2 In Case II, 99 in 1,000 iterations give positive 𝛽1

 , the maximum of which is 0.05. There are 17 𝛽1
 s 

distributed within (-0.001, 0.001), among which 12 is positive. They generate very large and negative 

WTPs, As they dominate the negative 𝛽1
 s, the average WTPs are negative in this situation. For the 

estimated WTP of site 1, the maximum is 670.9 and the minimum is -23,650! The median is 7.54 by the 

way, so although it is rare to have more positive 𝛽1
 s within (-0.001, 0.001) in consideration of its true value, 

the overall distribution of 𝛽1
  does not go wrong. It is those extreme values that flip the sign of the averages.  

We re-run simulations under this situation for another two times. Both have positive estimated WTPs in 

Case II. In one simulation some of the estimated WTPs in Case I and Case II are still as large as 20; in the 

other simulation, those estimates go back to the true values’ magnitude and are around 6 or 7, close to the 

medians. Anyway, those negative estimated WTPs are unusual, but that might happen. 
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probability of visiting each site is similar. Plus, there is no bias in 𝛽1
 , which appears in 

the denominator of the site valuation equation. Therefore the estimated site values are 

pretty close to the truth. 

Table 7-3. Marginal Value of Quality Change in Basic Simulations 

 R** 1*** 2 3 4 5 6 7 8 9 10 

α= 

10 

Case 

I 

T* -8.2 0.96 0.77 1.13 0.51 0.48 0.89 0.56 1.03 0.76 1.07 

E* -8.1 0.96 0.76 1.13 0.50 0.48 0.88 0.56 1.03 0.75 1.07 

Case 

II 

T -8.2 0.97 0.76 1.15 0.50 0.47 0.89 0.55 1.04 0.75 1.09 

E -8.1 0.97 0.76 1.15 0.49 0.47 0.88 0.55 1.04 0.75 1.09 

α= 

25 

Case 

I 

T -8.2 0.64 0.60 0.64 1.14 1.06 1.12 0.95 0.65 0.58 0.79 

E -7.8 0.61 0.58 0.61 1.10 1.02 1.07 0.91 0.62 0.55 0.76 

Case 

II 

T -8.2 0.62 0.58 0.62 1.19 1.09 1.16 0.96 0.63 0.55 0.78 

E -7.8 0.59 0.55 0.59 1.14 1.05 1.11 0.92 0.60 0.52 0.75 

α= 

45 

Case 

I 

T -8.2 0.90 1.21 0.67 0.64 0.53 0.74 1.03 0.72 0.98 0.73 

E -7.1 0.78 1.06 0.58 0.55 0.46 0.64 0.90 0.62 0.84 0.64 

Case 

II 

T -8.2 0.91 1.32 0.64 0.60 0.49 0.72 1.08 0.70 1.01 0.71 

E -7.1 0.79 1.16 0.56 0.52 0.42 0.63 0.95 0.61 0.88 0.62 

α=

70 

Case 

I 

T -8.2 0.67 0.90 0.90 0.77 0.70 0.59 1.07 1.00 0.79 0.77 

E -6.3 0.52 0.70 0.68 0.59 0.53 0.45 0.84 0.77 0.61 0.58 

Case 

II 

T -8.2 0.63 0.92 0.92 0.75 0.66 0.53 1.17 1.06 0.78 0.74 

E -6.3 0.49 0.73 0.71 0.58 0.51 0.41 0.93 0.82 0.61 0.57 

α= 

10

0 

Case 

I 

T -8.2 0.75 0.63 0.79 0.54 0.84 0.96 1.15 1.06 0.70 0.76 

E -4.8 0.43 0.38 0.47 0.32 0.48 0.57 0.69 0.62 0.40 0.45 

Case 

II 

T -8.2 0.70 0.55 0.76 0.44 0.82 1.01 1.34 1.18 0.63 0.71 

E -5.1 0.43 0.35 0.48 0.27 0.50 0.63 0.85 0.73 0.38 0.44 

α=

20

0 

Case 

I 

T -8.2 0.59 1.05 0.81 0.74 0.98 0.60 1.16 0.62 0.64 0.97 

E -3.8 0.28 0.50 0.36 0.32 0.45 0.28 0.55 0.28 0.30 0.45 

Case 

II 

T -8.2 0.42 1.28 0.74 0.63 1.10 0.43 1.54 0.46 0.48 1.09 

E -4.3 0.22 0.68 0.37 0.32 0.58 0.22 0.83 0.23 0.25 0.57 

*T: True value; E: Estimated value;   **R: Ratio of 𝛽2 𝛽1 ;   ***1: Site number 

On the contrary, in landscape with only one city where the scale of travel cost is 

relatively small, as α goes up, there is a huge bias in the estimates, which could even be 
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as large as the estimates themselves. We also see problems in 𝛽1, so the estimated site 

values are no longer reliable. 

Table 7-4. Marginal Value of Quality Change in the Landscape with One City 

 R 1 2 3 4 5 6 7 8 9 10 

α= 

10 

Case 

I 

T -8.2 0.93 0.55 0.74 0.88 0.72 0.56 1.25 0.79 0.63 1.11 

E -8.5 0.97 0.57 0.77 0.90 0.75 0.59 1.30 0.83 0.65 1.15 

Case 

II 

T -8.2 0.93 0.53 0.73 0.88 0.72 0.55 1.29 0.78 0.62 1.13 

E -8.5 0.97 0.56 0.75 0.90 0.74 0.58 1.34 0.82 0.64 1.18 

α= 

25 

Case 

I 

T -8.2 0.79 0.67 0.67 0.66 0.66 1.04 0.82 1.33 0.58 0.94 

E -14 1.35 1.09 1.16 1.10 1.10 1.68 1.38 2.26 0.95 1.62 

Case 

II 

T -8.2 0.78 0.64 0.65 0.64 0.64 1.06 0.81 1.45 0.55 0.95 

E -7.5 0.73 0.60 0.60 0.56 0.55 1.00 0.73 1.35 0.52 0.89 

α= 

45 

Case 

I 

T -8.2 0.99 0.63 0.78 0.78 0.79 0.90 1.14 1.10 0.56 0.50 

E -8.8 1.07 0.68 0.85 0.85 0.83 0.96 1.25 1.18 0.61 0.54 

Case 

II 

T -8.2 1.03 0.59 0.76 0.76 0.76 0.90 1.24 1.18 0.50 0.44 

E -8.1 1.02 0.57 0.75 0.78 0.73 0.90 1.25 1.16 0.51 0.44 

α=

70 

Case 

I 

T -8.2 0.48 1.30 0.77 0.80 0.54 1.38 0.42 0.96 0.75 0.76 

E -8.1 0.49 1.30 0.75 0.77 0.55 1.41 0.44 0.92 0.74 0.72 

Case 

II 

T -8.2 0.38 1.55 0.71 0.74 0.44 1.71 0.32 0.97 0.68 0.68 

E -11 0.53 2.02 0.90 0.92 0.76 2.30 0.44 1.21 0.75 0.80 

α=

10

0 

Case 

I 

T -8.2 0.41 0.93 0.95 0.64 0.70 0.50 0.98 0.67 1.50 0.89 

E -9.3 0.49 1.04 1.07 0.74 0.81 0.58 1.10 0.75 1.76 0.98 

Case 

II 

T -8.2 0.28 0.91 0.93 0.51 0.59 0.36 0.99 0.55 2.20 0.85 

E -7.9 0.29 0.88 0.93 0.48 0.58 0.36 0.90 0.54 2.18 0.78 

α=

20

0 

Case 

I 

T -8.2 1.17 0.56 0.61 0.80 1.12 1.16 0.85 0.52 0.78 0.60 

E -33 4.68 2.42 2.27 3.27 4.83 4.67 3.45 2.20 3.03 2.26 

Case 

II 

T -8.2 1.66 0.33 0.38 0.67 1.46 1.64 0.75 0.28 0.62 0.37 

E -13 2.66 0.54 0.66 1.31 2.02 2.73 1.11 0.45 0.79 0.49 

 

Table 7-3 and Table 7-4 present the marginal values for quality changes. Both 

results show that when the bias in the ratio of parameters grows, the difference between 

estimated values and true values are also getting bigger. In the basic landscape, if α is 

larger, the ratios of estimated quality parameters are smaller in absolute value, which is 



44 

 

consistent with the simulation results. The estimated marginal value of quality change is 

also diminishing. Thus, although the economic endogeneity of facilities does not have 

much influence on the site value, it does affect the value of environmental quality. 

In landscape with only one city where the scale of travel cost is reduced, the trend 

of the bias is not as obvious as that in the basic landscape. But if we compare the results 

with α equal 10 and 200, we can see a huge difference. Although both 𝛽1
  and 𝛽2

  have a 

downward bias, the ratio of their estimates still deviates from the truth. When all 

estimated coefficients in the utility equation are biased, the welfare estimates for quality 

change are also biased. 
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Section 8 

CONCLUSIONS 

Researchers who conduct travel cost studies of recreation demand are often 

confronted with site characteristics that are not exogenously determined. In these 

situations researchers might rightly be concerned about the potential implications of 

endogenous site characteristics. In this paper, we use Monte Carlo simulations to 

investigate whether the economic endogeneity of facilities causes bias to the coefficient 

estimates and welfare estimates. The answer to the research question is: the economic 

endogeneity of site facilities leads to statistical endogeneity, which means the facility 

variable is correlated with individual errors, but the statistical endogeneity is not strong 

enough in most cases to cause a big problem in the estimation since facilities are 

endogenous at the aggregate level. However, this economic endogeneity still needs 

attention, because it also can induce multicollinearity of facilities with other site 

characteristics, which may cause bias to the estimates. Based on the answer, a few 

conclusions can be drawn from our simulations: 

(1) In the situation when there is a lot of variation in travel cost, which is identical to 

the basic landscape we used in the simulations, the strength of facilities’ 

economic endogeneity matters, because strong economic endogeneity results in 

high multicollinearity. If the endogeneity is very strong, we would expect a bias 

in the estimated coefficients of facilities and other site characteristic variables; 

otherwise, there is no need to worry about it. We can calculate the correlation 

between facilities and other site characteristic variables for diagnosis. The 
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correlation should be very outstanding to cause a big problem. The threshold of 

the correlation to lead to bias is affected by the underlying factors of the study, 

like the number of sites, the sample characteristics, etc. Sometimes it has to be as 

high as 0.7.  

(2) No matter how strong the economic endogeneity is, there is almost always no bias 

in the estimated coefficient for travel cost, and we don’t see a huge bias in the 

welfare measure of site value. As for the value of marginal quality change on sites, 

the bias is growing as the endogeneity gets stronger. Thus the site value is less 

sensitive and more reliable than the value of marginal quality change. 

(3) When there is economic endogeneity of facilities, dropping the facility variable 

does not provide a clear solution: it will make matters worse when people do care 

about site facilities, but including the facilities can lead to spurious parameter 

significance when facilities are included yet people do not care about them. 

(4) In the situation where people cluster, especially where all people live in one area, 

which means all recreationists have similar travel costs, we don’t quite get bias in 

all estimates even if the endogeneity is very strong, except in extreme cases. We 

have to go to some length to construct simulations and landscapes which induce 

bias in the travel cost parameters. As the number of clusters increases, the results 

become closer to the situation described in the first conclusion. 

The results above apply for not only facilities, but also other site characteristics 

that are provided by site managers or a third party.  Examples of site quality 

characteristics that depend on some endogenous level of investment in monitoring or 

measurement and have been studied in recreational demand settings include water quality 
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advisories for a beach, fish consumption advisories, etc. For such variables, we would 

expect managers to allocate their measurement and monitoring budget so that more 

popular sites are more likely to be measured/monitored.   

Further, in this study, we assume quality to be the same for all people; in other 

words, we use objective quality measures. The estimated coefficient of quality is also 

influenced by the multicollinearity that can be induced through the economic endogeneity 

of the supply of facilities. Some studies valuing recreation demand adopt subjective 

quality measures rather than objective ones, especially in the single site model. If 

perceived quality data is used instead of objective data, quality variable will vary across 

both people and sites, as does travel cost. Thus, its correlation with facilities will greatly 

decrease, and we would not expect to see bias in the estimated coefficients. 

In a word, in empirical studies, we need to be careful with the data and with site 

characteristics suspected to be economically endogenous, e.g., facilities. Even though 

they are site-specific, their economic endogeneity may still have substantial influence on 

the estimation results. As possible diagnostics for economic endogeneity problems, one 

can examine the distribution of recreation sites and recreationists, and compute the 

correlations of that particular site characteristic with other site characteristic variables.  

Then, based on the expected impact of the endogeneity and depending on the estimates 

the study is interested in, one can decide whether to take the possible economic 

endogeneity into account. 
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