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The Agricultural Lender’s Problem 

Agricultural lenders are particularly concerned with credit risk since their credit 

portfolios may be relatively under-diversified and adverse market-wide (or systematic) 

conditions may pose a significant threat to the performance of their loan portfolio and 

their business. So, how should an agricultural lender adjust its capital reserves to guard 

against unexpected downturns in the business cycle? 

The Basel Accord recognizes the existence of fluctuations in the economy and 

the impact on both default and loss rates.  The Accord makes broad recommendations 

on how a bank should adjust its capital holdings in response to market fluctuations. The 

majority of agricultural lenders, being small-to-medium sized institutions, typically do not 

have the resources to adequately explore and implement this requirement. Our objective 

in this study is to identify a consistent methodology for addressing this problem and 

develop an empirical tool that agricultural lenders might use to evaluate the implications 

of these fluctuations for the capital positions they hold. 

We explicitly model the interdependency between loan default rates and loan 

loss rates by applying the framework established by Miu and Ozdemir (2006). That 

framework enables us to develop a model which captures the correspondence between 

the probability of default and the loss given default. Miu and Ozdemir propose a stylized 

model that decomposes the correlations between loss and default rates into their 

systematic and nonsystematic components.  This allows us to isolate and forecast the 

impact of fluctuations in the business cycle on the optimal level of economic capital for a 

lender. Specifically, we project the portfolio value-at-risk that is conditional on the phase 

of the agricultural business cycle. Economic capital projections are simulated using 

@Risk, a software program that is an add-on to Microsoft Excel.  This allows us to 

develop a simulation tool that can be utilized and replicated by associations in the Farm 

Credit System. We examine a sub-portfolio of agricultural mortgage loans originated by 

AgStar Financial Services, ACA, which serves rural producers in Minnesota and 

Wisconsin. 

 

The Miu-Ozdemir Framework 

 
The Miu-Ozdemir model decomposes the relationship between probability of default 

(PD) and loss given default (LGD) for a given borrower according to the sensitivity of the 

borrower’s credit risks to a common (or shared) systematic factor and the sensitivity to 
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borrower-specific (random or idiosyncratic) factors. These “dependencies” are 

categorized into four distinct types of correlations that exist between: (i) the systematic 

risk factors of PD and LGD for a given borrower, (ii) the idiosyncratic risk factors of PD 

and LGD for a given borrower, (iii) the PD risk drivers across different borrowers, and (iv) 

the LGD risk drivers across different borrowers (see Figure 1). 

 

 

Figure 1.  Systematic and Idiosyncratic Risks. (Source: Miu and Ozdemir, 2006). 

 
It is expected that, during a recession (or downturn in the business cycle), unsecured or 

under-secured loans would exhibit higher rates of default and losses as a result of being 

more vulnerable to market-wide conditions. This phenomenon is implied by correlations 

(i) and (ii) identified above. Further, individual borrowers are susceptible to their own 

borrower-specific risks that may reduce their asset values independent of changes in 

economic conditions at large. 

In the model description that follows we draw from the model presented in Miu 

and Ozdemir (2006) and use their notation. We begin by defining the systematic PD and 
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LGD risks, both of which are driven by the systematic risk factor Xt
1, via equations (1) 

and (2). 

 

Pt  PD  Xt  PD,t ,             (1) 

tLGDtLGDt XL ,  ,        (2) 

 

PD,t  represents the sensitivity of the systematic PD risk Pt  to the market-wide risk factor 

Xt  and LGD,t  represents the sensitivity of the systematic LGD risk Lt  to the market-wide 

risk factor. By assumption, the residual changes (PD,t  and LGD,t ) are mutually 

independent, they are independent of Xt , and they are normally distributed so that both 

of the systematic risks ( Pt  and Lt  ) are standard-normally distributed. 

The borrower-specific (idiosyncratic) risks (ePD,t  and eLGD,t ) are assumed to be 

not independent for any given borrower and we define them in (3) and (4). 

 

ePD,t
i PD

i  xt
i  PD,t

i ,         (3) 

i
tLGD

i
t

i
LGD

i
tLGD xe ,,   ,         (4) 

 

PD,t
i  represents the sensitivity of the idiosyncratic PD risk ePD,t

i  to the standard-normally 

distributed borrower-specific credit risk factor xt
i . LGD,t

i  represents the sensitivity of the 

idiosyncratic LGD risk eLGD,t
i  to the borrower-specific credit risk factor. The mutually-

independent residual changes PD,t
i  and LGD,t

i  are assumed to be normally distributed 

with standard deviation such that the idiosyncratic risks ePD,t
i  and eLGD,t

i  are standard-

normally distributed.  

Individual PD risk is governed by both the systematic PD risk, Pt , and the 

borrower-specific PD risk, ePD,t
i , and is assumed to follow a standard normal distribution. 

 

pt
i  RPD  Pt  1 RPD

2  ePD,t
i        (5) 
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Individual LGD risk is similarly defined and is determined by both the systematic LGD 

risk, Lt , and the borrower-specific LGD risk, ePD,t
i , and it is assumed  to have a standard 

normal distribution. 

 

lt
i  RLGD  Lt  1 RLGD

2  eLGD,t
i        (6) 

 

RPD   represents the correlation between these individual PD risks and the systematic 

risk factor Pt . Likewise RLGD  represents the correlation between the individual LGD risks 

and the systematic risk factor Lt . The authors also further specify that both systematic 

correlations, RPD  and RLGD , can be shown to be pair wise correlations that represent the 

correlations between any given pair of individual PD or LGD risks, respectively.  

In (5) and (6) we implicitly define the correlation between PD and LGD for a given 

borrower due to the systematic risk factor(s).  

 

LGDPDLGDPDtt RRlpCorr ),(      (7) 

 

By adding the correlation attributed to the idiosyncratic risk factors for each borrower, it 

follows that the complete correlation structure between PD and LGD for each 

representative borrower i is equal to (8). 

 

Corr(pt
i,lt

i)  PDLGDRPDRLGD PD
i LGD

i 1 RPD
2 1 RLGD

2      (8) 

 

The first term in (8) represents the correlation due to systematic risk factors.  The 

second term in (8) represents the correlation due to idiosyncratic risk factors. 

The lower the value of the systematic risk factor, the more adverse the state of 

the market. Thus, a lower value of the systematic PD sensitivity implies a higher 

likelihood of default, as adverse market-wide effects negatively impact an obligor’s ability 

to repay debt.  

 2
PDR  and PD are the necessary inputs to the systematic PD function in (9). In (9) 

and (10), )(1    is the inverse of the cumulative standard normal distribution. 
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Having solved for 2
PDR  and DP in (9), we can solve for expected systematic PD 

risk, tP , in each time period as shown in (10). 

 

 
PD

PDtt
PDttt R

RnkDP
RDPnkPE

21 1)/(
,;,|






   (10) 

 

We assume that the observed losses follow a beta distribution and map the 

observed LGDs onto their respective cumulative probabilities using the cumulative beta 

distribution function. We first rescale the actual LGD observations i
tLGD  by using the 

range-normalization transformation in (11). 

 

MINi
t

MAXi
t

MINi
t

i
ti

tR LGDLGD

LGDLGD
LGD

,,

,




        (11) 

 

i
tLGD is the actual observed LGD, i

tR LGD  is the rescaled LGD observation, MINi
tLGD ,  

is the minimum value of all the actual LGD observations and MAXi
tLGD , is the maximum 

value of the observed LGDs. By using the unconditional mean and variance of our 

range-normalized LGD observations i
tR LGD  we can solve for the parameters  and   

in (12) and (13), where  and 2 are the unconditional mean and variance of the range-

normalized LGD observations i
tR LGD , respectively. 

 





           (12) 

2
2

))(1( 



         (13) 
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Solving for  and   allows us to map each of the normalized LGD observations onto 

their corresponding standard-normally distributed equivalent values. Because the Miu-

Ozdemir model requires that our representation of individual LGD risk i
tl  is standard-

normally distributed, we map each cumulative probability onto its corresponding value on 

the standard-normal distribution.  

 

)),),((1 i
tR

i
t LGDBl          (14) 

 

LGD is then obtained by transforming the standard-normally distributed individual LGD 

risks appropriately using the four-parameter specification of the beta distribution,1 where 

a and b are the minimum and the maximum of the observed LGD values. 

 

),,,),((1 balBLGD i
t

i
t          (15) 

 

 Because the standard deviation of the individual LGD risks i
tl in each year is 

equal to 2ˆ1 LGDR , we can derive the pair wise LGD correlation by calculating the 

“pooled estimate” of the standard deviation of i
tl . Here tn  is the number of LGD 

observations in time period t, 2ˆ t is the standard deviation of i
tl in time period t and T is 

the total number of time periods available for the analysis.  

 














T

t
t

T

t
tt

LGD

Tn

n
R

1

1

2

2

ˆ)1(
ˆ1


        (16) 

  

The systematic LGD risk is simply the mean of all the individual risks during a given 

year, divided by the square root of our estimated pair wise LGD correlation.  

                                                 
1 Numerous statistical packages offer the four-parameter specification of the cumulative beta 
distribution. It performs the inverse of a range-normalization transformation after determining the 
inverse of a cumulative beta probability on the standard [0, 1] domain. This allows for further 
flexibility when applying the beta distribution, as our domain does not have to be bounded 
between 0 and 1. 
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 1 , for all time periods t       (17) 

 

At this point we ask, if loss and default rates are modeled in an acyclical manner 

– where all correlations are set to zero – by how much would these acyclical LGD and 

economic capital estimates need to be increased in order to arrive at the same value-at-

risk measures where these correlations aren’t ignored? Miu and Ozdemir’s simulation of 

different combinations of systematic and borrower-specific sensitivities shows that even 

with a moderate level of idiosyncratic PD/LGD correlation, LGD needs to be increased 

by as much as 37% when compared to estimates of economic capital that do not 

account for these correlations. In other words, acyclically-evaluated LGD estimates may 

severely understate the economic capital requirement, and these estimates need to be 

“marked up” accordingly. 

 

Application of the Miu-Ozdemir Model 

 
We develop the analysis of a loan portfolio by using @Risk, a simulation add-in 

for Microsoft Excel, and use it to incorporate the specific features of the Miu-Ozdemir 

model. For example, we take care to differentiate between the systematic and 

idiosyncratic components of the model during implementation. We are subjecting a 

portfolio of borrowers to the same systematic risk, while allowing their respective 

idiosyncratic risks to change. We use the flexibility of Visual Basic for Applications (VBA) 

macros to enhance @Risk’s basic functionality in order to do so.  

As shown in this section, the user of the model inputs the model correlation and 

sensitivity parameters into a spreadsheet template. These parameters are then used to 

perform the model calculations and display the results. @Risk allows for further flexibility 

to analyze simulation results by enabling users to customize the formatting and content 

of reports. 

 

Model Description Window  

The model description window as shown in Figure 2 is descriptive in nature and 

provides the user with a summary of the Miu-Ozdemir equations and variables, their 

respective distributions, and how they are related to each other. For example, it is a 
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quick way to verify that the systematic risk factor, tX , is standard-normally distributed 

and is related to the systematic PD and LGD risks by way of the sensitivity 

parameters PD  and LGD . 

 

 

 Figure 2. Model Description Window 

 

Simulation Window 

The simulation window enables the user to input all the model parameters (see 

Figure 3). The sensitivity and correlation parameters chosen by the user are reflected in 

the panel labeled “correlation parameters.” The user can either enter the parameter 

values directly into the spreadsheet, or can click the button directly above the 

“correlation parameters” panel.  
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Figure 3: Simulation Window 

 

Input Model Sensitivities 

In Figure 4, the input model sensitivities dialog box allows the specification of the 

idiosyncratic and systematic sensitivities, as well as the pair wise PD and LGD 

correlations. A key assumption that we make is that the systematic and idiosyncratic 

sensitivities are equal (see Miu and Ozdemir). If a user would like to specify this 

assumption as such, he or she can conveniently enter a single value for each pair of 

systematic and idiosyncratic sensitivities. For example, if both the systematic 

sensitivities are equal to the square root of 0.8, we can enter the expression: “= 

SQRT(0.8)” into the dialog box labeled “systematic PD sensitivity = systematic LGD 

sensitivity = “. 
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Figure 4. Input Model Sensitivities Dialog Box 

 

 

Figure 5. Input Loss Parameters Dialog Box 
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Input Loss Parameters 

The Input Loss Parameters dialog box enables the user to input the 

specifications of the loss distributions used to translate the observed LGD rates into their 

standard-normally distributed equivalents (see Figure 5). The application provides the 

necessary functionality to translate the individual LGD risks i
tl  into their corresponding 

beta-distributed loss. Based on preliminary testing, we found that the Box-Cox2 

transformation may be a very useful and often-applicable transformation of the observed 

LGD values as well. 

 

 

Figure 6. Results Window 

Results Window 

The Results Window gives a summary of the economic capital requirements of a 

given set of model parameters at the 99th and 99.9th percentiles (see Figure 6). Using 

@Risk’s built-in distribution-fitting capabilities, we can further investigate and evaluate 

the input and output distributions both graphically and numerically. 

While precisely reproducing Miu and Ozdemir’s results would have been ideal in 

validating the model, limited computer processing and memory capacity necessitated 

that we minimize the number of simulations and iterations necessary to best 

approximate Miu and Ozdemir’s simulation outcomes. We determined that 300 

                                                 
2 The popular Box-Cox method attempts to transform the distribution of a continuous variable into 
an approximately standard normally-distributed range of values and is available in most statistical 
packages. We apply the computational form specified by Johnson and Wichern (2001). 
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simulations each consisting of 300 iterations was the most optimal combination of 

simulations and iterations that gave us comparable results while striking the right 

balance between the validity of the probability distributions being generated and the 

simulation running-time. Indeed, 300 iterations is a widely-used rule-of-thumb standard 

that allows a distribution to adequately approximate its true density3.  

 

Applying the Miu-Ozdemir Model to Agricultural Loans 

 
 We hypothesize that farm real estate and intermediate term loans may 

reasonably exhibit a significant level of systematic risk, which would make for a good 

case-study. Further, if it is reasonable to assume that the creditworthiness of agricultural 

borrowers depends on the value of their assets, we surmise that variations in agricultural 

land values are a plausible proxy for the systematic risk factor ( tX ) which drives default 

and loss given default rates at the industry and lender levels.  By extending the analysis 

to incorporate years in which land values were volatile (the “farm crisis” of the early 

1980s) we can simulate the effects of an economic cycle on the agricultural lender’s 

portfolio and economic capital (see Figure 7).  

 

 

Figure 7. Agricultural Loan Portfolio Simulation 

 

                                                 
3 We specify the “Latin Hypercube” random number generator as the sampling option. The Latin 
Hypercube method is a stratified-sampling algorithm especially conducive to the goal of attaining 
stabilization or “convergence” of a distribution much more efficiently than traditional sampling 
algorithms. 
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The model is calibrated to the agricultural lender’s portfolio by identifying and 

measuring the key correlations in the model. These correlations are between; land 

values and PD, land values and LGD, and PD and LGD. We will use the Minnesota 

agricultural land values series provided by the United States Department of Agriculture 

(USDA, 2009) at the national and state levels during 1950-2008 (Appendix A). 

The time-series of default and loss-given-default data provided by AgriBank 

spans a limited time horizon, 2002 through 2008, a period of time during which the 

agricultural industry was relatively prosperous and defaults were at historically low 

levels.  

Due to insufficient data from the 1980s, reliable farm credit default and loss data 

is unavailable for the years corresponding to the farm financial crisis. Thus, we employ a 

credit officer survey to generate a proxy for the actual historical data.  Our goal was to 

elicit expert estimates of the timing and the severity of the farm financial crisis with 

respect to this specific lender.  

 While there was some variation in their peak default estimates, the responding 

credit officers all agreed that 1986 was the year the Association’s credit portfolio 

experienced the most stress. Further, responses indicated that the pre-farm crisis default 

rates were in the 0%-2% range. In contrast, the peak default rate ranged from 4.5% to 

40% for real-estate loans, and 6% to 20% for intermediate term loans. 

The survey responses were combined with actual historical Association level 

default data from the years 1999 through 2008. As a result, we had three sets of default 

data series, each consisting of 12 observations. 10 of these observations were from the 

actual 1999-2008 historical data, and 2 observations were based on the respondents’ 

answers about the high default years in the early 1980s. Each observation consisted of 

the number of borrowers current at the start of the given year ( tn ) and the number of 

these borrowers who defaulted by that year’s end ( tk ). Recall that the systematic PD 

risk as a function of our chosen systematic risk factor (land values), and it is defined by 

the linear equation tPDtPDt XP ,  . Deriving the systematic PD sensitivity 

parameter, ,PD then becomes a matter of estimating the linear regression of the time-

series for systematic PD risk on the standard-normalized land values series.   

Introducing Minnesota land values into the investigation of the systematic 

dependency of the credit risks sheds more light on the overall systematic dependency of 
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the credit risks. A graphical display of - tP , tL  and the Minnesota land values series 

helps us appreciate any underlying systematic trends more intuitively (see Figure 8).  

 

Figure 8.  Systematic Credit Risks and Land Values, 1999-2008. 

 
Due to the limited number of observations available and noise apparent in the 

data, we choose to apply the most statistically-significant systematic sensitivity estimate 

obtained via linear regression. We (more conservatively) use our regression sensitivity 

estimates of 0.98 and -0.98, for PD  and LGD  respectively, through the rest of our 

subsequent analyses. Before moving ahead, however, it is worth asking: are the 

coefficient estimates obtained by linear regression reasonable?  

The business of agricultural lending is relatively sector-specific. That is, the value 

of an agricultural lender’s credit portfolio may depend heavily on the overall financial and 

economic health of the agricultural industry. If covariant risk is a problem, it is because 

farms and/or agribusinesses are sensitive to a set of market-wide factors or forces that 

adversely affect many clients at once.  Those factors may be more significant 

determinants of credit risk than the uncorrelated borrower-specific risks that may exist. In 

this paper we examine a predominantly secured subset of agricultural real-estate loans 

and intermediate-term loans. A sudden decline in the value of farm land may imply an 

unexpected loss of income to the farmer. If the farmer defaults on his/her debt, any 

recovery made by the lender upon possession of the collateral will likely be at a lower 

value because the market as a whole experiences stress, and the collateral is less 

valuable than when the loan was originated.   
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Thus, the value of farm land used as collateral to back these loans is an indicator 

of both the obligor’s ability to repay debt and the resulting loss on an outstanding 

exposure if the borrower defaults. However, if this is true, the correlation parameters we 

have estimated ( 08.02 PDR  and 9.02 LGDR ) seem to be counter-intuitive: shouldn’t we 

expect both systematic correlations to be reasonably high? In fact, an 2
PDR value of about 

8% is reasonable. We see that this value has an associated long-run probability of 

default of slightly less than 1%. This means that in the long run about 1 out of every 100 

loans goes into default. This suggests that the agricultural industry is a relatively stable 

one, except for the farm financial crisis years in the 1980s. There are different types and 

sizes of farms and some farms are better able to continue to operate through a period of 

moderate-to-severe systematic shocks than others. Therefore, even though farms and 

farmland values may be negatively impacted at a specific point in time, all obligors are 

not likely to go into default simultaneously. However, loans of farms that actually do 

default at approximately the same time are subject to the same appraisal of their 

collateral, because this appraisal is a market-wide valuation of the worth of the sector-

specific assets that are used to guarantee the loans.  

 

Table 1. Calibrating the Idiosyncratic Sensitivities to Reported Default   

  Frequencies 

1.02    Reported Frequencies  Simulated Frequencies 

Year 
%chg in 

land 
values 

# 
Loans 

# Loans 
Defaulting

Default 
Rate 

# 
Loans

# Loans 
Defaulting 

Default 
Rate 

1982 -8.41% 200 3 1.5% 300 3 1%
1986 -22.72% 200 10.5 5.2% 300 14 4.6%

  

The agricultural sector, and the specific loan portfolio we are looking at, may be 

subject to a significant degree of market-wide risk. Yet, because farming is generally a 

stable industry, we expect that any individual borrower has a low-to-moderate borrower-

specific risk of default. Thus, we will explore low levels of idiosyncratic sensitivity in the 

model application.  We also assume that the idiosyncratic risks (for default and loss 

given default) are of equal magnitude ( PD = || LGD ). For convenience we will refer to 

the equal idiosyncratic risk magnitudes as 2 . We evaluate an appropriate level of 
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2 that best approximates the default frequencies observed from the lender survey and 

the lender’s historical data. These results are reported in Table 1. 

As we conduct the simulation analysis we hold the systematic risk factor ( tX ) 

fixed at the standard-normal value that represents the annual percentage change in land 

values at the peak and immediately before the farm crisis years. We simulate a 

distribution of 300 year-end portfolio values, each consisting of 300 borrowers for 

robustness. The model setup in @Risk generates the corresponding number of defaults 

for each year-end portfolio value. We compare the average of the number of defaults in 

all the portfolio-values generated to the default frequencies reported by the credit staff in 

1982 and 1986. As expected, the low level of idiosyncratic sensitivity reported in Table 1 

allows us to approximate the observed default frequencies almost exactly. The simulated 

default frequencies are reported next to the reported frequencies at the peak of the cycle 

(1986) and immediately before the cycle (1982). These two frequencies correspond 

relatively well.  

 

Stress-Testing the Portfolio 

 

 The analysis is concluded by stress-testing the calibrated Miu-Ozdemir model by 

anticipating specific percentage changes for the chosen systematic risk factor (land 

values). These percentage changes are used to derive their standard-normally 

distributed equivalents (via the Box-Cox transformation, where necessary).  Thus, we 

need to find appropriate interpolations for specific percentage declines within the range 

of the observed percentage changes. Specifically, we are interested in evaluating the 

economic capital requirement when land values decline by 5%, 10%, 15% and 22.72% 

(which was their highest year-on-year decline, reported in 1986). We seek to answer the 

question: “If the agricultural sector again experienced significant financial stress, and 

land values changed from their current values by the same proportionate shift as during 

the farm credit crisis, how would this impact the economic capital requirement of the 

intermediate-term and real-estate loan portfolios?” 

We compare the “markup” to economic capital to the economic capital generated 

from the baseline scenario (which corresponds to an expected 6.3% increase in land 

values). We stress the portfolio relative using downward shifts in the land values series 

to capture deviations from the recent trend of expected gains.  
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 If the most recent Minnesota land value estimate (in our case the 2008 value of 

$2970/acre) experiences similar percentage losses to those exhibited by land values 

through the farm crisis years, by how much should this particular agricultural lender mark 

up their economic capital estimates in order to compensate for a downturn in the 

economy? The annual percentage land value declines of interest are 0% (the baseline), 

5%, 10%, 15%, and the historical 1986 decline of 22.72%. In order to interpolate the 

percentage changes not directly observed in the series, we use a simple linear 

regression to perform a fit of the observed values’ standard-normal equivalents (via the 

Box-Cox method, where necessary) on the actual percentage changes. Of course, since 

one variable is merely the rescaling of another, the fit is perfect, allowing us to 

interpolate the standard-normal equivalents of the 0%, 5%, 10% and 15% declines.  

  We use the model parameters calibrated to the agricultural loan data to simulate 

a hypothetical loan portfolio of 300 borrowers experiencing a systematic risk that is 

centered about the standard-normal equivalents of the percentage declines. For each 

percentage decline, we evaluate the percentage markup that is required to increase the 

economic capital from the baseline level (0% change) to that of the relatively stressed 

level.  

 

Table 2. Economic Capital Markup by Percentage Change in Land Values 

% 
change 

Average 
#Defaults 
(Default 
Rate) 

99 Percentile Level 99.9 Percentile Level 

Economic 
Capital 

%Markup 
Economic 

Capital 
%Markup 

+6.3% 3 (1%) 7.71 0% 8.09 0% 

0% 4 (1.1%) 12.09 57% 21.59 167% 

-5% 5 (1.7%) 22.01 185% 26.45 227% 

-10% 8 (2.6%) 23.49 205% 38.86 380% 

-15% 10 (3.3%) 29.75 286% 41.09 408% 

-22.72% 16 (5.3%) 37.16 382% 44.52 450% 
 

In Table 2 we summarize the results of the stress-test analysis. For example, if 

agricultural land values decline by 5%, the average number of defaults is expected to be 

equal to 5, which is equal to a default rate of 5/300 = 1.7%.  Recall, we are simulating 

300 borrowers each owing one dollar in a year’s time.  
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Table 3. Economic Capital per Dollar of Exposure 

At-Risk Percentile Level =  99%  At-Risk Percentile Level =  99.9% 

%change in 
land values 

Economic 
Capital 

% of 
exposure 

 %change 
in land 
values 

Economic 
Capital 

% of 
exposure 

+6.3% 7.71 2.6%  +6.3% 8.09 2.6% 
0% 12.09 4.0%  0% 21.59 7.2% 
-5% 22.01 7.3%  5% 26.45 8.8% 

-10% 23.49 7.8%  10% 38.86 13.0% 
-15% 29.75 9.9%  15% 41.09 13.7% 

-22.72% 37.16 12.4%  -22.72% 44.52 14.5% 
 

From the perspective of the lender, we can think of economic capital as the 

proportion at risk of one dollar over a specified time horizon at a given confidence level. 

For example, an anticipated decline of 15% in land values will result in 9.9% of every 

dollar in the portfolio being at risk over the coming year, at the 99% confidence level 

(see column 3 in Table 3). 

In Table 2 we report the average (expected) number of defaults in the distribution 

of year-end portfolio values.  This gives us the probability-of-default estimate, PD. For 

the expected (or baseline) increase in land values of 6.3%, we can write the equation  

3

300

300

73.0


PD

EL
LGD  

Solving this equation for the implied LGD rate yields LGD = 0.24 or 24%. The actual 

observed average LGD of the loan portfolio is approximately 20%. Given the limited 

number of simulation cycles implemented here, we can see that the simulation estimates 

are comparable to what has been actually observed. This tells us that the baseline 

simulation is adequately calibrated to the lender’s actual experience, and suggests that 

that the estimates relative to the baseline, and the chosen model parameters, are quite 

reasonable. 

 

Summary and Conclusions 

 
 We explore the Miu-Ozdemir model by incorporating farmland values as the 

systematic risk factor that drives credit defaults and loan losses. Because an agricultural 

credit portfolio is largely undiversified due to its dependence on the financial wellbeing of 

a single sector in the economy, we began with the hypothesis that agricultural loans 
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would show a significant degree of systematic risk.  This expectation proved to be true in 

the simulation model application. The real estate and intermediate-term loan categories 

exhibit a strong correlation between their systematic PD and LGD risks. This correlation 

represents a significant and positive systematic risk sensitivity to land values in the 

portfolio of the Association. 

 An advantage of the approach used here is that systematic sensitivities can be 

obtained without explicitly modeling the market-wide risk factor (Miu and Ozdemir, 

2005). We have shown that at the same time, the Miu-Ozdemir model is sufficiently 

flexible to allow the explicit modeling of the chosen systematic risk driver. Given the 

limitations of the loan data in our study this is somewhat of a necessity.  

Using historical and surveyed default rate data, we are able to calculate the 

sensitivity of systematic PD to land values. We find that the correlation of the systematic 

PD risk to changing land values is positive and reasonably strong. The pairwise LGD 

correlation estimate characterizes an exceptionally strong systematic relationship 

between the observed LGD values. This is reasonable due to the specific types of loans 

in the lender’s portfolio.  Close to 75% of these loans are well-secured or adequately-

secured. The loan categories evaluated in this study, real-estate mortgages and 

intermediate-term loans, are traditionally secured by farm real estate as the dominant 

source of collateral Therefore, the portfolio exhibits strong dependence on the value of 

the collateral guaranteeing these loans.  

Farm real estate values are sensitive to the economic performance of the 

agricultural sector overall. Although it is not an instantaneous relationship, when 

agricultural commodity prices fall the value of farmland also falls. Further, some of this 

collateral is industry-specific to the degree that it is difficult, if not impossible, to sell the 

collateral outside of the agricultural industry. For example, farming equipment and 

machinery has little or no application outside of the agricultural industry. Similarly, many 

agricultural buildings and structures have a single agricultural use (e.g., storage facilities 

and barns).  Therefore, when the agricultural sector performs poorly, agricultural lenders 

may have to write off a greater degree of any exposures outstanding because the 

lenders cannot recoup 100% of the collateral that was secured when the loans were 

originated and the sector was performing more favorably. This explains the generally 

high correlation between the individual observations of loss given default, since the 

collateral across borrowers at any point in time experiences a similar proportionate 

change in value. 
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We conclude that the model explored in this paper provides a useful framework 

for empirical analysis. It gives credit risk practitioners a consistent way to account for the 

relationship between credit default rates and loss given default rates. The framework 

enables us to develop a simulation model which can serve as an effective credit risk 

management tool, either as a stand-alone application or as an aid to informing lender 

decisions which may be made in conjunction with other tools and methods.  
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Appendix A: Minnesota and Wisconsin Value of Land and Buildings (per acre) 

(Source: U.S. Department of Agriculture) 

 

  Minnesota Wisconsin   Minnesota Wisconsin
1950 84 89 1981 1281 1,152 
1951 98 99 1982 1272 1,144 
1952 107 105 1983 1165 1,113 
1953 109 107 1984 1131 1,104 
1954 104 101 1985 898 944 
1955 109 101 1986 694 836 
1956 119 107 1987 587 777 
1957 129 116 1988 700 826 
1958 143 122 1989 747 845 
1959 152 131 1990 810 801 
1960 155 133 1991 881 849 
1961 150 137 1992 884 865 
1962 156 144 1993 910 925 
1963 158 143 1994 914 968 
1964 162 150 1995 950 1,040 
1965 167 155 1996 1030 1130 
1966 176 165 1997 1090 1170 
1967 188 182 1998 1160 1240 
1968 201 193 1999 1240 1450 
1969 216 213 2000 1320 1700 
1970 226 232 2001 1400 1950 
1971 231 255 2002 1500 2150 
1972 241 274 2003 1600 2300 
1973 269 328 2004 1790 2470 
1974 338 389 2005 2060 2790 
1975 429 434 2006 2340 3100 
1976 529 496 2007 2700 3640 

1977 672 598 2008 2970 3850 
 
 

Correlation between Minnesota and Wisconsin series: R-squared =  
0.9846 
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