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ECONOMETRIC METHODOLOGY II : STRENGTHENING 
TIME SERIES ANALYSIS 
 
R.F. Townsend1 
 
 
 
This article reviews some of the recent methodology developed for the analysis of time series 
data stressing that the statistical properties of the individual series need to be analysed to avoid 
spurious regressions. A convergence of econometric methodology is entertained with specific 
focus on cointegration and error correction models which allows the testing of long run 
relationships between variables and allows for a more dynamic structure than some of the 
previous models that appear in the literature. An example of this is the commonly used partial 
adjustment model in supply analysis which is nested in the less restrictive error correction 
model. Tests can be performed on the validity of these restrictions. These models have a wide 
application in agricultural economic analysis. 
 
EKONOMETRIESE METODOLOGIE II : VERSTERKING VAN TYDREEKS-
ANALISE 
 
Hierdie artikel verskaf 'n oorsig van resente metodologie wat ontwikkel is vir die ontleding van 
tydreeksdata. Die metodologie beklemtoon dat die statistiese eienskappe van individuele 
tydreekse eers ontleed moet word om valse regressies te verhoed. Die samevloeiing van 
ekonometriese metodologie word beskryf met spesifieke fokus op koïntegrasie en foutkorreksie- 
modelle. Hierdie modelle maak dit moontlik om langtermyn verhoudings tussen veranderlikes 
te toets en maak voorsiening vir 'n meer dinamiese struktuur as vorige modelle in die 
literatuur. 'n Voorbeeld hiervan is die algemeen gebruikte parsiële aanpassingsmodel in 
aanbodanalise wat in samehang met die minder beperkende foutkorreksiemodel gebruik word. 
Die geldigheid van hierdie beperkinge kan getoets word. Hierdie modelle het wye 
toepassingsmoontlikhede in landbou-ekonomiese analise. 
 
1. INTRODUCTION 
 
This article presents the second part of a two part series on econometric 
methodology. The first part appeared in the September 1997 issue of Agrekon. 
The focus of the earlier discussion was on alternative methodologies for 
analysing data and the role of theory and observation in each approach. The 
recent literature has seen a convergence of some of these methodologies. The 
Sim’s vector autoregressive approach and the Hendry approach (discussed in 
the preceding paper) have, to some extent, been united in the cointegration 
literature (see Engle and Granger, 1991). Since its introduction in the mid-
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1980s there has been a tremendous growth in both the theoretical aspects and 
the application of cointegration. Many econometricians have regarded this as 
the most important recent development in empirical modelling. A 
contributing factor to its widespread adoption is the simplicity of the concept 
and application. Despite these developments the appearance of this 
methodology in the South African economic literature, particularly in 
agricultural economics, remains minimal.  
 
This paper will attempt to discuss and clarify some aspects of this approach 
which needs to be taken into consideration when analysing time series data. 
Determining the statistical properties of data series will be examined in the 
next section focusing on the simple concepts of unit roots and  difference and 
trend stationarity. The concept of cointegration will then be discussed in 
section 3 which is followed by a derivation of the error correction model in 
section 4. Alternative tests for unit roots and cointegration will then be 
presented in section 5 and 6 respectively. Recent development in causality 
testing will be examined before the conclusion.  
 
2. STATIONARITY 
 
When using time-series data to derive estimates of the parameters in an 
equation it is necessary, prior to estimation, to determine the statistical 
properties of each series for the variables in the equation. Conventional 
asymptotic theory for least squares estimation assumes stationarity of the 
variables and if this is not the case then these individual series may need to be 
converted into a stationary process in order to derive meaningful (non-
spurious) results. 
 
An example of spurious relationship is shown in Table 1 where a regression of 
two ‘hypothetical’ trended (random walk) series, based upon independently 
generated series of random numbers, can produce significant results. Table 1 
presents the results of 100 regressions from randomly generated series. Fifty 
seven percent of the regressions produced significant relationships at the 1% 
level. These results have fairly profound implications. Regressing two unrelated 
series on one another has a high probability of being significant. Whilst 
demonstrating the point by empirical example it has been shown theoretically 
that application of ordinary least squares (OLS) to non-stationary series yields 
biased and inconsistent results. 
 
Most time-series data tend to exhibit a trend over time, as shown in Figure 1, 
and are thus non-stationary (the mean and variance of the series are not 
constant) in the levels. As shown, a regression of two unrelated trended
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Table 1: Frequency distribution of absolute t-statistic from 100 
regressions of unrelated random walks 

 
Significance level t-Statistic Number of cases (%) 

>10% 
10% 
5% 
1% 

t < 1.671 
1.671 < t < 2.009 
2.009 < t < 2.678 

t > 2.678 

26 
8 
9 
57 

 
variables may produce significant results with a high R2 value thus leading to 
‘nonsense’ (Yule, 1926) or ‘spurious’ regressions (Granger and Newbold, 1987). 
To identify the statistical properties of the individual time series a very simple 
data-generating process can be specified as 
 
 yt = pyt-1 + ut (1) 
 
The current values of y depend on the last period's value yt-1 plus a disturbance 
term, ut which includes other random influences. yt will be stationary if |ρ|<1, 
and if ρ=1 then yt will be non-stationary. Banerjee et al (1993) use alternative 
values of ρ to generate figures for 200 observations have
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a unit root and yt can be transformed into a stationary series by taking first 
differences, which is also shown in Figure 1, (y in first differences). The number 
of times a variable needs to be differenced in order to induce stationarity 
depends on the number of unit roots it contains. In this case, yt is referred to as a 
difference stationary process since it is stationary after differencing. If a series is 
differenced (d) times before it becomes stationary, then it contains d unit roots 
and is said to be integrated of order d, denoted I(d). 
 
yt in the levels is a non-stationary series,  yt in first differences (Δyt = yt - yt-1 + 
ut) is stationary. 
 
If the data-generating process contains a non-zero intercept, then equation (1) 
can be written as 

 Yt = b + ryt – 1 + ut  (1) 
 

if ρ=1, yt will follow a stochastic trend, that is, it will drift upwards or 
downwards depending on the sign of β, taking first differences of yt, Δyt = β + 
ut. 
 
Finally, consider the following data-generating process 
 
 Yt = α + βt + ut  (3) 
 
t is a deterministic trend and ut is stationary. yt is said to be trend stationary 
indicating that the data has a deterministic trend and that deviations from this 
trend are stationary as shown in Figure 2.   
 
3. COINTEGRATION 
 
In order to obtain meaningful results from a regression of two trended 
variables, cointegration needs to be established. The concept of cointegration 
states that if there exists a long-run relationship between variables, then 
deviations from the long-run equilibrium path should be bounded, and if this is 
the case then the variables are said to be cointegrated. In the short run variables 
may drift apart due to seasonal factors. However, in the long run economic 
forces such as the market mechanism or government intervention will bring 
them together again. 
 
Consider two time series yt and xt which are both integrated of the same order 
I(d). A static regression is run and tested to see if linear combinations of
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Figure 2: A trend stationary variable yt = βt + ut (in this case β=0.1). 
 
the variables are themselves integrated of the same order as the individual 
variables. 
 
 Yt = α + βxt + ut (4) 
 
In general, any linear combination of the two series will also be I(d); i.e. the 
residual ut, from regressing yt  on xt is I(d). If, however, the disturbance ut is of a 
lower order of integration I(d-b) where d>b>0, then Engle and Granger (1987) 
define yt and xt as cointegrated of order (d,b) (this can be expressed as CI(d,b)). 
Thus, if yt and xt were both I(1), and ut was I(0) then the two series would be 
cointegrated of order CI(1,1). 
 
In equation (4), β measures the long-run relationship between y and x, and u is 
the divergence from the equilibrium path. If there is a stable long-run 
relationship between yt and xt, then the divergence, ut, should be bounded 
which implies that ut should be a stationary process. The relevance of 
cointegration in a particular model will be discussed in the next section. 
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4. AUTOREGRESSIVE DISTRIBUTED LAGS, ERROR CORRECTION 
AND PARTIAL ADJUSTMENT 

 
Disequilibrium is inherent in many economic relationships due to the inability 
of economic agents to adjust to new information instantaneously. There are 
often substantial costs of adjustment, which result in the current value of the 
dependent variable y being determined not only by the current value of some 
explanatory variable, x, but also by past values of x. In addition, as y evolves 
through time in reaction to current and previous values of x, past values of itself 
will also enter the short-run model. Consider a very simple dynamic model 
 Yt = a0 + g0xt+ g1xt-1 + atyt-1 + ut (5) 
 
where ut is white noise (IN(0,σ2)). γ0 denotes the short-run response of yt to a 
change in xt . The long-run effect if the model were in equilibrium is 
 
 yt = a0 + b1xt (6) 
 
Thus, in the long run, the elasticity between y and x is β1=(γ0 + γ1)/(1-α1) (see 
appendix). This model requires that the variables are stationary and, as already 
noted, that for many time series this is not the case. A common approach taken 
is to model the variables in first differences. However, this looses information 
about the long-run relationships. To overcome this problem the levels terms can 
be reinstated in the differences specification to form the error correction model 
(ECM). Engle and Granger (1987) suggest that, if there is cointegration, then the 
error correction model is a valid representation  (Alogoskoufis & Smith, 1991, 
provide a critique on the ECM). 
 
The notion of 'error correction' was introduced by Davidson et al (1978) in the 
context of a consumption function. This was a way of capturing adjustments in 
a dependent variable which depended not on the level of the explanatory 
variable, but on the extent to which an explanatory variable deviated from an 
equilibrium relationship with the dependent variable. Equation (4) shows two 
variables in stable equilibrium, but in reality this may never be observed to 
hold. The discrepancy, yt - α - βxt, or ut, contains useful information since, on 
average, the system will move towards equilibrium. If yt-1 - α - βxt-1 represents 
the previous disequilibrium, then the discrepancy should be useful as an 
explanatory variable for the next direction in the movement of yt (Banerjee  et al 
1993). Thus, the error correction model incorporates this discrepancy as an 
explanatory variable.  
 
The ECM can be derived as a simple reparameterisation of equation (5) and can 
be represented as (see appendix  for derivation) 
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 Dyt = gt Dxt  - (1 – a1)[yt-1 – b0 – b1 x6-1] + ut (7) 

 
where β0 = α0/1-α1, β1 = (γ0 + γ1)/(1-α1). The ECM has several advantages over 
the autoregressive distributed lag model. It incorporates both short-run and 
long-run effects where γ0 captures the short-run effect on y of the changes in x, 
β1 accounts for the long-run equilibrium relationship between y and x. [yt-1 - β0 - 
βxt-1] is the divergence from the long-run equilibrium. Thus, at any time 
equilibrium holds the divergence will be equal to zero. (1-α1) measures the 
extent of correction of such errors by adjustment in y, (1-α1) is negative and less 
than one, meaning that the correction is back towards equilibrium. As all the 
variables in the ECM are stationary, standard regression techniques are valid. 
In order to derive the partial adjustment model from the ECM, γ0 in equation (7) 
needs to be constrained to zero (see appendix). This allows us to test the partial 
adjustment model over the ECM using a Wald test of zero restrictions on the 
difference terms. 
 
5. UNIT ROOT TESTS 
 
In order to determine whether a series is stationary or non-stationary tests for 
the presence of a unit root need to be performed. Some common tests for unit 
roots will be discussed here, namely the Dickey-Fuller test (DF) and the 
Augmented Dickey-Fuller test (ADF) proposed by Dickey-Fuller (1981) and the 
Cointegrating Durbin Watson test proposed by Sargan and Bharagava (1983). 
 
5.1 The Dickey-Fuller test 
 
The Dickey-Fuller (DF) and the Augmented Dickey-Fuller (ADF) test can be 
presented as  
 

 Δ Δt t-1
i=1

n

i t-i ty  =   +  t +  ( - 1) y  +  y e  +α β ρ λ∑  (8) 

 
Δyt is the first difference of y. α allows for a non-zero intercept or drift 
component. t is included to allow for a deterministic trend as yt may be trend-
stationary. The first three terms on the right-hand side of equation (8) show the 
Dickey-Fuller test format. The null hypothesis is that yt has a unit root (H0:ρ=1) 
against a stationary alternative (Ha:ρ<1). The advantage of expressing this 
regression as equation (8) is that this is equivalent to testing (ρ-1)=0 against ρ<0. 
The Dickey-Fuller test is appropriate for series generated by an AR(1) process. 
If, however, yt follows an AR(p) process where ρ>1, the error term will be 
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autocorrelated to compensate for the misspecification of the dynamic structure 
of yt. Autocorrelated errors will invalidate the use of the DF distributions which 
are based on the assumption that et is white noise. The Augmented Dickey-
Fuller includes additional difference terms on the right-hand side of the 
equation to account for this problem, n is large enough to make et white noise.   
 
As the underlying data-generating process is unknown, the general form 
shown in equation (8) is used to test for a unit root, deterministic trend and 
drift. However, having unnecessary nuisance parameters (constant and trend 
terms) will lower the power of the tests against stationary alternatives.  Perron 
(1988) put forward a sequential testing procedure shown in Table 2. A similar 
process is also discussed in Harris (1995). 
 
Tests (1), (2) and (3) test the individual variables in equation (8) for significance. 
Normal t-test critical values cannot be used as the critical values for these tests 
are non-standard and have been derived from Monte Carlo simulation. The null 
hypothesis for these tests are that the true value of the coefficient is zero, so a 
large t-ratio suggests a rejection of the null. (4) and (4a) are joint tests. (4) tests 
whether the series has a unit root (ρ-1)=0, no trend (β=0) and no drift (α=0). If 
this test is rejected a joint test (4a) as to whether the series has a unit root but no 
trend can be used. If the null of no trend has been accepted it can be removed 
from the equation and further tests for a unit root can be conducted. This 
provides test statistics for unit root tests with no nuisance parameters (non-
significant trend term). (5) and (6) are individual variable t-tests on the presence 
of a unit root and a drift respectively and (7) is a joint test of a unit root and 
drift. The source of the appropriate critical values is shown in the last column. 
Similarly, if the drift term is non-significantly different from zero it can be 
removed so there are no nuisance parameters in the test (8). 
 
Another common test is the Durbin-Watson test proposed by Sargan and 
Bargava (1983) (sometimes known as the integrating regression Durbin-
Watson). This requires the regression of a variable y on a constant c. 
 

 Yt = c +∈t (9) 
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Table 2: Testing procedure using the DF/ADF tests 
 

Step and model Null 
hypothesis 

Test statistic Critical values 

(1) Δyt = α1 + β1t + (ρ1-1)yt-1 + Σ λi Δyt-1 + ut (ρ1-1)=0 tτ Fuller (1976, p.373)  
(2) Δyt = α1 + β1t + (ρ1-1)yt-1 + Σ λi Δyt-1 + ut β=0 tβτ Dickey-Fuller (1981) Table III p.1062 
(3) Δyt = α1 + β1t + (ρ1-1)yt-1 + Σ λi Δyt-1 + ut α=0 tατ Dickey-Fuller (1981) Table II p.1062 
(4) Δyt = α1 + β1t + (ρ1-1)yt-1 + Σ λi Δyt-1 + ut (ρ1-1)=β1=α=0 Φ2 Dickey-Fuller (1981) Table V p.1063 
(4a) Δyt = α1 + β1t + (ρ1-1)yt-1 + Σ λi Δyt-1 + ut (ρ1-1)=β1=0 Φ3 Dickey-Fuller (1981) Table VI p.1063 
(5) Δyt = α2 + (ρ2-1)yt-1 + Σ λi Δyt-1 + ut (ρ2-1)=0 tμ Fuller (1976) 
(6) Δyt = α2 + (ρ2-1)yt-1 + Σ λi Δyt-1+ ut α2=0 taμ Dickey-Fuller (1981) Table I p.1062 
(7) Δyt = α2  + (ρ2-1)yt-1 + Σ λi Δyt-1 + ut (ρ2-1)=α2=0 Φ1 Dickey-Fuller (1981) Table IV p.1063 
(8) Δyt =(ρ3-1)yt-1 + Σλi Δyt-1 + ut (ρ3-1)=0 t Fuller (1976) 
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If y has a unit root then in equation (9) 
 
 ∈t = r∈t-1 + vt (10) 
 
r is equal to unity. v is normally distributed with zero mean and constant 
variance. The null hypothesis that ε has a unit root is tested against the 
alternative that it follows a first order Markov process with an absolute value of 
less than one. The conventional Durbin-Watson statistic is used, values 
significantly greater than zero lead to rejection of the null, the critical values are 
provided by Sargan and Bargava (1983). 
 
6. COINTEGRATION TESTS 
 
6.1 The single equation approach 
 
In the discussion on cointegration, if two time series yt and xt are integrated of 
order d, (I(d)), then if a linear combination of the two series is integrated of 
order less than the individual variables, they are cointegrated; i.e. if the 
disturbance term (ut= yt - α - βxt) is integrated of order, I (d-b) where b>0. To test 
the null hypothesis that yt and xt are not cointegrated in the Engle-Granger 
framework is to directly test whether the error term in the cointegrating 
regression is I(0) , i.e. stationary , or  I(1). The cointegration test for single 
equations are similar to the test for order of integration as discussed in the 
previous section. Using equation (8), the presence of a unit root in the error 
term can be determined, i.e. ut in the cointegrating regression in equation (4). 
Thus equation (8) can be rewritten as 
 

 Δ Δt t -1
i=1

n

i t -i tu  =   +  t +  ( - 1)u  +  u   +α β ρ λ ν∑  (11) 

 
The question of the inclusion of the trend or difference terms in the regression 
equation depends on whether a constant or trend appear in the cointegrating 
regression. On the basis of Monte Carlo experimentation, Hansen (1992) has 
shown that, irrespective of whether ut contains a deterministic trend or not, 
including a time-trend in the DF/ADF test will result in a loss of power leading 
to an under-rejecting of the null hypothesis of no cointegration when it is false. 
In this test it is not possible to use the standard DF tables of critical values. The 
reason for this is that OLS chooses the smallest sample variance, even if the 
variables are not cointegrated, making the error term as stationary as possible. 
The OLS estimation minimises the (sum of squares) deviations of ut from the 
OLS regression line obtained from yt= α + βxt + ut that is , OLS obtains β that 
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will minimise the variance. The standard DF distribution would tend to over-
reject the null. The distribution of the test statistic is also affected by the number 
of regressors (n) included in the cointegrating regression. Thus, different critical 
values are needed as n changes, as well as with sample size changes. 
MacKinnon (1991) provides a set of critical values for this based on response 
surfaces. 
 
Restricting any analysis of non-stationary time series to a single-equation 
framework also precludes identifying two or more cointegrating relationships. 
The OLS approach provides no guarantee that a unique cointegrating vector 
has been estimated. Moreover, the existence of a second relationship implies 
that the coefficients in equation (4) do not have a ready interpretation. In order 
to investigate this issue, a system approach must be conducted. Thus, the DF, 
ADF and CRDW tests have been superseded by the Johansen Maximum 
Likelihood estimation method (Johansen 1988, Johansen & Juselius 1990). 
 
6.2 Cointegration with multiple equations : The Johansen approach 
 
This approach allows the estimation of all the cointegrating relationships and 
constructs a range of statistical tests to test hypotheses about how many 
cointegrating vectors there are and how they work in the system. Johansen 
(1988) proposed a general framework for considering the possibility of multiple 
cointegrating vectors and this framework also allows questions of causality and 
general hypothesis tests to be carried out in a more satisfactory way. 
 
The procedure begins by defining a VAR of a set of variables X,  
 
 t 1 t-1 k t-k tX  =  X  +  ...+ X  +  e           t = 1,... , tπ π  (12) 
 
if there are four variables in the model then this becomes a four-dimensional k-
th order vector autoregression model with Guassian errors. Xt is a vector of all 
relevant variables and k is large enough to make the error term white noise. The 
length of the lag can be determined by the Akaike Information Criteria (AIC) or 
the Schwarz Criteria (SC) as mentioned in part one of this two part series. In 
this form the model is based on minimal behavioural assumptions on the 
economic phenomenon of interest. The VAR model can be reparameterised in 
error correction form as (Cuthbertson et al 1993) 
 

 
Δ ΓΔ Π

Γ Ι Ι Ι
Π Ι

x x x e T
where     

t i t i t k t
i

k

k
k

= + +∑ =
= + + + + + +
= − − − −

− −
=

−
, , . . . ,

[( ),( ),... ,( .. )]
...

1

1

1 1 2 1
1 2

1     t
   

                  
π π π π π

π π π
 (13) 
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xt is the vector of all relevant variables and I is the identity matrix. The 
procedure involves the identification of the rank of the matrix Π. The heart of 
the Johansen procedure is simply to decompose Π into two matrices α and β 
both which are Nxr such that  
 
 Π =  αβ '  (14) 
 

The rows of β may be defined as the r distinct cointegrating vectors, i.e. the 
cointegrating relationships between the non-stationary variables, and the rows 
of α show how these cointegrating vectors are loaded into each equation in the 
system. The loading matrix, therefore, effectively determines the causality in the 
system. Johansen (1988) gives a maximum likelihood estimation technique for 
estimating both matrices and he outlines suitable tests which allow us to test the 
number of distinct cointegrating vectors which exist, as well as to test 
hypothesis about the matrices. Testing  restrictions on β in equation (14) allows 
tests on parameter restrictions on the long-run properties of the data. By testing 
restrictions on the α-matrix the direction of causality within the model can be 
tested. Thus the Johansen approach allows the estimation of multiple 
cointegrating regressions and tests of parameter restrictions. The ability to 
conduct causality tests within this systems approach will be discussed in more 
detail. 
 

In previous studies of causality the common method used was the Granger 
causality test formalised by Granger (1969). This test was developed within an 
implicit framework of stationarity and as many of the variables are non-
stationary or integrated of order one (I(1)), a common approach was to perform 
the test in first differences. This test has since been widely used. However, there 
has been some uncertainty with respect to testing for Granger-causality in 
cointegrated systems. MacDonald & Kearney (1987) indicate that this model 
may be mis-specified by Granger (1969). More recently, Mosconi & Giannini 
(1992) and Hall & Wickens (1993) have developed estimation and testing 
procedures for causality within systems of integrated variables, which exhibit 
cointegration. Hall & Wickens (1993) use a more restrictive definition of 
causality than Mosconi & Giannini (1992), involving only the long-run 
conditions. They suggest that a sufficient, but not necessary condition for weak 
(long-run) causality is given by a simple restriction on the Johansen loading 
matrix, α in Π=αβ′. If the α matrix has a complete column of zeros then no 
cointegrating vector will appear in a particular block of the model, thus 
indicating no causal relationship. Expanding out equation (13) for a two 
variable case gives 



Agrekon, Vol 37, No 1 (March 1998)  Townsend 
 
 

 95

 [ ] [ ] [ ] [ ] [ ] [ ] [ ]Δ
Δ

Δ
Δ

x
x

x
x

x
x

e
e

i

i

t i

t i

t

t
t

t

1

2

1

2

1

2

11

21

12

22

11

21

12

22

1 1

2 1
1

2
    = + +−

−

−

−

γ
γ

α
α

α
α

β
β

β
β. .  (15) 

 
If α11≠0, α12≠0 and α21=α22=0 the causality runs from x2 to x1 and there is no 
feedback to x2. Bi-directional causality requires α11≠0,α12≠0, α21≠0, α22≠0 and no 
causal relationship requires α11=α12=α21=α22=0. The restrictions are validated by 
direct Wald tests on the loading parameters (Hall and Milne 1994, Caporale & 
Pittis, 1995). 
 
This brief description shows that the Johansen approach provides a more 
flexible system for determining long run relationships and allows explicit tests 
on the long parameters of the model. This approach contains characteristics of 
both the flexible structure of the Sims approach and rigorous testing of the 
Hendry approach to provide a practical method for time series analysis.  
 
7. CONCLUSION 
 
The purpose of this paper was to give a brief introduction to cointegration and 
error correction models as there has been a noticeable absence of these time 
series considerations in the South African agricultural economics literature. In 
order to develop the credibility of results and avoid the possibility of spurious 
regressions (estimating a significant relationship when in fact non is present) 
cointegration can be used.  
 
Indeed, recent literature has shown a trend towards a convergent 
methodology combining the Hendry and Sims approach. The main focus has 
been on cointegration in time series analysis which is used to test equations 
for spurious regressions. When analysing time series data consideration must 
be given to the statistical properties of the individual series analysed, 
cointegration allows testing of long run relationships between variables and 
error correction models have proved useful by allowing a more dynamic 
structure than some of the previous models. This allows a more rigorous 
approach at testing and estimating relationships between variables.  
 
Policy advice based on results from econometric modelling which doesn’t 
recognise or take account of these considerations could be misleading. The 
results from such models at best ignore important information about the 
underlying (statistical and economic) processes generating the data, and at 
worst leads to nonsensical (or spurious) results. Thus, when analysing time 
series data it is a responsibility of the applied researcher to test for the 
properties of these data and if unit roots are present (and evidence suggests 
that they generally are) to use the appropriate modelling procedures. 
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APPENDIX 
 

Deriving the ECM from the ADL shown in equation (5) 
 
 t 0 0 t 1 t - 1 1 t - 1 ty  =   +  x  +  x  +  y  +  uα γ γ α  (16) 
 
Subtracting yt from both sides 
 
 t t - 1 0 0 t 1 t - 1 t - 1 1 t - 1 ty  -  y  =   +  x  +  x  -  y  +  y  +  uα γ γ α  (17) 
 
combining the yt-1 terms 
 
 Δ t 0 0 t 1 t - 1 1 t - 1 t - 1y  =   +  x  +  x  -  (1 -  ) y  +  uα γ γ α  (18) 
 
Subtracting γ0xt-1 from both sides  
 
 Δ t 0 t - 1 0 0 t 0 t - 1 1 t - 1 1 t - 1 ty  -  x  =   +  x -  x  +  x  -  (1 -  ) y  +  uγ α γ γ γ α  (19) 
 
Factorising by γ0 and the taking γ0xt-1 to the right-hand side 
 
 Δ Δt 0 0 t 0 1 t - 1 1 t - 1 ty  =   +  x  +  (  +  )x  -  (1 -  ) y  +  uα γ γ γ α  (20) 
 
Rearranging 
 
 Δ Δt 0 t 0 1 t -1 0 1 t -1 ty  =  x  +   -  (1 -  ) y  +  (  +  ) x  +  uγ α α γ γ  (21) 
 
The error correction form shown in equation (7) 
 
 Δ Δt 0 t 1 t -1 0 1 t -1 ty  =   x  -  (1 -  )[ y  -   -  x ] +  uγ α β β  (22) 
 
where β0 = α0/1-α1, β1 = (γ0 + γ1)/(1-α1). 
 
Deriving the partial adjustment model 
 
Constraining the difference terms on the right-hand side of the ECM in 
equation (21) to zero in yields 
 
 t t -1 0 1 t -1 0 1 t -1 ty  -  y  =   -  (1 -  ) y  +  (  +  ) x  +  uα α γ γ  (23) 
 
Add yt-1 to both sides and expanding out 
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 t 0 t - 1 t - 1 1 t - 1 0 1 t - 1 ty  =   +  y  -  y  +  y  +  (  +  )x  +  uα α γ γ  (24) 
 
This gives 
 
 t 0 1 t - 1 0 1 t - 1 ty  =   +  y  +  (  +  )x  +  uα α γ γ  (25) 
 
If α1=1-δ and (γ0+γ1)=δβ then equation (25) can be rewritten in the more 
common partial adjustment notation as 
 
 y y x ut t t t= + − + +− −α δ δβ0 1 11( )  (26) 
 
where β=(γ0+γ1)/(1-α1). 


