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Abstract 

 
 

The modeling of price risk in the theory and practice of commodity risk management 

has been developed far beyond that of crop yield risk. This is in large part due to the use of 

plausible stochastic price processes. We use the Pólya urn to identify and develop a model of 

the crop yield expectation stochastic process over a growing season. The process allows a role 

for agronomic events, such as growing degree days. The model is internally consistent in 

adhering to the martingale property. The limiting distribution is the beta, commonly used in 

yield modeling. By applying binomial tree analysis, we show how to use the framework to study 

hedging decisions and crop valuation. 

 

Keywords: crop insurance, growing degree days, martingale, Pólya urn, stochastic process. 
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Introduction 

Those in the business of modeling financial prices have much in common with those seeking to 

model crop yield distributions. Among common features, we focus on what is arguably the most 

important. This is identifying a form that is both easy to work with and largely consistent with 

available evidence. Few believe that the lognormal distribution provides a very close 

representation of asset price processes, hence the body of work on volatility smiles, alternative 

stochastic processes, and related topics (Hull, 2009). Thick tail and other concerns continue to 

motivate careful work on more correctly characterizing price stochastic processes (Gabaix et al., 

2003; Gabaix, 2009). Crop yield distribution choice is also a matter of much debate (Just and 

Weninger, 1999; Atwood, Shaik, and Watts, 2003; Norwood, Roberts, and Lusk, 2004; Ramírez 

and McDonald, 2006; Hennessy, 2009; Harri et al., 2009).  

Notwithstanding the aforementioned concerns about asset price models, the approach and 

findings in that research field have proven to be extraordinarily useful for risk managers when 

pricing derivatives, making investment decisions, and hedging the consequences of those 

decisions. This success is due primarily to the insights and mechanical approaches enabled by 

working with a specific stochastic price process, even if the process is not quite right. Managers 

will develop rules of thumb to ‘fix’ perceived problems, as has been the case with Black-Scholes 

and related models.  

One intention of the present article is to develop a plausible expected yield stochastic 

process as a crop matures between planting and harvest. The other intention is to demonstrate 

the model’s potential utility. When doing so one should be mindful of some consistency and 

other properties that are desirable, if not essential, for the process to possess. We will require 

that the process supports a yield distribution with bounded (non-infinite) positive realizations. 
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And we will require internal consistency in the sense of the martingale property.1 Let crop 

prospects be assessed at several points, say, daily, during the growing season. By martingale 

property we mean that the present time point expectation of tomorrow’s expectation of harvest 

yield should equal the present time expectation of harvest yield.  

Another desirable property, at least as far as we are concerned, is that when expected yield is 

extreme (high or low) then today’s belief about the variability of tomorrow’s expected yield 

should be very low. In other words, when comparing a crop that looks like toast with one that 

has moderate prospects, then the expectation for the poor-looking crop should be the more 

resilient to new information. And the same should be true for a promising crop when compared 

with one having moderate prospects. The crop with the more benign history should have the 

resources available, either stored internally or in the soil it has access to, to overcome a 

temporary weather setback (Bloom, Chapin, and Mooney, 1985).  

One further desirable property is that expectations should harden as harvest approaches in 

the sense that the variance of next-period expectations should decline as harvest nears. This is 

especially so when early conditions have been extreme, be they good or bad. In late August there 

remains little opportunity for a string of good weather days to bail out a crop that has been dealt 

bad weather events earlier on. Similarly, if good early-season weather has accelerated maturity 

then the crop may well be harvested early and so is not vulnerable to unseasonably cool days 

near the normal harvest date. 

The expected yield stochastic process we develop is based on the Pólya and Eggenberger 

Urn model (Mahmoud, 2009). Variants on the model have had diverse applications, including 

the study of genetic mutations and characterizing the transmission of sexual disease. The model 

                                                 
1 See Chapter 4 in Durrett (1996) for extensive detail on martingales. 
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we will use supports a stochastic process that converges to the beta distribution (p. 53 in 

Mahmoud). The beta is a popular stochastic yield model. It was first used by Nelson and Preckel 

(1989) and has been widely adopted since then (Borges and Thurman, 1994; Babcock and 

Hennessy, 1996; Goodwin, 2009).  

Others have studied intra-season crop dynamics. Antle (1983), Antle and Hatchett (1986), 

Antle, Capalbo and Crissman (1994), and Saphores (2000) have appropriately modeled 

production decisions within a growing year. They have sought to accommodate use of 

information that becomes available within the crop year, for example, on intensity of the pest 

population. Although our model might be adapted to include production decisions, our present 

concern does not lie with how information and production interact. It lies with establishing an 

acceptable characterization of how expected yield evolves over the growing season.  

An alternative approach to doing so, as in Marcus and Modest (1984), posits that expected 

yield follows geometric Brownian motion over the growing season. This approach is convenient 

in that it allows for use of the Black and Scholes machinery for valuation, and so expected value 

maximizing production choices. Unfortunately, the lognormal distribution must have positive 

skewness while it also has a heavy right tail. Neither property is associated with received 

knowledge on yield distributions, especially in the prime crop-growing regions of the United 

States (Harri et al., 2009).  

After presenting and explaining the model, we will demonstrate some of its properties. We 

will show how the model can be viewed as a binomial tree. When weather is assumed to be the 

origin of uncertainty, binomial tree analysis allows for dynamic hedging against a weather 

derivative contract. We follow this route, allowing for deliberations on crop valuation and 
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hedging yield risk. The paper concludes with some observations on extensions and other uses of 

the methodology. 

 

Pólya’s Urn 

We model the growing year as having 1T +  periods at which new information becomes 

available. These periods commence at time 0t = , the planting date, and continue through to 

t T= , the harvest date. We are interested in yield expectations at each time point Tt∈Ω ≡  

{0,1, ... , }T . With TY  as actual harvest yield, let tΩ  be the information set available at time t . 

Expected harvest yield given information available at that time is written as [ | ]t T tYμ = ΩE . 

Without loss of generality, we assume that the yield distribution has support only on the interval 

[0,1] . With Ty  as true yield, appropriate choices of a  and b  for linear location-and-scale 

transformation ( ) /T TY y a b= −  will ensure that [0,1]TY ∈ .  

We also assume that the expectation has logistic form, a specification that is widely used to 

model plant production processes (Carrasco-Tauber and Moffitt, 1992; Tschirhart, 2000). 

Specifically, let  

(1) 0
( ) ;

( ) ( )
g x

f x g x
μ =

+
 

where 1( , ... , )Nx x x=  is a vector of input choices defined on the positive reals while ( )f x  and 

( )g x  are functions from the positive reals to the positive reals. Notice at this point that these 

functions are defined only up to a scalar constant, i.e., if ( )f x  and ( )g x  work then so also do 

( )f xλ  and ( )g xλ  for any scalar λ .  

As distinct from Antle (1983), we assume that production choices are made only at planting 
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time, 0t = . Writing ( ) ( ) / ( )r x g x f x= , the production function is increasing in each input 

choice ix  if and only if ( ) / 0idr x dx ≥  while it is concave in any given argument whenever 

2 2( ) / 0id r x dx ≤ . Writing the optimal input choices *x x=  as given, we abbreviate * *( )f f x=  

and * *( )g g x= . 

The model is one of information-conditioned updating of yield expectations as relevant 

events and the yield consequences are processed. At 1t = , new information arrives and expected 

yield evolves as follows (p. 241 in Durrett, 1996; p. 53 in Mahmoud, 2009):  

(2) 

*

1 0* *

1 *

1 0* *

with probability ;

with probability 1 ;

g c
f g c

g
f g c

μ μ
μ

μ μ

+

−

⎧ +
≡⎪ + +⎪= ⎨

⎪ ≡ −⎪ + +⎩

 

for 0c > . Here 0c >  recognizes good weather over the first growing period. It might be viewed 

as the benefit from good weather.  

Iterate the algorithm in (2) over 2t =  and further to identify the general expression  

(3) 

* *
1

1* *

1
1* *

* *
* *

( , , , ) with probability ;
1 ( , , , )

with probability 1 ;
1 ( , , , )

( , , , ) .
( 1)

t
t t

t
t

t t

m f g t c
m f g t c

m f g t c
cm f g t c

f g t c

μμ μ
μ

μμ μ

+ −
−

− −
−

⎧ +
≡⎪ +⎪= ⎨

⎪ ≡ −
⎪ +⎩

=
+ + −

 

This is the expected yield stochastic process that we posit over Tt∈Ω . Notice that 11 t tμ μ+
−> >  

0tμ
−> > . Also, the fact that the favorable and unfavorable outcomes depend on the prior 

probability, 1tμ − , is necessary to ensure that the process has bounded support. Bounded support 

is an appropriate assumption for crop yield distributions. By contrast the stochastic processes 
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most commonly encountered in economics, Brownian motion and geometric Brownian motion, 

do not even have bounded unconditional variance.2  

The change in the random variable’s value is state dependent, also unlike the stochastic 

processes most commonly encountered in economics. We believe state dependence to be 

reasonable because the change in expected yield should depend on events over the whole 

growing season. For example, rainfall early in the season provides a buffer against drought later 

on. Perhaps surprisingly, the process for tμ  possesses the Markov property. This requires that 

the distribution of tμ  given time 1t −  information can be conditioned on 1tμ −  alone among 

historical process realizations 0 1 1{ , , ... , }tμ μ μ − .3 Viewing (3), the Markov property applies in an 

inhomogeneous manner because the distribution of tμ  at time 1t −  depends on the value of 

1t −  as well as on the value of 1tμ − . The martingale property also applies. 

 

Martingale Property 

Notice from (2) that  

(4) [ ]1 0 1 0 1 0 1 0 0[ | ] [ | ] | (1 ) .TYμ μ μ μ μ μ+ −Ω = Ω Ω = + − =E E E  

In general form, (3) allows us to establish that  

(5) [ ]1 1 1 1 1[ | ] [ | ] | (1 ) .t t T t t t t t t tYμ μ μ μ μ μ+ −
− − − − −Ω = Ω Ω = + − =E E E  

                                                 
2 The Ornstein-Uhlenbeck process and related mean-reverting processes are commonly used to 
draw commodity prices back from implausibly extreme values (p. 751 in Hull, 2009). These 
processes do not have bounded support, and this may be appropriate to account for commodity 
price spike events. But they generally do have finite unconditional variance, which is appealing 
in the commodity context. 
3 On the Markov property see pp. 109-117, and especially pp. 116-117, in Bhattacharya and 
Waymire (1990) or Chapter 5 in Durrett (1996). 
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Thus, tμ  satisfies the martingale property that the time t i−  expected value of the time t  

expectation of yield equals the time t i−  expectation of yield for all {0,1, ... , }i t∈ . 

 

Binomial Tree Attribute 

It is useful to express the value of tμ  two steps back where we consider 2μ  to illustrate. 

Viewing the distribution of 2μ  in (3), substitute for 1μ  to confirm 

(6) 

* * *

* * * * * *

* * *

2 * * * * * *

* * *

* * * * * *

( )with probability ;
2 ( )( )

2with probability ;
2 ( )( )

2 ( )with probability .
2 ( )( )

g f f c
f g c f g c f g

g c f g
f g c f g c f g

g c g c g
f g c f g c f g

μ

⎧ +
⎪ + + + + +⎪
⎪ +

= ⎨ + + + + +⎪
⎪ + +
⎪

+ + + + +⎩

 

The distribution can be viewed as a two-period binomial tree, as used in derivative analysis 

(Hull, 2009). Figure 1 depicts this tree, where outcomes are right-most and probabilities over 

each of the two time intervals are given under the appropriate arrow. In general, if we let the 

process proceed T  steps then there are 1T +  distinct outcomes and all are in the interval [0,1] . 

In general, the realizations are given by * * * * *( , , , , ) ( ) / ( )n f g t i c g ic f g tc= + + +  on i∈ 

{0,1, ... , }t . The values are evenly spaced where the least value decreases and the greatest value 

increases as time t  increases. The associated probabilities are more involved in that they are 

products of terms such as * *( , , 1, , )n f g t i c−  and its complement * *1 ( , , 1, , )n f g t i c− − . 

Due to the Markov property, the good-then-bad weather outcome in (6) is the same as the 

bad-then-good outcome. This exchangeability attribute (p. 116 in Bhattacharya and Waymire, 

1990) might be challenged on agronomic grounds, but it does simplify the stochastic structure. 
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The property could be relaxed but at loss of tractability.4 We are interested in the binomial tree 

construction so as to be able to look at dynamic hedging possibilities, and also to bring some 

applied and theoretical machinery from price risk modeling to bear on yield risk analysis. 

 

Variance Attributes 

Using (3) we intend to calculate the variance of yield expectations conditional on information 

available at the preceding time point. Write 2
1 1 1( ) [( ) | ]t t t t tV μ μ μ− − −= − ΩE  so that  

(7) 
2

1 1
1 * * 2

(1 )( ) ,
( )

t t
t t

cV
f g tc

μ μμ − −
−

−
=

+ +
 

where calculations are provided in the appendix. This equation shows that variance is 

maximized when predicted yield is at the midpoint of the support, 1 0.5tμ − = . It is minimized at 

support extremes, 1 {0,1}tμ − ∈ . For example, if the growing season started off badly then 

expected yield is unlikely to move dramatically upward in light of one period’s good weather. 

And if the growing season started well then one period’s bad weather is unlikely to move 

expected yield markedly downward either. These observations we refer to as resilience, or to 

quote Aristotle, “One swallow does not make a summer, neither does one fine day;   …   .” 

The sensitivity of 1( )t tV μ−  with respect to time is involved. Time t  appears in the 

denominator of expression (7) and we refer to this occurrence as the deterministic effect. Time 

also appears as a subscript on 1tμ −  and we refer to this as the stochastic effect. The deterministic 

effect acts to decrease step-ahead conditional variance as time passes. We refer to this effect as 

                                                 
4 As a practical matter when hedging or assessing value, the process could be modified such that 
exchangeability does not apply. This is often the case when modeling financial prices with 
binomial trees, perhaps in order to account for dividends. It is just a matter of introducing an 
additional line in programming code, where the assumed distribution can be established through 
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hardening of the step-ahead conditional variance near harvest. The stochastic effect of time is 

less clear-cut in its consequence. If time takes the process toward 0 or 1 then variance will 

decline due to resilience. If time takes the process toward the middle then variance will increase, 

as the expected marginal benefit of beneficial weather is large under those circumstances.  

 

Marginal Weather Effects  

One further comment on (2)-(3) is that the spread in expectations due to good weather is 

increasing and concave in c . To see this, differentiate the difference in branch outcomes: 

(8) 
2

* * 2

( ) ( ); 0; 0.t t t t
t t

c d d
f g tc dc dc

μ μ μ μμ μ
+ − + −

+ − − −
− = > <

+ +
 

This conveys that good weather is indeed good news but there are diminishing returns to good 

weather. Notice too that ( ) / 0t td dtμ μ+ −− < , i.e., the spread in realizations decreases as time 

passes. Also, the probability attached to the upper outcome increases with the value of c  so that 

the benefits from good weather are two-fold under this stochastic process. 

 

Beta Limiting Distribution 

For price analysis with binomial trees, constant proportional up and down movements allow the 

tree to approximate the lognormal distribution as step size decreases and the number of steps 

increase such that variance is held fixed. What happens to the discrete distribution in (3) under 

this limit operation? Pólya (1931) demonstrated that a limiting distribution for TY  exists, and it 

has density5  

                                                                                                                                                            
Monte Carlo simulations.  
5 See p. 53 in Mahmoud (2009) for a proof in English. 
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(9) 
( )

( ) ( ) ( )
*** *

11

* *

( ) /
1 ,

/ /

fg
cc

T T

f g c
Y Y

f c g c
−−Γ +

−
Γ Γ

 

where ( )Γ ⋅  is the Gamma distribution. This means that as the number of time periods to harvest, 

T , increases, the realizations and associated probabilities for the discrete distribution given in 

(3) converge on the beta distribution.  

Using standard formulae for beta distribution moments, the planting time information-

conditioned mean and variance of this limiting distribution are (Bain and Engelhardt, 1992) 

(10) 

* *

0 0 * * * *

* *
2

0 0 0 * * * * 2

( / )[ | ] ;
( / ) ( / )

( ) [( ) | ] .
( )( )

T

T T

g c gY
f c g c f g

cf gV Y Y
f g c f g

μ

μ

= Ω = =
+ +

= − Ω =
+ + +

E

E
 

The distribution mean is independent of weather outcome parameter c  but distribution variance 

is not. Of course, the martingale property requires that (1) and (10) be consistent. 

Not surprisingly, variance increases with parameter c . Indeed, variance is zero under 0c =  

while 0 0 0lim ( ) (1 )c TV Y μ μ→∞ = − . The limiting distribution under c →∞  is the binomial, a 

special case of the beta. One set of sufficient statistics for the two-moment distribution given in 

(9) is * *{ / , / }f c g c  and this is the set usually associated with the standardized beta distribution. 

Another set of sufficient statistics is * * *{ / ( ), }g f g c+  where * * */ ( )g f g+  is yield mean and c  

characterizes distribution variability.  

 

Derivative Analysis 

Weather derivatives have become popular offerings on formally organized exchanges where 

cooling and heating degree days are generally the most liquid contracts (Morrison, 2009). 

Implications for crop insurance have been explored in, e.g., Vedenov and Barnett (2004), 



11 

Woodard and Garcia (2008), and Xu, Odening, and Musshoff (2008). Both the stochastic 

process described by (3) and the limiting distribution given in (9) identify crop yield to be 

dependent on stochastic weather realizations, as represented by the presence of c  in (6). 

In what follows we assume a one-period process where yield is realized at 1t = . This is at 

no loss of generality because we seek to identify the optimal dynamic hedge at each node along 

the tree.6 An Arrow-Debreu financial instrument can be purchased at time 0  for $ q  where the 

payoff at time 1t =  is $1 in the event of good weather at 1t = . So the payoff is  

(11) 
1 if good weather in period 1;
0 if bad weather in period 1.

U ⎧
= ⎨
⎩

 

The crop price is assumed to be known as P  at 0t = . Applying the standard modeling approach 

for hedging a derivative that can be represented as a binomial tree, assume the hedger takes a 

time 0t =  long position in h  weather derivative instruments.7  

From (3), the time 1 state-contingent payoffs are 

(12) 

* *

* * * *

1 * *

* * * *

( ) with probability ;

with probability .

P g c gh
f g c f g

P hU
Pg f

f g c f g

μ

⎧ +
+⎪ + + +⎪+ = ⎨

⎪
⎪ + + +⎩

 

Set derivative position #h h=  such that payoffs are equal across weather states, i.e., #h =  

* */ ( )Pc f g c− + +  where it is interesting that #h  bears a logistic relation with c . Insert #h h=  

back into (12) to ascertain a time 1t =  risk-free portfolio value of * * */ ( )Pg f g c+ + .  

For continuous time interest rate r , the time 0t =  present value of the payout is 

* * */ ( )rPg e f g c− + + . With time 0t =  value of this crop defined as 0W , it follows that the 0t =  

                                                 
6 It is just necessary to calculate the hedge ratio at each node, and implement it. 
7 On binomial trees, we refer the reader to Chapter 11 in Hull (2009). 



12 

portfolio value is # * * *
0 / ( )rW h q Pg e f g c−+ = + +  so that  

(13) 
*

0 * *

( ) .
rP g e cqW

f g c

− +
=

+ +
 

This is a risk-neutral price for the crop. It can be achieved if the standard assumptions on 

transactions costs and market completeness apply.  

Several comments are in order regarding eqn. (13). One is that if 0c = , so that 0( ) 0TV Y =  

by (10), then * * *
0 0/ ( )r rW Pg e f g P eμ− −= + = . This is the discounted expected crop value, as 

should be the case because yield is known with certainty at the beginning of the growing season 

while price is also assumed to be known. In that case, # 0h =  and good weather state price q  

does not enter the valuation because hedging serves no purpose. No model on how risk is priced 

is required when 0c = . In general, though, a stance on pricing risk is required. 

One approach to valuation is to work with the risk-neutral measure (Hull, 2009) if it exists, 

is unique, and can be found. In our case the risk-neutral measure is easy to obtain. If π  is the 

risk-neutral probability of favorable weather, according to the risk-neutral valuation approach 

then (2) and (13) provide  

(14) 
* * * *

0 * * * * * * * *

( ) ( ) ( )(1 ) .
r r

rP g e cq g c g Pe g cW Pe
f g c f g c f g c f g c

ππ π
− −

− ⎡ ⎤+ + +
= = + − =⎢ ⎥+ + + + + + + +⎣ ⎦

 

Upon cancellation, it follows that rqeπ = . Thus the risk-neutral, as distinct from true, 

probability of a favorable weather event over the period is taken as the forward discounted 

market valuation of an Arrow-Debreu derivative that pays off $1 upon the event. Of course, risk 

preferences are not absent in the above; it is just that they have been corralled into a premium 

embedded in price q . 

This brings us to formally modeling the good weather state price $ q  where the payoff is $1 
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in the event of good weather for time 1. Let the good weather state bear a Capital Asset Pricing 

Model (CAPM) beta coefficient of qβ  with the good weather state. Rate mr  is the overall 

market rate of return, where mr r>  is assumed. Then the continuous time equilibrium expected 

rate of return on the binary payout good weather event asset will be ( )q q mr r r rβ= + − . 

Since the expected payout is 0μ , the state price will be 0 exp[ ( )]q mq r r rμ β= − − − . Insert 

this value together with * * *
0 / ( )g f gμ = +  into (13) to obtain  

(15) 
( )* *

0 0 * *

[ ] ,
q mr r

r f g ceW P e
f g c

β

μ
− −

− + +
=

+ +
 

whereas the crop value under risk neutrality is 0
rP eμ − . The risk premium is  

(16) 
( )

0 0 0 * *

[1 ] .
q mr r

r r eP e W P e c
f g c

β

μ μ
− −

− − −
− =

+ +
 

If good crop growing weather is positively correlated with overall market returns, or 0qβ > , 

then ( )1 q mr re β− −>  and early season crop value under CAPM is smaller than the expected payout. 

 

Conclusion 

This paper has provided a way to model expected yield as an information-conditioned stochastic 

process over the course of a crop growing season. The process has as its limiting distribution a 

commonly estimated stochastic crop production technology. The intent is to provide for yield 

randomness a technical machinery similar to that which is available for commodity price 

randomness. In the presence of appropriate financial instruments such as weather derivatives, 

the process allows for the identification of optimal dynamic hedging strategies. In the absence of 

such instruments, then risk managers exposed to yield risk can at least use the framework to 
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sharpen their real-time risk assessments and make loss provisions accordingly.  

Concerning further developments, an approach to account for price-yield correlation should 

be of interest to those exposed to crop revenue risk. This would include the providers of revenue 

insurance contracts. Methods are available to modeling bivariate discrete time stochastic 

processes for financial purposes, as in Boyle (1988) and Ho, Stapleton, and Subrahmanyam 

(1995). So far as we know, the methods have been confined to approximating multivariate 

geometric Brownian motion and so are not appropriate for the revenue insurance context. 
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Figure 1. Binomial tree for yield stochastic process,
probabilities under arrows
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