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Abstract

We explain the spatial concentration of economic activity, in a model of eco-

nomic geography, when the cost of environmental policy - which is increasing in the

concentration of emissions - and an immobile production factor act as centrifugal

forces, while positive knowledge spillovers and iceberg transportation costs act as

centripetal forces. We study the agglomeration e�ects caused by trade-o�s between

centripetal and centrifugal forces. The above e�ects govern �rms' location decisions

and as a result, they de�ne the distribution of economic activity across space. We

derive the rational expectations equilibrium and the social optimum, compare the

outcomes and characterize the optimal spatial policies.
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1 Introduction

The distribution of population and activity across the landscape is undoubtedly un-

even. Metropolitan areas - large population centers - play a major role in economic

activity. Most OECD metropolitan areas have a higher GDP per capita than their na-

tional average, a higher labor productivity level and many of them tend to have faster

growth rates than their countries as a whole. For example, Île-de-France is the most

populated region of France - it accounts for 2.2% of the area of the country and 18.1%

of its population. Economically, Île-de-France is one of the richest regions in the world

and produces 33% of the GDP of France.1 Moreover, more than 30% of national GDP in

the United Kingdom, Sweden and Japan is accounted for by London (31.6%), Stockholm

(31.5%) and Tokyo (30.4%) respectively.

The concept \metropolitan area" is based on the concept of a business or labor market

area and is typically de�ned as an employment core (an area with a high density of

available jobs) and the surrounding areas that have strong commuting ties to the core.

Tokyo, Seoul, Mexico City, New Delhi and New York City are some examples of the largest

metropolitan areas in the world, which include a large number of industries.2 This process

of clustering of economic activity in space is studied by agglomeration economics.

Agglomeration, once created, is sustained as a result of circular logic. For example, a

shop is more likely to locate in a shopping street than in the centre of a residential area

with no shops around. The same happens with specialized economic regions, like Silicon

Valley. Silicon Valley is so famous for its development as a high-tech economic center

and its large number of innovators and manufacturers, that the term is now generally

used as a metonym for the high-tech sector. In Europe, large corporations and service

or research centers, such as IBM, General Motors Europe, Toyota Europe, Google and

Microsoft are moving to Zurich, which is a leading �nancial centre.

Despite their particular importance and interest, the spatial decisions of �rms and

economic agents haven't attracted a lot of attention from mainstream economics until

1Its total GDP was e533:5 billion in 2007 with per capita GDP of e45; 982 the same year.
http://www.insee.fr/fr/ppp/bases-de-donnees/donnees-detaillees/cnat-region/pib reg.xls

2For a review of metropolitan areas, see OECD (2006).
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recently. Some exceptions are earlier works that belong to the �eld of urban economics

and have some kind of spatial structure.3 Those works are very well analysed in the

monograph, \The Spatial Economy", by Fujita, Krugman and Venables (1999).

In the 1990's, space started attracting the interest of economists again. According to

Krugman (1998), the reason for this renewed interest was the fact that it is now possible

to model imperfect competition and concepts like unexhausted scale economies are no

longer intractable. The result was the emergence of New Economic Geography (NEG),

which represents a new branch of spatial economics. The purpose of NEG is to explain

the formation of a large variety of economic agglomerations in geographical space.

Economic models of agglomeration are based on centripetal forces that promote the

concentration of economic activity and centrifugal forces that oppose it, studying the

trade-o�s between various forms of increasing returns and di�erent types of mobility

costs.4 Moreover, some recent studies have included knowledge externalities - as agglom-

eration forces - in a spatial context.5 These kinds of models have three forces that de�ne

the equilibrium allocation of business and residential areas: transportation costs and

production externalities, that both pull economic activities together, and immobility of

factors that pushes them apart.

Another characteristic of the models we have already referred to is the assumption that

the spatial area under study is homogeneous. Contrary to this fact, economic activities

are spatially concentrated because of dissimilarities in natural features, such as rivers,

harbors or even exhaustible resources that are available in certain points in space. This

\�rst nature" advantage hasn't been studied in depth yet. An exception is Fujita and

Mori's (1996) paper that explained the role of ports in the formation of cities, using an

increasing returns model. This assumption of nonuniformity in geographical space will

be introduced in our model too.

Furthermore, cities are important generators of wealth, employment and productivity

growth. The growing economic importance of places with high concentration of economic

3For example, von Th�unen (1826), Alonso (1964), and Henderson (1974).
4Some examples are Krugman (1991, 1993a, 1993b), Fugita, Krugman and Mori (1999). For a detailed

discussion on forces that a�ect geographical concentration see Krugman (1998).
5See Lucas (2001), Lucas and Rossi-Hansberg (2002), Rossi-Hansberg (2005).
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activity, such as metropolitan areas, raises important policy issues. More precisely, these

economic activities are not only associated with positive externalities, but also with cer-

tain negative externalities, such as congestion, pollution or high crime rates. Considering

these issues, we try to model the problem of pollution and explain the spatial patterns

of economic activity under environmental policy.6

According to Rauscher (2008), if pollution is taken into account, two spatial patterns

are formed. In the �rst case, consumers trying to avoid pollution leave agglomerations,

but the industry follows them in order to locate where consumption is. On the other hand,

if environmental damage is large, consumers and the industry agglomerate in di�erent

locations. In that case, the high concentration of pollution promotes dispersion. An

example of this dispersion is nuclear power stations, which locate in regions with low

concentration of economic activity and population. As far as policy issues are concerned,

there is a lot of research on how environmental regulation a�ects the location decisions of

�rms. Henderson (1996) shows that air quality regulation a�ects industrial location. A

greater regulatory e�ort, leading to air quality improvement, results in the spreading out

or the exiting of polluting industries. Greenstone (2002), using data from the Clean Air

Act in the US, �nds that environmental regulation restricts industrial activity. According

to another recent study (Elbers and Withagen, 2004), pollution and environmental policy

tend to countervail clustering that would occur in their absence. To put it di�erently,

environmental policy acts as a centrifugal force.

In that context, we study the spatial structure of a single city or well de�ned region

when �rms are free to choose where to locate. As far as production is concerned, we

assume positive knowledge spillovers. There is also a \�rst nature" advantage in a cer-

tain point in the area under study. We further assume here that �rms use emissions

as an input. The government, in order to avoid a high concentration of emissions in a

single area, adopts environmental regulations. These regulations impose an additional

production cost on �rms. We assume that the environmental regulations refer to general

environmental costs such as taxes or the cost of controlling the environment and imposing

6van Marrewijk (2005), Lange and Quaas (2007) study the e�ect of pollution on agglomeration using
Krugman's (1991) core-periphery model and Forslid and Ottaviano's (2003) model.
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zoning systems which all increase with the concentration of emissions. As a result, the

production process becomes more expensive, as �rms have to pay an extra amount of

money that depends not only on their own emissions but also on the aggregate concen-

tration of emissions at the point where they decide to locate. The higher the number of

�rms at a certain point, the higher will be the concentration of emissions at that point.

Now, �rms have to take into account two things: if they locate near other �rms, they

will bene�t from positive knowledge spillovers, but they will have to pay a higher price

for each unit of emissions used in the production of output. They also have to consider

di�erent transportation costs at each spatial point and the immobility of production fac-

tors. Under these assumptions, we de�ne a rational expectations equilibrium (REE) and

a socially optimal concentration of economic activity, we identify deviations between the

two solutions and discuss policies with spatial characteristics.

The plan of the paper is as follows. In Section 2, we will present the model and

its mathematical structure and prove the existence and the uniqueness of the REE. In

Section 3, we determine the social optimum of the model, while in Section 4, we derive

optimal spatial policies. In Section 5, we make some numerical experiments and compare

the di�erent output distributions corresponding to the REE and the socially optimum

solutions both in cases where environmental policy is imposed and in cases where en-

vironmental policy issues are not taken into account. We also refer to the concept of

\pollution haven hypothesis" and show how it could be modelled using our modelling

structure. In the �nal Section, we make some concluding remarks and give some ideas

for future research.

2 Rational Expectations Equilibrium under Centripetal

and Centrifugal Forces

We consider a single city or region located on a line of length S. So, 0 and S represent

the western and eastern borders of the city, which is part of a large economy. In the city,

there is a large number of small, identical �rms that produce a single good. There are also
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workers who are geographically immobile and take no location decisions. The production

process is characterized by externalities in the form of positive knowledge spillovers. This

means that �rms bene�t from locating near each other and the total advantage they take

depends on the amount of labor used in nearby areas and on the distance between them.

There is a port available at the point �r 2 [0; S], in our city, which is used to import

machinery. So, machinery is another production factor that arrives at the port at a given

price.7 But the transportation of machinery inside the city is costly. This means that the

point �r has a spatial advantage, because if �rms decide to locate there, they will pay no

transportation cost for machinery. At all other points, the transportation cost will add

an additional cost to the production process.

The last assumption we make is that emissions are used as an input in the production

process.8 According to Brock (1977), the idea behind this assumption is that techniques

of production are less costly in terms of capital input (machinery in our case) if more

emissions are allowed - a situation which is observed in the real world. In other words, if

we use polluting techniques, we can reduce the total cost of production.

The borders of the city under study are strictly de�ned and �rms can locate nowhere

else.9 Our intention is to study the location decisions of �rms. More speci�cally, we aim

to consider the equilibrium spatial distribution of production in order to determine the

distribution of �rms over sites r 2 [0; S].

All �rms produce the same traded good using labor, machinery, emissions and land.

The good is sold around the world at a competitive price assuming no transportation

cost. Production per unit of land at location r 2 [0; S] is given by:

q(r) = ez(r)L(r)aK(r)bE(r)c (2.1)

where q is the output, L is the labor input, K is the machinery input, E is the amount

of emissions used in production and z is the production externality, which depends

7We assume that machinery producers provide their products at a given price that includes the
transportation cost to the port.

8The concept of emissions as an input in the production function was �rst introduced by Brock (1977)
and later used by other authors, eg. Tahvonen and Kuuluvainen (1993), Xepapadeas (2005).

9Land is owned by landlords who play no role in our analysis.
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on how many workers are employed at all locations and represents positive knowledge

spillovers.10

z(r) = �

SZ
0

e��(r�s)
2

ln(L(s)) ds (2.2)

The function k(r; s) = e��(r�s)
2
is called a kernel. The production externality is a

positive function of labor employed in all areas and is assumed to be linear and to decay

exponentially at a rate � with the distance between r and s: A high � indicates that

only labor in nearby areas a�ects production positively. In other words, the higher �

is, the more pro�table it is for �rms to locate near each other. When the production

externality plays a major role in location decisions, each �rm chooses to locate where all

other �rms are located. In terms of agglomeration economics, the production externality

is a centripetal force, i.e. a force that promotes the spatial concentration of economic

activity.

As already stated, there is a port at the point �r 2 [0; S], which is used for the imports

of machinery. It is clear that the point �r has spatial advantages over other possible

locations. If the price of machinery at �r is pK ; then iceberg transportation costs imply

that the price at location r can be written as: pK(r) = pK e�(r��r)
2
: In other words,

if one unit of machinery is transported from �r to r, only a fraction e��(r��r)
2
reaches

r:11 So, � is the transportation cost per square unit of distance, which is assumed to be

positive and �nite. It is obvious that the total transportation cost of machinery increases

with distance.12 Thus, �rms have an incentive to locate near point �r to avoid a higher

transportation cost. Like knowledge spillovers, the transportation cost is a centripetal

force.

10This kind of external e�ects that is interpreted as knowledge spillovers is used by Lucas (2001) and
by Lucas and Rossi-Hansberg (2002) - with a di�erent structure - and is consistent with Fujita and
Thisse's (2002) analysis. The idea is that workers at a spatial point bene�t from labor in nearby areas
and thus, the distance between �rms determines the production of ideas and the productivity of �rms in
a given region.
11For a detailed analysis of \iceberg costs", see Fujita, Krugman and Venables (1999) and Fujita and

Thisse (2002). Conceptually, with the \iceberg" forms, we assume that a fraction of the good transported
melts away or evaporates in transit.
12We can use another formulation of iceberg transportation cost: pK(r) = pK e�jr��rj; instead of

pK(r) = pK e�(r��r)
2

; without changing the conclusions of the analysis. We prefer the latter so as to
have the same exponential terms in the whole model.
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The emissions used in the production process damage the environment. The damage

(D) at each spatial point is a function of the total concentration of emissions (X) at the

same point.

D(r) = X(r)� (2.3)

where � � 1; D0(X) > 0; D00(X) � 0; and the marginal damage function is:

MD(r) = � X(r)��1 (2.4)

Each �rm has to pay a \price" or a tax for each unit of emissions used as an input.

This tax � is a function of the marginal damage (MD):

�(r) = � MD(r) (2.5)

where 0 � � � 1, and � = 1 means that the full marginal damage at point r is charged as

a tax. In other words, each �rm pays an amount of money for the emissions it uses in the

production of the output, but the per unit tax depends not only on its own emissions, but

on the total concentration of emissions at the spatial point where it decides to locate.The

tax function can be written as:

�(r) = � � X(r)��1 =  X(r)��1 (2.6)

where  = � �; � 0(X) > 0; � 00(X) � 0:

When solving our model, we use the logarithm of the tax function, thus:

ln �(r) = ln + (�� 1) lnX(r) (2.7)

where

lnX(r) =

Z S

0

e��(r�s)
2

ln(E(s)) ds (2.8)

Equation (2.8) implies that aggregate emissions (X) at a point r is a weighted average

of the emissions used in nearby locations, with kernel k(r; s) = e��(r�s)
2
. This might
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capture the movement of emissions in nearby places. A high � indicates that only nearby

emissions a�ect the total concentration of emissions at point r: In the real world, the

value of � depends on weather conditions and on natural landscape. As we have assumed

that the only dissimilarity in our land is the existence of a port, we suppose that � is

inuenced only by weather conditions. Speci�cally, if it is windy, � takes a low value and

areas at a long distance from r are polluted by emissions generated at r. As � increases,

the concentration of emissions in certain areas does not a�ect other areas so much.

Thus, the cost of environmental policy, �(X(r)); increases the total production cost

for the �rms. The extra amount of money that a �rm pays, in the form of taxation,

depends on the total emissions at the point where it has decided to locate. To put it

di�erently, the higher the concentration of industry at an interval [s1; s2] 2 [0; S]; the

higher the cost �rms will be obliged to pay. In that way, the environmental policy is a

centrifugal force, i.e. a force that opposes spatial concentration of economic activity.

Let w be the wage rate, which is the same across sites, and let p be the competitive

price of output. A �rm located at r chooses labor, machinery and emissions to maximize

its pro�ts. Thus, the pro�t per unit of land, q̂; at location r; is given by:

q̂(r) = max
L;K;E

p ez(r)L(r)aK(r)bE(r)c � wL(r)� pK e�(r�r)
2

K(r)� �(r) E(r) (2.9)

A �rm located at the site r treats the production externality z(r) and the aggregate

emissions X(r) as exogenous parameters ze and Xe respectively. Assuming X(r) is ex-

ogenous to the �rm implies that the tax �(r) is treated as a parameter at each r. Then,

the �rst order conditions (FOC) for pro�t maximization are:

pa ez(r)L(r)a�1K(r)bE(r)c = w (2.10)

pb ez(r)L(r)aK(r)b�1E(r)c = pK e�(r�r)
2

(2.11)

pc ez(r)L(r)aK(r)bE(r)c�1 = �(r) (2.12)

Setting z(r) = ze, X(r) = Xe, the FOC de�ne a rational expectations equilibrium spa-

tial distribution of labor, machinery and emissions at each point r 2 [0; S]: After taking
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logs on both sides and doing some transformations, which are described in Appendix A,

the FOC result in a system of second kind Fredholm integral equations with symmetric

kernels:

�
1�a�b�c

Z S

0

e��(r�s)
2

y(s)ds+ c(1��)
1�a�b�c

Z S

0

e��(r�s)
2

"(s)ds+ g1(r) = y(r) (2.13)

�
1�a�b�c

Z S

0

e��(r�s)
2

y(s)ds+ c(1��)
1�a�b�c

Z S

0

e��(r�s)
2

"(s)ds+ g2(r) = x(r)

�
1�a�b�c

Z S

0

e��(r�s)
2

y(s)ds+ (1�a�b)(1��)
1�a�b�c

Z S

0

e��(r�s)
2

"(s)ds+ g3(r) = "(r)

where y(r) = lnL(r), x(r) = lnK(r); "(r) = lnE(r) and g1(r); g2(r); g3(r) are some

known functions.

Proposition 1 : Assume that: (i) the kernel k(r; s) de�ned on [0; 2�] � [0; 2�]; is an

L2�kernel which generates the compact operator W; (ii) 1�a�b�c is not an eigenvalue

of W; and (iii) G is a square integrable function, then a unique solution determining the

rational expectations equilibrium distribution of inputs and output exists.

The proof of existence and uniqueness of the REE is presented in the following steps:13

� A function k (r; s) de�ned on [a; b] � [a; b] is an L2�kernel if it has the property

that
R b
a

R b
a
jk (r; s)j2 drds <1:

The kernels of our model have the following formulation: e�� (r�s)
2
with � = �; �

(positive numbers) and are de�ned on [0; 2�]� [0; 2�] :

We need to prove that
R 2�
0

R 2�
0

���e�� (r�s)2���2 drds <1:

Rewriting the left part of inequality, we get:
R 2�
0

R 2�
0

��� 1

e� (r�s)2

���2 drds:
The term 1

e� (r�s)2 takes its highest value when e
� (r�s)2 is very small. But the lowest

value of e� (r�s)
2
is obtained when either � = 0 or r = s and in that case e0 = 1: So,

0 <
��� 1

e� (r�s)2

��� < 1: When ��� 1

e� (r�s)2

��� = 1, then: R 2�0 R 2�
0

��� 1

e� (r�s)2

���2 drds = 4 �2 < 1:

Thus, the kernels of our system are L2�kernels.
13See Moiseiwitsch (2005) for more detailed de�nitions.
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� If k (r; s) is an L2� kernel, the integral operator

(W�) (r) =

Z b

a

k (r; s)� (s) ds ; a � s � b

that it generates is bounded and

kWk �
�Z b

a

Z b

a

jk (r; s)j2 drds
� 1

2

So, in our model the upper bound of the norm of the operator generated by the

L2�kernel is:

kWk �
nR b

a

R b
a
jk (r; s)j2 drds

o 1
2
=

�R 2�
0

R 2�
0

��� 1

ei (r�s)2

���2 drds� 1
2

� 2�

� If k (r; s) is an L2� kernel and W is a bounded operator generated by k; then W is

a compact operator.

� If k (r; s) is an L2�kernel and generates a compact operator W; then the integral

equation

Y �
�

1
1�a�b�c

�
W Y = G (2.14)

has a unique solution for all square integrable functions G; if (1� a� b� c) is not

an eigenvalue of W (Moiseiwitsch, 2005): If (1� a� b� c) is not an eigenvalue of

W; then
�
I � 1

1�a�b�cW
�
is invertible. We show in Appendix C that the system

(2.13) can be transformed into a second kind Fredholm Integral equation of the

form (2.14).

To solve the system (2.13) numerically, for the REE, we use a modi�ed Taylor-series

expansion method (Maleknejad et al., 2006). More precisely, a Taylor-series expansion

can be made for the solutions y(s) and "(s) in the integrals of the system (2.13). We

use the �rst two terms of the Taylor-series expansion (as an approximation for y(s) and

"(s)) and substitute them into the integrals of (2.13). After some substitutions, we end
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up with a linear system of ordinary di�erential equations of the form:

�11(r) y(r) + �12(r) y
0(r) + �13 y

00(r) + �11 "(r) + �12 "
0(r) + �13 "

00(r) = g1(r) (2.15)

x(r) + �21(r) y(r) + �22(r) y
0(r) + �23 y

00(r) + �21 "(r) + �22 "
0(r) + �23 "

00(r) = g2(r)

�31(r) y(r) + �32(r) y
0(r) + �33 y

00(r) + �31 "(r) + �32 "
0(r) + �33 "

00(r) = g3(r)

In order to solve the linear system (2.15), we need an appropriate number of boundary

conditions. We construct them and then we obtain a linear system of three algebraic

equations that can be solved numerically.

The maximized value of the �rm's pro�t q̂(r) is also the land-rent per unit of land that

a �rm would be willing to pay to operate with these cost and productivity parameters at

location r. Since the decision problem at each location is completely determined by the

technology level z; the wage rate w, the price of machinery pK , the output price p and

the concentration of emissions X; the FOC of the maximization problem give us the REE

values of labor, machinery and emissions used at each location: L = L̂(z; w; pK ; p;X),

K = K̂(z; w; pK ; p;X) and Ê = E(z; w; pK ; p;X): Finally, the equilibrium distribution

of output is given by: q = q̂(z; w; pK ; p;X):

3 The Socially Optimal Solution

After having solved for the REE, we study the socially optimal solution. The social

planner's objective is to maximize the total value of land in the city, which implies

maximization of the pro�ts net of damages caused by the concentration of emissions

across the spatial domain. It's clear that the social planner takes into account the real

damage caused in the city by the concentration of emissions. The social planner's problem

is:

max
L;K;E

SZ
0

h
p ez(r)L(r)aK(r)bE(r)c � wL(r)� pK e�(r�r)

2

K(r)�D(r)
i
dr (3.1)
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Substituting (2.3) for the damage function, inside the integral, we get:

max
L;K;E

SZ
0

h
p ez(r)L(r)aK(r)bE(r)c � wL(r)� pK e�(r�r)

2

K(r)�X(r)�
i
dr (3.2)

The FOC for the social optimum are:

apez(r)L(r)a�1K(r)bE(r)c + pez(r)L(r)aK(r)bE(r)c
@z(r)

@L(r)
= w (3.3)

p b ez(r)L(r)aK(r)b�1E(r)c = pK e�(r�r)
2

(3.4)

cp ezL(r)aK(r)bE(r)c�1 � �X(r)��1
@X(r)

@E(r)
= 0 (3.5)

Comparing the FOC for the social optimum to those for the REE, we notice some dif-

ferences. First, the FOC with respect to L(r) (3.3) contains one extra term - the second

term on the left-hand side. That is, the social planner, when choosing L(r), takes into ac-

count the positive impact of L(r) on the production of all other sites, through knowledge

spillovers. So, increasing labor at r has two e�ects: it increases output in the standard

way, but it increases the positive externalities at all other sites as well. In the same way,

labor increases at other sites increase the externality in r. This externality is now taken

into account, while the �rm, maximizing its own pro�ts, considered the externality as a

�xed parameter.14

The second di�erence between the social optimum and the REE concerns the FOC

with respect to E(r), i.e. equation (3.5). The �rst term in the left-hand side is the

marginal product of emissions, which is the same as the FOC of the REE. The di�erence

is in the second term, which shows how changes in the value of emissions at r a�ect the

total concentration of emissions, not only at r but also at all other sites. This damage,

which is caused by the total concentration of emissions in our spatial economy and is

altered every time emissions increase or decrease, is now taken into account by the social

planner.

After making some transformations, we end up with the following system of second

14See Appendix B.
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kind Fredholm integral equations with symmetric kernels:

�

Z S

0

e��(r�s)
2

"(s)ds+ g01(r) = y(r) (3.6)

�

Z S

0

e��(r�s)
2

"(s)ds+ g02(r) = x(r) (3.7)

��
c

Z S

0

e��(r�s)
2

y(s)ds+
(1� a� b)�

c

Z S

0

e��(r�s)
2

"(s)ds+ g03(r) = "(r) (3.8)

where y(r) = lnL(r), x(r) = lnK(r); "(r) = lnE(r) and g01(r); g
0
2(r); g

0
3(r) are some

known functions. The existence and the uniqueness of the solution can be proved following

the same steps which were presented in Section 2. To determine a numerical solution of

the problem, we follow the same method of Taylor-series expansion used in the REE

case. This approach provides an accurate approximate solution of the integral system as

demonstrated by some numerical examples in Section 5.

4 Optimal Policy Issues

The di�erences between the REE and the social optimum give us some intuition

about the design of optimal policies. These di�erences come from the fact that the pro-

duction externality z(r) and the aggregate emissions X(r) are taken as parameters in

the case of REE, while the social planner takes them into account. Speci�cally, com-

paring equations (2.10) and (2.12) with (3.3) and (3.5) respectively, we observe that

the latter ones have one extra term each. Thus, the FOC with respect to L(r) for

the REE equates the marginal product of labor with the given wage rate: MPL = w,

while the same condition for the social optimum which takes into account the posi-

tive knowledge spillovers of labor to nearby areas is: MPL + q z0(L) = w: The design

of optimal policy in that case is determined by the extra term: q z0(L): So, setting

v�(r) = q z0(L) = pez(r)L(r)aK(r)bE(r)c @z(r)
@L(r)

; the regulator can impose a new wage

rate that is no longer constant across space and is equal to: w�(r) = w�v�(r):15 Now, the
15The term @z(r)

@L(r) is de�ned in Appendix C.
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FOC for the REE becomes MPL = w�(r) = w � v�(r): Conceptually, the new wage rate

w�(r) takes into account the changes in the knowledge spillovers across space, when a

�rm decides to employ more or fewer workers. The function v�(r) can also be considered

as a subsidy that is given to �rms to employ more workers. In that way, �rms pay a

lower wage w�(r) < w; employ more labor, bene�t from the higher knowledge spillovers

and produce more output.

Probably more interesting is the design of optimal environmental policy. Thus, the

�rm trying to maximize its own pro�ts equates the marginal product of emissions with the

tax imposed on each unit of emissions used in the production process: MPE = �(r), while

the social planner equates the marginal product of emissions with the marginal damage

of emissions: MPE =MDE: But the di�erence between the MDE = �X(r)��1 @X(r)
@E(r)

and

the tax function �(r) = � X(r)��1 is created by the term @X(r)
@E(r)

.16 This term shows

that when a �rm increases (decreases) the amount of emissions used in the production

process, the total concentration of emissions at all spatial points increases (decreases)

too. On the other hand, in the REE case, each �rm decides about the amount of the

emissions used as an input, taking the total concentration of emissions across space as

given. It does not account for the fact that its own emissions at r a�ect the aggregate

concentration of emissions in other areas. Thus, the designer of optimal environmental

policy has to consider the extra damage caused at all spatial points from the use of

emissions at r: As a result, the optimal tax function has to to satisfy: � �(r) = MDE =

�X(r)��1 @X(r)
@E(r)

and �rms now equate MPE = � �(r): Thus, in the spatial model, a tax

equal to full marginal damages at the REE, as de�ned in (2.5) with � = 1; does not

mean full internalization of the social cost as it is usually understood in environmental

economics without spatial considerations. This is because setting �(r) = � X(r)��1

ignores this spatial externality which is captured by the term @X(r)
@E(r)

. We will refer to

setting the emission tax at �(r) as REE-internalization (RRE-I) and setting it at � �(r) as

the socially optimal internalization. Imposing the optimal policy rules, v(r)� and � �(r);

the REE can reproduce the social optimum.

16We assume here that taxation at the REE charges the full marginal damage caused by aggregate

emissions at a speci�c site, so � = 1 and  = �: The term @X(r)
@E(r) is de�ned in Appendix C.
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5 Numerical Experiments

The model of the business sector of a single city analysed above involves fourteen

parameters �; b; c; �; �; S; ; p; w; pK ; �r; �; �;  : Given these parameters, we

can predict both the REE and the socially optimum patterns of output on the given

interval. The corresponding distributions of output, labor, machinery and emissions will

determine the location of �rms in both cases and will characterize the optimal spatial

policies. The numerical approach of the Taylor-series expansion, described above, will

give us the equilibrium and the optimal values of inputs and output.

The map of a city will be de�ned by the two opposing forces already mentioned.

On the one hand, there are the production externalities and the transportation cost of

machinery that pull economic activity together and, on the other hand, there are the cost

of environmental policy and the \immobility" of land that push it apart. This trade-o�

between centripetal and centrifugal forces will determine the geographical structure of

the economy. Giving di�erent values to the parameters, we may end up in a monocentric

economy which presents the clustering of economic activity around a spatial point, or in

a pattern where the economic activity will be concentrated in two or more regions.

The simulations discussed in this Section will provide maps resulting from the models

of Sections 2 and 3. The share of labor is set to � = 0:6, the share of the machinery is

b = 0:25 and the share of emissions is c = 0:05. Given these values, we let the implied

share of land be 0:1. The length of the city is S = 2�: In the business sector analysed

here, we consider wages (w = 1) and the price of machinery (pK = 1) as given and the

same is assumed for the price of output which is p = 10: We set a reasonable value for

; that is 0:01.17 We also assume that there is a port at the point �r = �. The value

� = 1:5 implies an increasing and convex damage function. Finally, the � parameter,

which shows how much the concentration of emissions at site r a�ects the concentration

of emissions at other sites, is set to 0:5.18 To study the economy's possible spatial

17This value of  is low enough to ensure that the \no black hole" assumption, described in Fujita,
Krugman and Venables (1999), holds.
18When we study the e�ect of taxation in the spatial structure, we will give one more value to � in

order to see how, under the assumption of \more localized" pollution, the environmental policy changes
the concentration of economic activity.
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Figure 1: Benchmark case: The distribution of production under no agglomeration forces.

structure, we hold the above parameters constant and vary just the transportation cost

�, the \strength" of knowledge spillovers � and the  parameter, which indicates whether

the taxation internalizes fully or partly the marginal damage caused by the concentration

of emissions.

As a benchmark case, we study the distribution of economic activity under no ag-

glomeration forces, i.e.  = 0; � = 0; � = 0; � = 0;  = 0: This means that there is no

production externality, no transportation cost for machinery and no environmental policy

to increase the cost of the production process. In other words, a �rm doesn't bene�t

at all from nearby �rms, doesn't pay anything for the emissions used in production, and

the per unit cost of machinery is the same at all locations. As expected, Figure 1 shows

that the distribution of production is uniform over the given interval. In that case, �rms

have no incentives to locate at any special point of our economy.

Changing the parameters results in di�erent maps. As we have a lot of parameters in

our model, the results we can obtain are numerous too. We will present some interesting

cases below which are worth mentioning and explain the structure of the model. Each set

of parameters will provide four maps, all presenting the distribution of economic activity.

We will study in detail the REE and the social optimum, both in the presence of envi-

ronmental regulations and in the case where there are no environmental considerations.

This allows us to present the di�erences between the REE and the social optimum and to

17



explain how environmental policy a�ects the spatial structure of our city, on the interval

[0; S]:

5.1 Knowledge Spillovers

Figures 2 and 3 present the distribution of production resulting from the � values of

1, 2 and 3. The higher � is, the more pro�table it is for �rms to locate near each other,

so as to bene�t from positive knowledge spillovers. In other words,the centripetal force

of production externality is stronger when � is high, and as a result, economic activity

is more concentrated at certain sites. Figure 2 uses a low value of transportation cost

(� = 0:045) and Figure 3 uses a higher one (� = 0:075): Moreover, in these examples, the

marginal damage caused by the concentration of emissions is fully internalised ( = 1:5):

The �rst map, in Figure 2, presents the rational expectations equilibrium under en-

vironmental policy. The lowest value of � is the closest to the benchmark case of the

uniform distribution of production. In that case, the transportation cost is low. Also,

the low value of � means that knowledge spillovers do not decline fast with distance. So,

the two centripetal forces do not have a strong e�ect and the result is the distribution

of production given by the dotted line. When � increases, there are two e�ects: �rst,

spillovers a�ect the output more and the production increases at each site, and second,

there are more incentives for agglomerations because bene�ts decline faster with distance.

In that way, we observe a higher production at each spatial point. But, to produce more

output, �rms use more emissions and the total concentration of emissions increases at

each point. When the concentration of emissions is very high, the price of emissions is

high too. So, when �rms decide where to locate, they take into account the centripetal

force of strong knowledge spillovers and the centrifugal force of environmental policy.

The trade-o� between these two opposing forces forms the three peaks we observe in case

� = 3 (solid line). The conclusions are, more or less, the same, if we observe Figure

3. The only di�erence comes from the higher value of transportation cost (� = 0:075):

So, here the higher transportation cost decreases the concentration of economic activity

in areas near the boundaries. In that way, the two peaks near the boundaries (in case

18
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� = 2; 3), are lower. However, the central peak is higher, as the transportation cost near

the city centre is low in every case.

In the same Figures (2, 3), we also observe the REE without environmental consider-

ations. The economic activity is now concentrated around the city centre, because of the

two centripetal forces: the transportation cost and the knowledge spillovers. Stronger

knowledge spillovers lead to a higher distribution of economic activity at the city centre.

The use of land as a production factor deters economic activity from concentrating en-

tirely at the city centre. The absence of environmental policy allows the formation of a

unique peak.

Finally, Figure 2 shows the socially optimal distribution of economic activity under

environmental considerations. As stated above, the social planner takes into account

how labor in one area bene�ts from labor in nearby areas and how emissions in one

area a�ect the total concentration of emissions in other areas. In that way, the planner

internalizes the production externality and the damage caused by the use of emissions

in the production function. The result is the formation of two peaks near the points

r = 1:6; 4:7. The explanation is that at the social optimum with environmental

considerations, the social planner realizes the positive interaction of �rms located at

nearby areas, but he also takes into account the fact that if all �rms locate around

\one" spatial point, then the cost of environmental policy will be very high. So, the

optimal solution is to cluster around \two points". The same is true for Figure 3, but,

here the higher transportation cost leads to a lower concentration of economic activity

around the two peaks.19 The optimal distribution, if there is no environmental policy,

is illustrated by a unique peak. One �nal remark is that when comparing the REE and

the social optimum, if there are no environmental considerations, then the social planner,

by internalizing the production externality, leads to a higher distribution of economic

activity at each spatial point.

Taking everything into account, in both cases (REE and social optimum), the en-

19In the social optimum, the solid line corresponds to � = 3: The two peaks of that line do not appear
in the Figure, because we wanted to draw all three curves in one Figure, so as to point out the di�erences.
So, at the spatial points r = 1:6; 4:7; where we have the two peaks, the corresponding distribution value
if � = 0:045 (Figure 2) is 1:5� 107 and if � = 0:075 (Figure 3) is 1� 107:
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vironmental policy works to discourage the clustering of economic activity around one

spatial point, which would occur in its absence.

5.2 Transportation Cost

Machinery is available at the city centre (�r = �) without transportation cost. When

�rms use machinery at a site di�erent from �r = �; they are obliged to pay a transportation

cost. To study how changes in transportation cost a�ect the spatial structure of our city,

we use the values � = 0:045; 0:06 and 0:075: The high value of � (0.075), was selected

to double the per unit price of machinery at the boundaries (r = 0; S) and the low value

of � (0.045) to increase the per unit price of machinery by 50% at the same points. These

values of � are combined with � values of 1 and 3 and the results are shown in Figures 4

and 5.

In Figure 4, we observe the clustering of economic activity around the city centre,

which is the result of the low value of �.20 Higher transportation costs (solid line) imply

lower densities at the boundaries and at all other points, except for �r = �. This is

the case of REE. The centripetal and centrifugal forces are not very strong here and

economic activity is concentrated around the centre, as the point �r = � has a spatial

advantage: machinery is available without transportation cost. For � = 3 (Figure 5),

the low transportation cost forms three peaks. This is the result of the trade-o� between

knowledge spillovers and environmental policy.21 However, higher values of � lead to

a lower concentration around the two boundary peaks, as it is more expensive now to

transport a lot of machinery to points far from the city centre.

As far as the social optimum is concerned, we have the formation of two peaks analysed

above. Higher values of � imply lower densities of output around the two peaks in both

cases. In all examples, where there is no environmental policy to act as a centrifugal force,

we have a unique peak around the central point. In all other spatial points, increases

in � decrease the distribution of economic activity. The only di�erence is that the total

20See the analysis for Knowledge Spillovers above.
21See the analysis for Knowledge Spillovers above.
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Figure 6: The Distribution of Production: Changes in the values of  with � = 0:5:
Dotted Line:  = 1:5, Dashed Line:  = 0:9; Solid Line:  = 0:3:

output produced in the social optimum case is higher if compared to the REE.

5.3 Environmental Policy

In analysing environmental policy, we do not consider optimal emission taxes as

de�ned in Section 4, but emission taxes at the REE as de�ned by (2.5).22 Firms, at

the REE, pay a \tax" or a \price" for each unit of emissions used in the production

process. As already said, this tax depends on the total concentration of emissions at

each spatial point and the tax rate is a function of the marginal damage caused in the

economy by the concentration of emissions at a given point. Depending on the stringency

of environmental policy, this form of taxation could fully (REE-I) or partly (REE-P)

internalize the marginal damage. The strict (REE-I) or the lax (REE-P) environmental

policy determines the amount of money �rms are obliged to pay for their emissions. So,

the  parameter shows the degree of internalization:  = 1:5 means full internalization

and every value of  which is 0 <  < 1:5 implies lower taxation and less strength of

centrifugal force.

In Figures 6 and 7, we observe the distribution of economic activity using di�erent

values of  : Figure 6 is drawn for � = 0:5 and Figure 7 for � = 2: The higher value of

� means that pollution is more localized and a�ects only nearby areas compared to the

22The imposition of optimal taxes would reproduce the social optimum (Figures 2, 3, 4, 5).
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Figure 7: The Distribution of Production: Changes in the values of  with � = 2: Dotted
Line:  = 1:5, Dashed Line:  = 0:9; Solid Line:  = 0:3:

lower one. Let's explain �rst why � = 0:5 (Figure 6) leads to the clustering of economic

activity in three peaks, while � = 2 (Figure 7) forms a unique peak. Under low values of

�; emissions at each site pollute other sites that are far away. But, if each site is a�ected

by emissions concentrated at a lot of sites, farther or closer, the total concentration of

emissions would be higher at each spatial point. In that case, �rms avoid locating at

the same spatial point as others, so as not to increase further the \price" of emissions.

For this reason, we have the clustering of production in three peaks. When pollution is

more localized (� = 2) the concentration of emissions at one site does not a�ect other

sites a lot and so the \price" of emissions is lower. Then, �rms have a stronger incentive

to locate near each other in order to bene�t from knowledge spillovers. This is the case

presented in Figure 7.

As far as the stringency of environmental policy is concerned, the results could be

easily predicted. Strict environmental policy and full internalization of marginal damage

lead to a lower distribution of production in every case. On the other hand, more lenient

environmental regulations not only lead to a higher distribution at each site but also

promote the agglomeration of economic activity around the city centre. So, the intu-

ition is simple: environmental policy deters the clustering of production and makes the

distribution of economic activity atter.23 In other words, strict environmental policy

23The proof of atness is presented in Appendix C.
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Figure 8: The Distribution of Economic Activity: Region A (left):  = 1:5 and Region
B (right):  = 0:3 (with � = 0:06; � = 2 and � = 2)

makes the distribution of economic activity less uneven. This result is consistent with

the empirical literature, according to which environmental regulations restrict economic

activity and result in a spreading out or an exiting of polluting �rms.24

5.4 Two Regions: Pollution Haven Hypothesis

In previous sections, we have assumed the existence of a single city with borders

0 and 2�: Now, we can divide this space into two regions, where the �rst region (A)

is located between 0 and � and the second one (B) between � and 2�: Let's suppose

that each region adopts di�erent environmental regulations: in region A, environmental

policy is very strict, while in region B; it is more lenient. The degree of stringency, in

our model, is determined by the parameter  : If  = 1:5, the government charges the full

marginal damage caused by the concentration of emissions (RRE-I) and if 0 <  < 1:5,

the environmental policy is laxer as the marginal damage is partly internalized (REE-P).

We let region A enforce strict measures in order to protect the environment ( = 1:5)

and region B adopt less severe environmental regulations. The rest of the structure of the

model remains the same. Machinery is now available at the boundary between the two

regions, at �r = �. As a result, this point still has an advantage: there is no transportation

cost for machinery. In that context, it's interesting to study how environmental policy

24See Introduction: Greenstone (2002), Henderson (1996), Elbers and Withagen (2004).
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Figure 9: The Distribution of Economic Activity: Region A (left):  = 1:5 and Region
B (right):  = 0:9 (with � = 0:06; � = 2 and � = 2)

a�ects the distribution and the relocation of economic activity in both regions.

In Figures 8 and 9, we use  = 0:3 and  = 0:9 respectively for region B. It is obvi-

ous that the di�erent environmental policies lead to a relocation of pollution industries

between the two regions. Thus, there is a high clustering of economic activity at the right

of r = �; and a lower one on the left side. In that way, �rms locating in region B try to

avoid the increased cost of emissions in region A. The more lenient the environmental

policy in region B is, the higher its concentration of economic activity is compared to

region A's.

This result can be associated with the \pollution haven hypothesis", according to

which polluting industries have a tendency to relocate to areas with less stringent en-

vironmental regulations. In other words, countries or regions with weak environmental

regulations provide a \haven" to polluting �rms which come from countries with strict

environmental laws. A few empirical methods have been used, so far, to test whether the

hypothesis is con�rmed. Earlier studies, based on cross section data, failed to prove the

pollution haven hypothesis. However, more recent studies using panel data and �xed-

e�ect models to control for unobserved heterogeneity and instrumental variables to con-

trol for simultaneity, and taking into account other factors a�ecting trade and investment

ows, lead to more con�rming results.25 According to Ben Kheder and Zugravu (2008),

25For a review of the literature on the pollution haven hypothesis, see Brunnermeier and Levinson
(2004) and Taylor (2004).
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the reason for the lack of robust empirical proof for the pollution haven hypothesis is that

the stringency of the environmental regulations is not the only factor determining the lo-

cation decisions of �rms. Speci�cally, other factors, such as the endowments of quali�ed

human capital and physical capital, the weak institutions, the high corruption level, the

lack of civil freedoms' and the property rights' protection, do play an important role in

the relocation of pollution industries. So, by applying a geographic economy model to

French �rm-level data and considering many of these factors, they succeeded in con�rm-

ing the essential role played by environmental regulations in determining �rm's location.

What is also very important is that this e�ect was reinforced for the most polluting �rms,

in the sense that these �rms are more probable to relocate after the enforcement of strict

environmental regulations.

6 Conclusion

Our model consists of a single city - of length S - in which �rms are free to choose

where to locate. The city has a nonuniform internal structure because of externalities in

production, transportation cost of the machinery input and environmental policy. Specif-

ically, when �rms take location decisions, they consider certain facts. First, labor at each

location will be more productive if there is a high concentration of labor at nearby lo-

cations. This is the assumption of knowledge spillovers. Second, the transportation of

machinery is costly and its cost depends on the distance. Finally, the use of emissions as

an input in the production process induces the environmental regulator to adopt some

kind of environmental policy. The stringency and, therefore, the cost of this policy for

the �rms is an increasing function of aggregate emissions at each spatial point. If all

�rms decide to locate around the city centre, they will bene�t from positive knowledge

spillovers and avoid paying a high transportation cost for machinery. So, these forces

promote agglomeration. On the other hand, if they locate at that point, the concen-

tration of emissions will be high and they will be obliged to pay higher taxation. As a

result, environmental policy impedes agglomeration. The trade-o� between centripetal
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and centrifugal forces determines both the REE and the optimal concentration of eco-

nomic activity. Comparing the equilibrium and the optimal outcomes, we derived and

characterized optimal spatial policies.

The results of our analysis can be summarized in the following way. When the ex-

ternal e�ect is more localized (� is high), �rms have a strong desire to locate near other

producers. When the transportation cost of machinery increases, �rms move closer to

the city centre. Furthermore, when the environmental policy is strict, the distribution of

production becomes atter. In other words, �rms have fewer incentives for agglomera-

tion and concentration of economic activity. We also observed that environmental policy

tends to countervail the clustering of economic activity that would occur in its absence.

Finally, we showed that if there are two bordering regions with di�erent environmental

policies, the region which has enforced more lenient environmental regulation will provide

a \haven" for polluting industries.

Using the present model, we can study many aspects of the internal structure of cities

under environmental policy. A possible extension could be to study the dynamic problem

of location decisions of �rms. This can be done by considering pollution accumulation

and capital accumulation over time. In that way, we could explain the structure of cities

not only across space, but also across time.26 What is also interesting and appealing is

the empirical work based on models of New Economic Geography. As far as we know,

there is a limited number of empirical papers relevant to the literature.27 In that context,

we could test the e�ects of environmental policy on urban structure. These thoughts are

left for future research.

References

Alonso, W. (1964). Location and Land Use, Cambridge: Harvard University Press.

Ben Kheder, S. and Zugravu N. (2008), \The Pollution Haven Hypothesis: A Geo-

graphic Economy Model in a Comparative Study", Fondazione Eni Enrico Mattei, Nota

26The theory of optimal control and spatial heterogeneity, analysed by Brock and Xepapadeas (2008),
will help us solve the problem.
27For example, Ioannides et al. (2008) study the e�ects of information and communication technologies

on urban structure.

30



di Lavoro 73.2008.

Brock, W. (1977), \A Polluted Golden Age", in Economics of Natural and Environ-

mental Resources, V. Smith (ed.), New York: Gordon and Breach, 441-462.

Brock, W. and Xepapadeas, A. (2008), \Di�usion-Induced Instability and Pattern

Formation in In�nite Horizon Recursive Optimal Control", Journal of Economic Dynam-

ics and Control, 32, 2745-2787.

Brunnermeier, S. and Levinson, A. (2004), \Examining the Evidence on Environmen-

tal Regulations and Industry Location", Journal of Environment and Development, 13,

6-41.

Elbers, C. and Withagen, C. (2004), \Environmental Policy, Population Dynamics

and Agglomeration", Contributions to Economic Analysis & Policy, 3(2) : Article 3.

Forslid, R. and Ottaviano, G.I. (2003), \An Analytically Solvable Core-Periphery

Model", Journal of Economic Geography, 3, 229-240.

Fujita, M., Krugman, P. and Venables, A. J. (1999). The Spatial Economy. Cam-

bridge: MIT Press.

Fujita, M., Krugman, P., and Mori, T. (1999), \On the Evolution of Hierarchical

Urban Systems", European Economic Review, 43, 209-251.

Fujita, M. and Mori, T. (1996), \The Role of Ports in the Making of Major Cities:

Self Agglomeration and Hub-e�ect", Journal of Development Economics, 49, 93-120.

Fujita, M. and Thisse, J-F. (2002). Economics of Agglomeration: Cities, Industrial

Location and Regional Growth. Cambridge University Press.

Greenstone, M. (2002), \The Impacts of Environmental Regulations on Industrial

Activity: Evidence from the 1970 and the 1977 Clean Air Act Ammendments and the

Census of Manufactures", Journal of Political Economy, 110(6), 1175-219.

Henderson, J.V. (1974), \The Sizes and Types of Cities", American Economic Review,

64, 640-656.

Henderson, J.V. (1996), \E�ects of Air Quality Regulation", American Economic

Review, 86, 789-813.

Ioannides, Y., Overman, H., Rossi-Hansberg E. and Schmidheiny K. (2008), \The

31



E�ect of Information and Communication Technologies On Urban Structure", Economic

Policy, 201-242.

Krugman, P. (1991), \Increasing Returns and Economic Geography", Journal of Po-

litical Economy, 99, 483-499.

Krugman, P. (1993a), \On the Number and Location of Cities", European Economic

Review, 37, 293-298.

Krugman, P. (1993b), \First Nature, Second Nature and Metropolitan Location",

Journal of Regional Science, 33, 129-144.

Krugman, P. (1998), \Space: The Final Frontier", Journal of Economic Perspectives,

12, 161-174.

Lange, A., and Quaas, M. (2007), \Economic Geography and the E�ect of Environ-

mental Pollution on Agglomeration", The B.E. Journal of Economic Analysis & Policy,

7(1), Article 52.

Lucas, R.E. (2001), \Externalities and Cities", Review of Economic Dynamics, 4,

245-274.

Lucas, R.E. and Rossi-Hansberg, E. (2002), \On the Internal Structure of Cities",

Econometrica, 70(4), 1445-1476.

Maleknejad, K., Aghazadeh, N. and Rabbani, M. (2006), \Numerical Solution of

Second Kind Fredholm Integral Equations System by Using a Taylor-Series Expansion

Method", Applied Mathematics and Computation, 175, 1229-1234.

Moiseiwitsch, B.L. (2005). Integral Equations, Dover Publications, New York.

OECD (2006), \Competitive Cities in the Global Economy", OECD Territorial Re-

views.

Polyanin D. and Manzhirov V. (1998). Handbook of Integral Equations, CRC Press.

Rauscher, M. (2008), \Concentration, Separation and Dispersion: Economic Geogra-

phy and the Environment", Paper presented at the 2008 Conference of European Asso-

ciation of Environmental and Resource Economists in Gothenberg, Sweden.

Rossi-Hansberg, E. (2005), \A Spatial Theory of Trade", American Economic Review,

95(5), 1464-1491.

32



Tahvonen, O. and Kuuluvainen, J. (1993), \Economic Growth, Pollution and Renew-

able Resources", Journal of Environmental Economics and Management, 24, 101-118.

Taylor S. (2004), \Unbundling the Pollution Haven Hypothesis", Advances in Eco-

nomic Analysis & Policy, 4(2), Article 8.

van Marrewijk, C. (2005), \Geographical Economics and the Role of Pollution on

Location", ICFAI Journal of Environmental Economics, 3: 28-48.

von Th�unen, J. (1826). The Isolated State, English edn, London, Pergamon Press.

Xepapadeas, A. (2005), \Economic Growth and the Environment", Chapter 23, 1220-

1271, in the Handbook of Environmental Economics, Vol. 3: Economywide and Interna-

tional Environmental Issues edited by Karl-Goran M�aler and Je�ery Vincent, a volume in

the series Handbooks in Economics, edited by Kenneth Arrow and Michael D. Intrilligator,

Elsevier Publishers.

Appendix A:Solving a system of second kind Fredholm integral equations, following

the modi�ed Taylor-series expansion method (Maleknejad et al., 2006).

The Rational Expectations Equilibrium: For the solution of the problem, we need to

take logs of 2.10-2.12. Then the FOC become:

ln p+ ln a+ �

SZ
0

e��(r�s)
2

ln (L(s))ds+ (a� 1) lnL(r) + b lnK(r) + c lnE(r) = lnw

ln p+ ln b+ �

SZ
0

e��(r�s)
2

ln (L(s))ds+ a lnL(r) + (b� 1) lnK(r) + c lnE(r)

= ln pK+�(r�r)2

ln p+ ln c+ �

SZ
0

e��(r�s)
2

ln (L(s))ds+ a lnL(r) + b lnK(r) + (c� 1) lnE(r)

= ln + (�� 1)
Z S

0

e��(r�s)
2

ln (E(s)) ds
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Setting lnL = y , lnK = x and lnE = "; we obtain the following system:

�

SZ
0

e��(r�s)
2

y(s)ds+ (a� 1)y(r) + bx(r) + c"(r) = lnw� ln p� ln a

�

SZ
0

e��(r�s)
2

y(s)ds+ ay(r) + (b� 1)x(r) + c"(r) = ln pK+�(r � �r)2� ln p� ln b

�

SZ
0

e��(r�s)
2

y(s)ds+ ay(r) + bx(r) + (c� 1)"(r) + (1� �)

Z S

0

e��(r�s)
2

"(s) ds

= ln � ln p� ln c

We transform the system in order to obtain a system of second kind Fredholm integral

equations with symmetric kernels:0BBBB@
� 0

� 0

� 1� �

1CCCCA
0BB@
Z S

0

e��(r�s)
2
y(s)dsZ S

0

e��(r�s)
2
"(s)ds

1CCA +

0BBBB@
ln a+ ln p� lnw

ln p+ ln b� ln pK��(r � �r)2

ln c+ ln p� ln 

1CCCCA
| {z }

B

=

0BBBBBB@
1� a �b �c

�a 1� b �c

�a �b 1� c| {z }

1CCCCCCA

0BBBB@
y(r)

x(r)

"(r)

1CCCCA
| {z }

A Z

B = AZ ) A�1B = Z where A�1 =

0BBBB@
1�b�c
1�a�b�c

b
1�a�b�c

c
1�a�b�c

a
1�a�b�c

1�a�c
1�a�b�c

c
1�a�b�c

a
1�a�b�c

b
1�a�b�c

1�a�b
1�a�b�c

1CCCCA
From A�1B = Z; we derive the following system of second kind Fredholm integral
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equations:

�
1�a�b�c

Z S

0

e��(r�s)
2

y(s)ds+ c(1��)
1�a�b�c

Z S

0

e��(r�s)
2

"(s)ds+ g1(r) = y(r) (A1)

�
1�a�b�c

Z S

0

e��(r�s)
2

y(s)ds+ c(1��)
1�a�b�c

Z S

0

e��(r�s)
2

"(s)ds+ g2(r) = x(r) (A2)

�
1�a�b�c

Z S

0

e��(r�s)
2

y(s)ds+ (1�a�b)(1��)
1�a�b�c

Z S

0

e��(r�s)
2

"(s)ds+ g3(r) = "(r) (A3)

where:

g1(r) = 1
1�a�b�cf(1� b� c) [ln a+ ln p� lnw] +

b [ln p+ ln b� ln pK � �(r � �r)2] + c [ln c+ ln p� ln ]g

g2(r) = 1
1�a�b�cfa [ln a+ ln p� lnw] +

(1� a� c) [ln p+ ln b� ln pK � �(r � �r)2] + c [ln c+ ln p� ln ]g

g3(r) = 1
1�a�b�cfa [ln a+ ln p� lnw] +

b [ln p+ ln b� ln pK � �(r � �r)2] + (1� a� b) [ln c+ ln p� ln ]g

Taylor-series expansions can be made for the solutions y(s) and "(s) :

y(s) = y(r) + y0(r)(s� r) +
1

2
y00(r)(s� r)2

"(s) = "(r) + "0(r)(s� r) +
1

2
"00(r)(s� r)2

Substituting the expansions into the integrals of the system (A1)-(A3), we get:

y(r) = �
1�a�b�c

Z S

0

e��(r�s)
2 fy(r) + y0(r)(s� r) +

1

2
y00(r)(s� r)2g ds+ (A4)

c(1��)
1�a�b�c

Z S

0

e��(r�s)
2f"(r) + "0(r)(s� r) +

1

2
"00(r)(s� r)2g ds+ g1(r)

x(r) = �
1�a�b�c

Z S

0

e��(r�s)
2 fy(r) + y0(r)(s� r) +

1

2
y00(r)(s� r)2g ds+ (A5)

c(1��)
1�a�b�c

Z S

0

e��(r�s)
2f"(r) + "0(r)(s� r) +

1

2
"00(r)(s� r)2g ds+ g2(r)
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"(r) = �
1�a�b�c

Z S

0

e��(r�s)
2 fy(r) + y0(r)(s� r) +

1

2
y00(r)(s� r)2g ds+ (A6)

(1�a�b)(1��)
1�a�b�c

Z S

0

e��(r�s)
2f"(r) + "0(r)(s� r) +

1

2
"00(r)(s� r)2g ds+ g3(r)

Rewriting the equations we have:

g1(r)=

�
1� �

1�a�b�c

Z S

0

e��(r�s)
2

ds

�
y(r)�

�
�

1�a�b�c

Z S

0

e��(r�s)
2

(s� r)ds

�
y0(r)(A7)

�
�
1

2
�

1�a�b�c

Z S

0

e��(r�s)
2

(s� r)2ds

�
y00(r)�

�
c(1��)
1�a�b�c

Z S

0

e��(r�s)
2

ds

�
"(r)��

c(1��)
1�a�b�c

Z S

0

e��(r�s)
2

(s� r)ds

�
"0(r)�

�
1

2
c(1��)
1�a�b�c

Z S

0

e��(r�s)
2

(s� r)2ds

�
"00(r)

g2(r)= x(r)�
�

�
1�a�b�c

Z S

0

e��(r�s)
2

ds

�
y(r)�

�
�

1�a�b�c

Z S

0

e��(r�s)
2

(s� r)ds

�
y0(r)(A8)

�
�
1

2
�

1�a�b�c

Z S

0

e��(r�s)
2

(s� r)2ds

�
y00(r)�

�
c(1��)
1�a�b�c

Z S

0

e��(r�s)
2

ds

�
"(r)��

c(1��)
1�a�b�c

Z S

0

e��(r�s)
2

(s� r)ds

�
"0(r)�

�
1

2
c(1��)
1�a�b�c

Z S

0

e��(r�s)
2

(s� r)2ds

�
"00(r)

g3(r)= �
�

�
1�a�b�c

Z S

0

e��(r�s)
2

ds

�
y(r)�

�
�

1�a�b�c

Z S

0

e��(r�s)
2

(s� r)ds

�
y0(r) (A9)

�
�
1

2
�

1�a�b�c

Z S

0

e��(r�s)
2

(s� r)2ds

�
y00(r)+

�
1� (1�a�b)(1��)

1�a�b�c

Z S

0

e��(r�s)
2

ds

�
"(r)��

(1�a�b)(1��)
1�a�b�c

Z S

0

e��(r�s)
2

(s� r)ds

�
"0(r)�

�
1

2
(1�a�b)(1��)
1�a�b�c

Z S

0

e��(r�s)
2

(s� r)2ds

�
"00(r)

If the integrals in equations A7-A9 can be solved analytically, then the bracketed quan-

tities are functions of r alone. So A7-A9 become a linear system of ordinary di�erential

equations that can be solved, if we use an appropriate number of boundary conditions.

To construct boundary conditions we di�erentiate A1 and A3:

y0(r) = �
1�a�b�c

Z S

0

� 2� (r � s) e��(r�s)
2

y(s) ds+ (A10)

c(1��)
1�a�b�c

Z S

0

� 2� (r � s) e��(r�s)
2

"(s) ds+ g01(r)
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y00(r) = �
1�a�b�c

Z S

0

�
�2� + 4�2 (r � s)2

�
e��(r�s)

2

y(s) ds+ (A11)

c(1��)
1�a�b�c

Z S

0

�
�2� + 4�2 (r � s)2

�
e��(r�s)

2

"(s) ds+ g001(r)

"0(r) = �
1�a�b�c

Z S

0

� 2� (r � s) e��(r�s)
2

y(s) ds+ (A12)

(1�a�b)(1��)
1�a�b�c

Z S

0

� 2� (r � s) e��(r�s)
2

"(s) ds+ g03(r)

"00(r) = �
1�a�b�c

Z S

0

�
�2� + 4�2 (r � s)2

�
e��(r�s)

2

y(s) ds+ (A13)

(1�a�b)(1��)
1�a�b�c

Z S

0

�
�2� + 4�2 (r � s)2

�
e��(r�s)

2

"(s) ds+ g003(r)

We substitute y(r) and "(r) for y(s) and "(s) in equations A10 - A13:

y0(r) =

�
�

1�a�b�c

Z S

0

� 2� (r � s) e��(r�s)
2

ds

�
y(r) + (A14)�

c(1��)
1�a�b�c

Z S

0

� 2� (r � s) e��(r�s)
2

ds

�
"(r) + g01(r)

y00(r) =

�
�

1�a�b�c

Z S

0

�
�2� + 4�2 (r � s)2

�
e��(r�s)

2

ds

�
y(r) + (A15)�

c(1��)
1�a�b�c

Z S

0

�
�2� + 4�2 (r � s)2

�
e��(r�s)

2

ds

�
"(r) + g001(r)

"0(r) =

�
�

1�a�b�c

Z S

0

� 2� (r � s) e��(r�s)
2

ds

�
y(r) + (A16)�

(1�a�b)(1��)
1�a�b�c

Z S

0

� 2� (r � s) e��(r�s)
2

ds

�
"(r) + g03(r)
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"00(r) =

�
�

1�a�b�c

Z S

0

�
�2� + 4�2 (r � s)2

�
e��(r�s)

2

ds

�
y(r) + (A17)�

(1�a�b)(1��)
1�a�b�c

Z S

0

�
�2� + 4�2 (r � s)2

�
e��(r�s)

2

ds

�
"(r) + g003(r)

In equations (A14-A17), we observe that y0(r); y00(r); "0(r); "00(r) are functions of y(r);

"(r); g01(r); g
00
1(r); g

0
3(r); g

00
3(r): Substituting them into (A7), (A8) & (A9), we have a linear

system of three algebraic equations that can be solved using Mathematica.

Appendix B: The same method of modi�ed Taylor-series expansion was used in order

to solve for the social optimum. The FOC for the social optimum, (3.3-3.5), contain one

extra term compared to the FOC for the REE. The FOC with respect to L(r) (3.3)

contains the ratio #z(r)
#L(r)

; which is equal to: #z(r)
#L(r)

= � 1
L(r)

SZ
0

e��(r�s)
2
ds: Also, the FOC

with respect to E(r) (3.5) contains the term #X(r)
#E(r)

= 1
E(r)

e

SR
0

h
e��(r�s)

2
lnE(s)

i
ds SR
0

e��(s�r)
2
ds:

Using these two terms, we follow the method analysed in Appendix A to �nd the optimal

solution.

Appendix C: Transformation of the system (2.13) to a single Fredholm equation of

2nd kind (Polyanin and Manzhirov, 1998).

We de�ne the functions Y (r) and G(r) on [0; 3S], where Y (r) = yi(r � (i � 1)S)

and G(r) = gi(r � (i � 1)S) for (i � 1)S � r � iS:28 Next, we de�ne the kernel C(r; s)

on the square [0; 3S] � [0; 3S] as follows: C(r; s) = kij(r � (i � 1)S; s � (j � 1)S) for

(i� 1)S � r � iS and (j � 1)S � s � jS:

So, the system (2.13) can be rewritten as the single Fredholm equation:

Y (r)� 1
1�a�b�c

R 3S
0
C(r; s) Y (s) ds = G(r), where 0 � r � 3S:

If the kernels kij(r; s) are square integrable on the square [0; S]� [0; S] and gi(r) are

square integrable on [0; S], then the kernel C(r; s) is square integrable on the new square:

[0; 3S]� [0; 3S] and G(r) is square integrable on [0; 3S]:

Appendix D: Figures 6 and 7: Proof of the atness.

In order to measure atness, we use the concept of curvature. Curvature is the amount

by which a geometric object deviates from being at, or straight in the case of a line. To

28We assume that y1 = y, y2 = x and y3 = "; so as to follow the notation of our model.
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measure curvature of a line we can use the approximation:

� �
����d2qdr2

����
where in our case q(r) = exp(z(r))L(r)aK(r)bE(r)c; is the production function. We use

Mathematica to measure the curvature of lines in �gures 6 and 7. In �gure 6, at the

point r = �, the dotted line has �(�) = 168; 174, the dashed line has �(�) = 190; 340

and the solid line has �(�) = 248; 240: In �gure 7, at the point r = �, the dotted

line has �(�) = 360; 077, the dashed line has �(�) = 425; 289 and the solid line has

�(�) = 608; 352: The attest curve is the one with the lowest curvature value, ie the

dotted line (in both cases).

Another way to measure the curvature at a speci�c point is to use the approach of

the osculating circle. According to it, from any point of any curve, where the curvature

is non-zero, there is a unique circle which most closely approximates the curve near that

point. This is the osculating circle at that point. The radius (R) of the osculating circle

determines the curvature at that point in the following way:

� =
1

R

So, we draw the osculating circles at point r = �, of the curves, in Figures 6 and 7.

Left Figure (6): Let R11 be the radius of the osculating circle of the solid line, R12

be the radius of the osculating circle of the dashed line and R13 be the radius of the

osculating circle of the dotted line, then it is obvious that R11 < R12 < R13. Also, if the

corresponding curvatures are �11 =
1
R11
, �12 =

1
R12

and �13 =
1
R13
, then �11 > �12 > �13:

Right Figure (7): Let R21 be the radius of the osculating circle of the solid line, R22
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be the radius of the osculating circle of the dashed line and R23 be the radius of the

osculating circle of the dotted line, then it is obvious that R21 < R22 < R23. Also, if the

corresponding curvatures are �21 =
1
R21
, �22 =

1
R22

and �23 =
1
R23
, then �21 > �22 > �23:

As a result, in both �gures, the dotted line is the attest curve.
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