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Abstract

We use Bayesian Markov Chain Monte Carlo methods to investigate the linkage
between the volatility of ethanol security prices and the uncertainty surrounding the
profitability of ethanol production and the price variations of non-ethanol energy
securities. The joint evolution of return and volatility is modeled as a stochastic process
that incorporates jumps in both return and volatility. While a strong and significant
correlation is found between the volatility of ethanol securities and profit uncertainty
from June 2005 to July 2008, the dynamic pattern of ethanol stock volatility is strikingly
similar to that of the S&P 500 energy sector index in the more recent period. Our
evidence lends support to the findings in the literature on rational learning from
uncertainty in determining the equity price and volatility during the adoption and

development of a technological innovation.

Keywords: jumps, rational learning, stochastic volatility, technological innovation.
JEL classification: C11; G12; Q42.



1. Introduction

Production of corn-based ethanol in the United States increased from 3.9 million gallons
in 2005 to 9.0 million gallons in 2009 (RFA 2009). The Renewable Fuel Standard (RFS),
a provision of the Energy Policy Act of 2005, mandated 5.4 billion gallons of renewable
fuels be blended into gasoline in 2008 and 7.5 billion gallons by 2012. The Energy
Independence and Security Act of 2007 further expanded the short-term targets for corn-
based ethanol production and consumption (9 billion gallons by 2008) and the long-term
targets (15 billion gallons by 2022). A high oil price, an import tariff that protects
domestically produced ethanol from imports, and tax credits for refiners who blend
ethanol have stimulated investments in the biofuels industry and related publicly traded
securities.

There was a boom of ethanol IPOs (initial public offerings, the first step to
becoming a publicly traded company) over the period 2004-2006. The amount of money
raised through the flow of clean technology company IPOs was over $50 billion, even
without accounting for the institutional and private investments (WSJ 2008). A number
of ethanol producers later became publicly traded companies on the stock markets. By the
end of 2007, the renewable energy sector had a market cap of about $170 billion, while
the majority of companies had market valuations below $500 million and a few of them
never generated any revenues from production. In addition, biofuel stock prices have
shown a common volatile and bubble-like pattern. After an initial surge in May 2006,
stock prices fell in the presence of high volatility in crude oil and corn prices. The rapid
expansion in biofuel investments may have exhibited wasteful overinvestment. This is
indicated by the fact that numerous established producers have filed for Chapter 11
bankruptcy protection. While these phenomena could be attributed to market irrationality,

they might also reflect market uncertainty about ethanol’s future profitability. The time-



varying nature of this uncertainty could produce excess volatility and observed price
behavior. In this study, we attempt to determine if the patterns we observe could be
attributed to market irrationality, or whether that they can be explained by the market’s
rational learning from uncertainty associated with contingent profitability of ethanol
production.

The dynamic properties of stock prices and price variations have been extensively
investigated in the literature; however, the studies on the evolution of biofuel stock prices
are sparse. One exception is Henriques and Sadorsky (2008). The authors examine the
interactions among alternative energy stock prices, technology stock prices, oil prices,
and interest rates. Technological stock prices and oil prices are shown to Granger-cause
changes in alternative energy stock prices, while shocks to technology stock prices have a
larger impact.

A few studies link stock price changes to technological revolution and firms’
intangible capital accumulation to explain stock market run-ups in the 1920s and 1990s
(e.g., Hall 2001; Hobijn and Jovanovic 2001; Laitner and Stolyarov 2003; Nicholas 2008).
The most relevant is Pastor and Veronesi (2009). In a general equilibrium model, they
investigate the bubble-like stock prices of firms that employ a new technology during
technology revolutions. The generated stock price pattern is proved to be consistent with
the characteristics of technology revolutions, including high uncertainty and fast adoption,
and investors’ rational expectations. The basic argument is that, as a new technology
emerges, investors are highly uncertain about its future productivity because of the small
scale of initial production and a low probability of large-scale adoption. The nature of the
risk associated with this uncertainty varies over time, which may produce observed stock

price patterns and also have important implications for price volatility.



In a related study seeking to understand the role of learning in financial markets,
Pastor and Veronesi (2003, 2006) argue that the observed high valuation of NASDAQ
stocks during the Internet booms in the late 1990s was mainly driven by high uncertainty
of the dividend growth rate of the innovative firms. The initial overinvestment associated
with technological revolutions could also be rationalized as an efficient way of learning
about returns to scale in a new industry, as shown by Johnson (2007) and DeMarzo,
Kaniel and Kremer (2007).

In the current study, we first examine the dynamic behavior of biofuel stock
prices during the recent expansion by comparing the level and volatility of biofuel stock
prices with those of traditional energy stocks. A biofuel stock price index is constructed
as a proxy for the stock prices of major publicly traded ethanol producers, while the S&P
500 energy sector index (SPNY)) represents stock prices of various companies in the
traditional energy sector. We limit our consideration to companies producing corn-based
ethanol. This is the most mature biofuel production technology in the United States.

The daily returns and volatilities of price indices for biofuels and energy stocks
are modeled in a stochastic volatility model with correlated Merton jumps in returns and
volatility. The estimation is done using the Bayesian Markov Chain Monte Carlo
(MCMC) technigue. A data augmentation approach is employed to obtain the latent
volatility variables. We further analyze the relationship between the estimated volatility
and profit uncertainty associated with ethanol production.

In the next section, we establish the empirical model and briefly describe the
Bayesian MCMC simulator used to characterize the posterior distribution of the
parameters of interest. Details of the Gibbs sampler algorithm and simulation study are

deferred to the Appendices. Section 3 describes the data construction procedure and



resources of collection. Our empirical results are presented in Section 4, and Section 5

concludes with a summary.

2. Empirical Model and Bayesian Simulator

2.1 The Model

To fully capture the dynamics of biofuel stock prices, we apply the stochastic volatility
model with correlated Merton jumps in returns and volatility (SVCMJ). The model was
first proposed by Eraker, Johannes and Polson (2003, hereafter EJP) belonging to the
class of affine jump-diffusion models in Duffie, Pan and Singleton (2000). Assuming that
asset prices are driven by a continuous diffusion process and discontinuous Poisson
jumps, the SVCMJ model provides a parsimonious and tractable method to estimate the
time-varying volatility of returns. The model is motivated by recent studies documenting
the need to simultaneously incorporate jumps in returns and volatility in order to better
represent the observed price dynamics (e.g., Anderson, Benzoni and Lund 2002; Chernov
et al. 2003). Specifically, while jumps in returns generate infrequently observed sudden
changes in asset prices, incorporating jumps in volatility captures the rapid increases in
volatility process and may remove model misspecification and significantly improve
model performance (EJP 2003).

We assume that the logarithm of stock price, Y, =log(S,), satisfies the following

stochastic differential equations:

dy,) u 1 0 dJ;
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where V,_ = “Q]Vs , V, is the instantaneous volatility, W, is a standard Brownian motion
S

in R?, and jumps in returns and volatility are represented by J’ and J', respectively.



While x measures the mean return, « is the speed of mean reversion of volatility, & is
the long-run mean of stochastic volatility, and o, is the so-called volatility of volatility
measure. The correlation between returns and instantaneous volatility is denoted by p .

Without jumps in returns and volatility, model (1) reduces to the square-root stochastic
volatility model in Heston (1993). Model (1) is the same as the stochastic volatility with
jumps in returns model presented in Bates (1996) while jumps in volatility are not
included.

To model daily stock prices, we apply the first-order Euler discretized version of the
continuous time model specified in (1) with the discretization interval A =1/250." The

discretized empirical model is

_ y y
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where ¢;,,,, and ¢.,,, are N(0,1) random errors with correlation o . The correlated

error specification attempts to capture the leverage effect, a negative correlation between

current returns and future volatility (Nelson 1991). The jumps in returns and volatility are

defined as J ;). = StyaNna @ s = Siya Ny » respectively, where the
contemporaneous jump arrivals N, follow a Poisson processes with constant intensity
A, 1.6, P(N, =1) =AA for small delta. The jump sizes, &, and &, , are correlated
with coefficient p, , and distributed as &), ~exp(g,), and &i.pyu 1S ~

N (x, +pJ§(\{+1)A'JS) :

The SVCMJ model has the significant advantage of containing three factors

simultaneously (EJP 2003). These are the diffusive stochastic volatility, the jump in

! Using daily price data, EJP (2003) prove that the discretization method does not show a significant bias.



returns, and jump in volatility, each of which has a different impact on the distribution of
returns. While diffusive stochastic volatility and jumps in returns generate unconditional
and conditional non-normality in returns consistent with empirical findings, jumps in

volatility capture a rapidly changing but persistent component in volatility dynamics.

2.2 Bayesian Estimation

This section describes the Bayesian MCMC estimation method for the discretized
SVCMJ model specified in (2). Estimation of double jump processes is challenging
because the high dimensionality of latent variables, such as stochastic volatility, jump
sizes and times in both returns and volatility significantly complicates the estimation.
Computationally it is almost impossible to integrate the large number of latent variables
when implementing either likelihood or moment-based approaches. To overcome this
difficulty, we adopt a Bayesian MCMC method for the estimation. Compared with other
estimation methods of stochastic volatility models such as efficient method of moments
(EMM), simulated maximum likelihood (e.g., Brandt and Santa-Clara 2002), and
generalized method of moments (GMM) (e.g., Pan 2002), a Bayesian approach is
particularly suitable, having been proven to perform well and produce relatively accurate

results.

In model (2) only stock returns (Y,)[:" are observable; stochastic volatility (V,)[*",

jump times (N,)7,, and jump sizes (&), and (&')!, are latent.? The set of parameters
of interest is ® ={u,x,0,0,,p, 4,4, 1,,0,,p,}. The MCMC methods avoid

marginalization issues by using a conditional simulation strategy. It is worth noting that

% To simplify notation, we ignore the discretization interval A associated with time t and t+1 in the
subscripts in this and in the following sections.



the Kalman Filter block updating method is difficult to model since the square-root

volatility process is nonlinear, non-Gaussian and correlated with returns.
Conditioningon V,, N,, &’, &', the increments for return and volatility, Y,,, —Y, and

V,

t+1

Yig =Y v A+ N & 1 po,
(3) . |Vt’ Nt’é:ty’ft ~N = v VA 2
Vt+1 _Vt K’(@—Vt)A-i- Nt‘ft PO, o,

The joint distribution of Y, V, N, &", &', and the parameters © is

-V, , follow a bivariate normal distribution:
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denotes the joint prior distribution of model parameters.

, while p(®)

We use convenient conjugate priors wherever possible in order to obtain standard
forms of posterior distributions from which to draw directly. The following prior

distributions are chosen: x~N(0,1), x ~TN,(0,1), # ~TN,,(0,1), x, ~ N(0,100),
aj ~1G(5,1/20), A ~ Beta(2,40), u, ~ 1G(10,1/10), and p, ~ N(0,4) .> Similar to

Jacquier, Polson and Rossi (1994), (p,o,) are re-parameterized as (¢,,®,) , where

3 TN, (u,0") denotes a normal distribution with mean x and variance & truncated to the interval

(a,b),and IG and Beta represent the inverse gamma and beta distribution, respectively.



¢, =o,p and o, = ¢’ (L- p?). The priors of the transformed parameters are chosen as
¢, |, ~N(0,1/2w,) and w, ~ 1G(2,200) . Following Li, Wells and Yu (2008), the

applied MCMC algorithm generates samples by iteratively drawing from the derived
conditional posteriors, which is fully described in Appendix A.

We generate an artificial data set consisting of 1,000 data points, using the discretized
model (2) with assumed true parameter values and the discretization interval A =1/250
to check the reliability of the Bayesian estimation approach. The 1,000 data points are
chosen to be consistent with the number of observations we have for real stock price data.
The estimation results on simulated data summarized in Appendix B indicate that the
algorithm provides relatively accurate estimates for most of the model parameters and is
capable of capturing major dynamics of the volatility path and jumps in both returns and

volatility processes.

3. Ethanol Companies and Data

To investigate the biofuel stock price dynamics and link these dynamics to the
uncertainty of production profitability, we construct a biofuel stock price index from the
stock prices of twelve public traded companies in the U.S. ethanol sector over the period
June 30, 2005 to July 9, 2009. The selected company names, trading symbols, weights
used in the index, market capitalization and sample periods are listed in Table 1.
Following the construction of the S&P 500 index,* the ethanol stock price index is
calculated using a base-weighted-average methodology to reflect daily ethanol stock
variation relative to a particular base period. Instead of using a market-capitalization-
based system where weight on each stock is equal to its share in the total market values

of included companies, we assign the particular weights to individual stocks based on

* The calculation method for the S&P 500 index can be retrieved from
http://www.cftech.com/BrainBank/FINANCE/SandPIndexCalc.html.




their market importance within the sector.’ The reason is two-fold: first, to ensure that the
index does not depend on a few sector giants for its valuation; and second, to ensure that
the index does not swing based on the volatility of a few thinly traded small-cap stocks.

The base period is chosen as June 30, 2005, when the ethanol stock price index
starts at 30. The index is calculated as weighted daily stock prices divided by an
adjustment factor where the latter is employed to maintain the consistency of the index
when new stocks are brought in and some companies are removed.

The medium- and large-cap companies we consider in this study include Archer
Daniels Midland (NYSE: ADM), Cosan (NYSE: CZZ), and Andersons (NASDAQ:
ANDE), all of which have market capitalization of over $300 million and are not “pure-
play” ethanol companies. ADM is the second-largest corn-based ethanol producer in the
United States after the privately held company POET, with an annual production capacity
of more than 1 billion gallons.® ADM is also the world largest processor of oilseeds, corn
and wheat and operates one of the world’s largest crop origination and transportation
networks. Ethanol is one of ADM’s most profitable businesses, generating about $600
million in profit in 2007, which helped ADM’s stock price reach an all-time high of
$48.18 in April 2008.” Cosan is one of the world’s largest growers and processors of
sugarcane and the largest sugarcane ethanol producer in Brazil. In 2008, it manufactured
over 400 million gallons of sugar-based ethanol for both domestic and international
markets. The grain and ethanol group is the fastest-growing segment of Andersons’
operating ethanol manufacturing capacity of 275 million gallons in Indiana and Michigan.
As a diversified agribusiness group, Andersons also owns businesses in grain processing,

a retail store chain and rail transportation.

® We apply the same weights used by the Biofuel Digest Index (BDI), which are determined by an expert
panel (personal communication with Jim Lane, editor and publisher of Biofuel Digest Daily).

® By the end of 2008, after a series of mergers and acquisitions, Verasun Energy became the largest ethanol
producer in the U.S., but it filed for bankruptcy protection and liquidated its assets in mid-2009.

" Unless otherwise stated, company information was retrieved from company Web sites.



From 2006 to 2007, while ADM and Xethanol (AMEX: XNL) were already listed
on the New York Stock Exchange and the American Stock Exchange, respectively, Green
Plains Renewable Energy (NASDAQ: GPRE) and BioFuel Energy (NASDAQ: BIOF)
joined other publicly traded ethanol producers such as MGP Ingredients (NASDAQ:
MGPI) and Pacific Ethanol (NASDAQ: PEIX) on the NASDAQ stock market. VeraSun
Energy (NYSE: VSE) and Aventine Renewable Energy (OTC: AVRNQ) followed the
trend to list on the New York Stock Exchange.

Green Plains Renewable Energy produces about 480 million gallons of ethanol
annually, with six ethanol facilities in Indiana, lowa, Nebraska and Tennessee. After
merging with biofuels terminal company Blendstar, Green Plains also runs a number of
terminal facilities throughout the southern United States. Distillery products accounted
for 73% of the 2008 revenues of MGP Ingredients, with the other 27% of revenues
coming from food/fuel graded alcohol and other industrial organic chemicals. Pacific
Ethanol produces, markets and sells ethanol and other renewable fuels in the western
United States and is the largest producer on the West Coast. Its subsidiaries that owned
four ethanol plants filed for Chapter 11 bankruptcy protection on May 18, 2009. Founded
in 2006, Biofuel Energy operates three large-scale ethanol production facilities located in
Nebraska and Minnesota with an annual capacity of 230 million gallons of fuel-grade
ethanol. VeraSun Energy was one of the leading ethanol producers in the United States,
maintaining production facilities across the Midwest. Big expansions, including the
acquisition of three facilities from ASAlliances Biofuels in 2007, and a merger with U.S.
BioEnergy in 2008 increased VeraSun’s production capacity to more than 1 billion
gallons. But in October 2008, VeraSun suffered heavy losses and then filed for

bankruptcy protection. By early 2009 VeraSun requested permission to liquidate its assets
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and was forced to put its plants up for auction, eventually choosing Valero to buy seven
facilities for $477 million, a deal that was completed in March 20009.

We also include three relatively small ethanol companies in the biofuel price
index. Global Energy Holdings Group (NYSE: GNH), formerly Xethanol Corp., operates
two waste-to-ethanol facilities in lowa. Tiger Renewable Energy (OTC: TGRW) is an
international ethanol producer, focusing on China’s corn ethanol market. Aventine
Renewable Energy focuses on manufacturing and marketing corn-based ethanol, with
two ethanol plants in Nebraska and Illinois and production of 188.8 million gallons of
ethanol in 2008. It filed for bankruptcy protection on March 31, 2009.

Historical stock prices of the companies described above were collected from
DataStream Advance. All prices are closing prices after adjusting for historical corporate
actions including stock splits, dividends, distributions and right offerings. Daily prices of
the S&P 500 energy sector index, SPNY, were also collected to represent the price trend
of oil company shares.

The time series of the biofuel stock price index, which is presented in Figure 1,
shows an obvious bubble-like pattern. Starting at 30 on June 30, 2005, the value of the
ethanol stock index sharply increased and peaked at 78 on May 11, 2006, then gradually
dropped to 50 in September 2006. After wandering in the range of 40-50 until June 2008,
the index fell significantly, dropping to 20 by October 2008 and staying at that level to
the end of the sample period.

Historical expected ethanol operating margins are collected from the Web site of
the Center for Agricultural and Rural Development at lowa State University.? The margin
is a measure of profit potential for ethanol production, which is calculated as the

difference between revenues from production outputs including ethanol and distillers

® The data were retrieved from http://www.card.iastate.edu/research/bio/tools/hist_eth_gm.aspx. (accessed
8 September 2009).
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dried grains with solubles and various input costs such as corn and natural gas. Ethanol
and corn futures prices for the nearby contracts on the Chicago Board of Trade (CBOT)
and natural gas futures prices from the New York Mercantile Exchange (NYMEX) are
used for the calculation of expected ethanol margins. The daily margins over the sample
period are presented in Figure 2.

From late 2005 through much of 2006, high crude oil prices together with rising
world energy demand drove gasoline prices to a near record high. High energy prices
coupled with an increase in mandated use of ethanol in California led to higher ethanol
prices. The ethanol operating margin peaked in June 2006, reaching $3.23 per gallon.
During this boom, the U.S. ethanol industry grew from 3.4 billion gallons of capacity in
2004 to 9.0 billion gallons in 2008. Excess capacity led to lower ethanol prices, and the
ethanol operating margin was further reduced by high corn and natural gas prices. By
July 2008, the margin was reduced to only $0.30 per gallon and stayed at that level or

even lower afterwards.

4. Estimation Results and Analysis

We define the daily uncertainty of ethanol profitability as the standard deviation of
ethanol operating margin over the most recent 30 days. We run the Bayesian MCMC
algorithm on the constructed ethanol stock price index and the SPNY index for 50,000
iterations with the first 40,000 draws discarded as burn-in. The last 10,000 iterations are
used to estimate model parameters where the means and standard deviations of the
posterior samples are calculated as parameter estimates and standard errors, respectively.
Table 2 provides the estimation results for the two indices and Figures 3 and 4 present the

estimated volatility processes.
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The parameter estimates of the SVCMJ model for the ethanol stock index indicate
(i) a strong mean-reverting effect in the stochastic volatility process with the speed,

x =2.41, and the long-run mean return z*250 =0.03*250 = 7.50% ; (ii) a negative
correlation between return and instantaneous volatility, p =-0.15; and (iii) infrequent

jumps in returns and volatility. The estimate of the jump intensity parameter 4 =0.0019
suggests on average 0.0019*250 =0.48 jumps per year. With only three years of data
available, the jump components in returns and volatility are difficult to capture, as
indicated by the relatively large standard errors associated with the jump-related

parameters, including x,, p,,and o, .

The dynamic relationships among the volatilities of ethanol and SPNY indices as
well as uncertainty are presented in Figures 3 and 4. There is a notable structural change
in the biofuel price index over the sample period. Before July 2008, ethanol price
volatility largely followed the pattern of profit uncertainty. However, the volatility
patterns of the ethanol stock index and S&P 500 energy index are strikingly similar in the
more recent period. We formally test for the structural change point in the estimated
volatility of the ethanol stock index by employing the test proposed in Bai and Perron
(1998) and the traditional CUSUM test, which is first introduced in Ploberger and
Kramer (1992).° Both tests identify the structural change point at July 15, 2008.

Figure 3 overlays the volatility of ethanol stock prices and uncertainty of ethanol
profitability, where the latter is computed daily over the most recent 30 days. As
mentioned above, the empirical pattern of stock price volatility is quite similar to that of
uncertainty before the structural change that happened in mid-July 2008. The volatility

peaks in late 2005 to mid-2006, which was a time of high uncertainty in ethanol

® Although these structural change tests are mainly developed for detecting endogenous breaks in the mean
parameters of trend models, as mention, they can also accommodate changes in the variance (Bai and
Perron 1998). The CUSUM test is employed for robustness check. Further evidence of application of the
tests on volatility process can be found in, e.g., Cufiado, Biscarri and Hidalgo (2004).
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profitability. This means that while investors anticipated the uncertainty associated with
ethanol returns, the risks are fully reflected in the variation of ethanol stock prices. This
relationship is further confirmed by the OLS regression of estimated ethanol volatility on
uncertainty. The results show a positive (0.63) coefficient of uncertainty on stock
volatility, which is statistically significant at the 1% level. Approximately 23% of the
volatility variation can be explained by changes in uncertainty.

Figure 4 plots the estimated volatility processes of the ethanol stock index and
S&P 500 energy index. Before July 2008, ethanol stocks were more volatile than the
general energy stocks, probably due to uncertainty associated with the new technology
and/or business model. After July 2008, the evolution of ethanol volatility tracks with
that of the S&P 500, which is consistent with the timing of the oil price shock in mid-
2008 and the corresponding binding ethanol blending mandate. As the crude oil price
reached $140 in June 2008, there was an expectation that more ethanol facilities would
come online. When crude oil prices began to fall, it was clear that additional facilities
would not have to be built. In fact it became clear that the government mandate on
ethanol consumption would be binding (Babcock 2008). With cheap crude oil, there was
low demand for ethanol. The gasoline producers would be forced to buy ethanol even if it
was sold at a loss. They offered ethanol producers just enough to stay in business and
meet the mandate. Profitability in ethanol was close to zero, and the stock prices reflected

this.

5. Conclusion
Employing a stochastic volatility model with correlated jumps in both returns and
volatility, we examine the empirical links among volatility of ethanol stock prices,

uncertainty associated with profitability of ethanol production and stock price variation in
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the traditional energy sector. An ethanol stock price index is constructed to measure the
price pattern of publicly traded ethanol stocks over the period June 2005 to July 2009.
With increasing scale of adoption and production of ethanol, a strong and
significant correlation is found between ethanol stock volatility and profit uncertainty
before July 2008. This supports recent findings in the literature on the relationship
between uncertainty and price variation during the evolution of an innovative technology.
The volatility process of biofuel stock prices is found to have had a structural change in
July 2008, which may have been induced by the interactions between agricultural and
energy markets. Biofuel stock price volatility tracked closely with that of the traditional

energy sector after that period.
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Table 1. Companies included in the ethanol stock price index.

Market Capitalization
(as of 15 Nov 2009,

Name Symbol in million U.S. dollars)  Weight Sample Period
Archer Daniels Midland NYSE: ADM 18290 1 30 Jun 2005-9 Jul 2009
Cosan Limited NYSE: CZZ 2300 0.33 16 Aug 2007-9 Jul 2009
The Andersons, Inc. NASDAQ: ANDE 622.20 0.33 30 Jun 2005-9 Jul 2009
Green Plains Renewable Energy, Inc. NASDAQ: GPRE 183.92 0.1 15 Mar 2006-9 Jul 2009
MGP Ingredients, Inc. NASDAQ: MGPI 66.73 0.1 30 Jun 2005-9 Jul 2009
Pacific Ethanol, Inc. NASDAQ: PEIX 28.30 0.33 30 Jun 2005-9 Jul 2009
BioFuel Energy Corp. NASDAQ: BIOF 23.09 0.25 14 Jun 2007-9 Jul 2009
Aventine Renewable Energy Holdings, Inc. OTC: AVRNQ 7.95 0.33 29 Jun 2006-9 Jul 2009
Global Energy Holdings Group, Inc. AMEX: GNH 494
(former Xethanol Corp.) (former XNL) ' 0.1 30 Jun 2005-9 Jul 2009
Cono Italiano, Inc. OTC: CNOz 145
(former Tiger Renewable Energy) (former TGRW) ' 0.1 11 Dec 2006-9 Jul 2009
VeraSun Energy NYSE: VSE N/A

(delisted) 0.33 14 Jun 2006-9 Jul 2009
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Table 2. Estimation results of biofuel stock price index and S&P 500 energy sector
index.
Ethanol Stock Index S&P 500 Energy Index
Mean Stand. Error Mean Std. Error
H 0.03 0.20 0.28 0.19
4, 0.66 1.96 -5.40 1.65
Ly 1.07 0.25 1.10 1.10
£, 0.33 0.86 0.26 0.26
o, 2.30 0.69 2.04 2.04
A 0.0019 0.0014 0.0019 0.0014
0 1.43 0.43 1.37 0.44
K 241 0.69 2.24 0.71
o, 2.49 0.14 2.37 0.12
P -0.15 0.10 -0.07 0.10
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Figure 1. Constructed ethanol stock price index, 30 June 2005-9 July 2009.
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June 2005-9 July 2009.
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Appendix A: The Posterior Simulator

In the following, we describe the Gibbs sampling algorithm employed for simulating the
parameters of interest from their derived posterior distributions. Here, we let ©,_,
denote all parameters in the set ® except x, the one being simulated.

Step 1. 4|Y,V,N,&",&",0,, ~ N(S/W,1/W)

A 1 1 1 &1 D m
WhereW:l 2 (\TJ_’_MZ’S: ZZ\T(Ct—p;t}W,

C,=Y.,,-Y,—N¢& ,andD, =V, -V, -x(@-Vv,)A-N,&'. m and M are the

t+1
hyperparameters for the prior distribution of the corresponding parameter (the same

hereafter).

Step 2: 41, |Y,V,N,&",8",0,, ~N(S/W,1/W)

.
y _ Y
o1 L 2&@-es)
where W = —+—, S= > +—.
o, M o, M

.
Step 3: 4, |Y,V,N,&",&",0,_,, ~ IG(T +m,1/ ()& +1/ M)j.

t=1

Step 4: p, | Y,V,N,&%,8",0,_,, ~N(S/W,1/W)

;
ey o, xae
where W == + S=4 + C=& —nu,.

Step 5: o-§|Y,V,N,F,y,§V,®{7GZ} ~1G %+m, -
12 (& —my = py &) +1IM
t=1

T T
Step6: A|Y,V,N,&",&",©,,, ~Beta ZNt+m,T—ZNt+M]
t=1 t=1
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Step 7: O]Y,V,N,&",&",0,,, ~TN., (S/W,1/W)

T T _
where W = Zzl =, . > D/, — pC, +m2,
(1 pl=EVe M (1_,0 )o, ‘=T Vi M

C =Y., -Y, —uA—-NE’ and D, =V, + (kA -1V, - N, &' .

Step 8: x|Y,V,N,&%,8",0,,, ~TN (S/W,1/W)

T \/\2

where W = —; A - Z(e V) 12,
o, (1_p ) t=1 Vt M
S = (1 1 ) Z((e—vt)(D{// o, _pCt)}_i_ '\;Inz 1 Ct :Yt+1_Yt —/JA— Ntfty , and
p v t=1 t

Dt :Vt+1 _Vt - Ntftv .

v T 1
Step9: @, |Y,V,N,&%,& O oy ~ 1G] —+m, - and

1/2) D} +1/M —S*/2W

t=1

¢, 1o, ~N(SIW,w, /W)

T T
where W =Y C?+2, $=>CD,, C,=(Y,,~Y,-uA-N&)/ VA, and

t=1 t=1

Dt = (Vt+l _Vt —K‘(H _VI)A - thtv)/\/ ;tA .

Then (¢,,w,) are inverted back to get (o, o,) after each posterior draw of (4, ,w, ).

Step 10: N, |Y,V,&",&",0 ~Bernou|li( % }
0(l+6¥2
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where o, = exp{ 7 )[A1 2pAB, +B; ]}

az=exp{—ﬁ[A§—2pAzBZ+Bi}}a—ﬂ) A= (VoY A= &) A,

A= (Yo=Y, —ur) L NA  and B = Vi, -V, - k(0 -V)A-E) [ (o,\VA),
B, = Vo, —V, —x(8-V)A) / (5, VA).
Step 11: The posterior draw of (£”,¢}") are jointly drawn from the following distribution.
&' 1Y, V,N,0 ~ TN, (S, /W, 1/W,), & [ &Y, V,N,0~ TN, (S, /W,,1/W,).
N? p? B?

where W, =—— ——+ % ——
‘ (1-p*)oVA O'j W,

N D, #pP, 1 AB N/ 1

S, =i (-pC+ ) - -+ — W, =————+ =, S, = A+ Bg,
@ e ) o u W, (Q-pNA o g
2
=—N2t (t_th) 'u—é L 2,C =Y,,,-Y,—uA, and
1-p VA o, o, (1-p*)o VA o,

D, =V, -V, —x(6-V)A.
Step 12: The posterior distribution of v,,, is time-varying.

forl<t<T,

PV, | Y. N,8,87,0) o« exp{ <

t

2(1-p?)
where St = (Yt+l =Y, —pA - thty) / 4\ ;t—lA ,

[-2p50s! +(s) ]
2(1- p*)

{ [gtyu - Zpggrlgtvﬂ + (gtv+1)2:|
X eXp

¢ =V, -V, —x(@0-V)A-NE") (o Vv ,A).

Fort=1,
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1 (¢! —2pcic; +(53)°]
Y,N, y, v’® v - '
PO Y. N2,8,0) leexp{ o

Fort=T +1,

_2 y \ + v 2
p(VT+1|‘) oC exp{[ PST15T 1 (§T+1) :I}

2(1-p?%)
Given the complicated distribution forms, it is difficult to sample from this posterior

distribution of V,. To update the latent volatility variables, we employ the random walk

Metropolis-Hasting algorithm (Gelman et al. 2007).

Appendix B: Simulation study

The MCMC algorithm described in Section 2.2 is applied on a simulated data set to
measure its accuracy. The program, written in Matlab, has a posterior sample size of
50,000 for each run with the first 40,000 discarded as burn-in period. The sample mean
and standard error of the last 10,000 posterior draws as well as the true parameter values
used for simulation are reported in Table B-1. Figure B-1 presents the generated (true)
and estimated volatility processes, while the generated and estimated jumps in return and
volatility are shown in Figure B-2.

The results in Table B-1 indicate that the algorithm provides relatively accurate
estimates for most of the model parameters except the drift parameter . As Ait-Sahalia
and Kimmel (2007) point out, the estimation of drift term is difficult, requiring a long
period of samples to improve the quality of the estimate. As the volatility estimation is
the major concern in this study, Figures B-1 and B-2 show that our algorithm is capable
of capturing major dynamics of the volatility path and jumps in both returns and volatility

processes.
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Table B-1. Estimation results on simulated data set.

U Hy Hy Ps o, A 0

K o, P

True 005 300 100 -040 350 0.015 0.80
Mean 0014 293 092 -054 239 0.023 0.84
Std.err. 053 075 014 070 0.35 0.0047 0.52

1.20 200 -0.40
132 168 -0.39
050 014 0.14
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Figure B-1. Volatility estimation results of simulated data set.
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Figure B-2. Jumps estimation results of simulated data set.
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