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Abstract 
 

 

We use Bayesian Markov Chain Monte Carlo methods to investigate the linkage 

between the volatility of ethanol security prices and the uncertainty surrounding the 

profitability of ethanol production and the price variations of non-ethanol energy 

securities. The joint evolution of return and volatility is modeled as a stochastic process 

that incorporates jumps in both return and volatility. While a strong and significant 

correlation is found between the volatility of ethanol securities and profit uncertainty 

from June 2005 to July 2008, the dynamic pattern of ethanol stock volatility is strikingly 

similar to that of the S&P 500 energy sector index in the more recent period. Our 

evidence lends support to the findings in the literature on rational learning from 

uncertainty in determining the equity price and volatility during the adoption and 

development of a technological innovation. 

 

Keywords: jumps, rational learning, stochastic volatility, technological innovation. 

JEL classification: C11; G12; Q42. 
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1. Introduction 

Production of corn-based ethanol in the United States increased from 3.9 million gallons 

in 2005 to 9.0 million gallons in 2009 (RFA 2009). The Renewable Fuel Standard (RFS), 

a provision of the Energy Policy Act of 2005, mandated 5.4 billion gallons of renewable 

fuels be blended into gasoline in 2008 and 7.5 billion gallons by 2012. The Energy 

Independence and Security Act of 2007 further expanded the short-term targets for corn-

based ethanol production and consumption (9 billion gallons by 2008) and the long-term 

targets (15 billion gallons by 2022). A high oil price, an import tariff that protects 

domestically produced ethanol from imports, and tax credits for refiners who blend 

ethanol have stimulated investments in the biofuels industry and related publicly traded 

securities. 

There was a boom of ethanol IPOs (initial public offerings, the first step to 

becoming a publicly traded company) over the period 2004-2006. The amount of money 

raised through the flow of clean technology company IPOs was over $50 billion, even 

without accounting for the institutional and private investments (WSJ 2008). A number 

of ethanol producers later became publicly traded companies on the stock markets. By the 

end of 2007, the renewable energy sector had a market cap of about $170 billion, while 

the majority of companies had market valuations below $500 million and a few of them 

never generated any revenues from production. In addition, biofuel stock prices have 

shown a common volatile and bubble-like pattern. After an initial surge in May 2006, 

stock prices fell in the presence of high volatility in crude oil and corn prices. The rapid 

expansion in biofuel investments may have exhibited wasteful overinvestment. This is 

indicated by the fact that numerous established producers have filed for Chapter 11 

bankruptcy protection. While these phenomena could be attributed to market irrationality, 

they might also reflect market uncertainty about ethanol’s future profitability. The time-
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varying nature of this uncertainty could produce excess volatility and observed price 

behavior. In this study, we attempt to determine if the patterns we observe could be 

attributed to market irrationality, or whether that they can be explained by the market’s 

rational learning from uncertainty associated with contingent profitability of ethanol 

production. 

The dynamic properties of stock prices and price variations have been extensively 

investigated in the literature; however, the studies on the evolution of biofuel stock prices 

are sparse. One exception is Henriques and Sadorsky (2008). The authors examine the 

interactions among alternative energy stock prices, technology stock prices, oil prices, 

and interest rates. Technological stock prices and oil prices are shown to Granger-cause 

changes in alternative energy stock prices, while shocks to technology stock prices have a 

larger impact. 

A few studies link stock price changes to technological revolution and firms’ 

intangible capital accumulation to explain stock market run-ups in the 1920s and 1990s 

(e.g., Hall 2001; Hobijn and Jovanovic 2001; Laitner and Stolyarov 2003; Nicholas 2008). 

The most relevant is Pastor and Veronesi (2009). In a general equilibrium model, they 

investigate the bubble-like stock prices of firms that employ a new technology during 

technology revolutions. The generated stock price pattern is proved to be consistent with 

the characteristics of technology revolutions, including high uncertainty and fast adoption, 

and investors’ rational expectations. The basic argument is that, as a new technology 

emerges, investors are highly uncertain about its future productivity because of the small 

scale of initial production and a low probability of large-scale adoption. The nature of the 

risk associated with this uncertainty varies over time, which may produce observed stock 

price patterns and also have important implications for price volatility. 
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In a related study seeking to understand the role of learning in financial markets, 

Pastor and Veronesi (2003, 2006) argue that the observed high valuation of NASDAQ 

stocks during the Internet booms in the late 1990s was mainly driven by high uncertainty 

of the dividend growth rate of the innovative firms. The initial overinvestment associated 

with technological revolutions could also be rationalized as an efficient way of learning 

about returns to scale in a new industry, as shown by Johnson (2007) and DeMarzo, 

Kaniel and Kremer (2007). 

In the current study, we first examine the dynamic behavior of biofuel stock 

prices during the recent expansion by comparing the level and volatility of biofuel stock 

prices with those of traditional energy stocks. A biofuel stock price index is constructed 

as a proxy for the stock prices of major publicly traded ethanol producers, while the S&P 

500 energy sector index (SPNY) represents stock prices of various companies in the 

traditional energy sector. We limit our consideration to companies producing corn-based 

ethanol. This is the most mature biofuel production technology in the United States. 

The daily returns and volatilities of price indices for biofuels and energy stocks 

are modeled in a stochastic volatility model with correlated Merton jumps in returns and 

volatility. The estimation is done using the Bayesian Markov Chain Monte Carlo 

(MCMC) technique. A data augmentation approach is employed to obtain the latent 

volatility variables. We further analyze the relationship between the estimated volatility 

and profit uncertainty associated with ethanol production. 

In the next section, we establish the empirical model and briefly describe the 

Bayesian MCMC simulator used to characterize the posterior distribution of the 

parameters of interest. Details of the Gibbs sampler algorithm and simulation study are 

deferred to the Appendices. Section 3 describes the data construction procedure and 
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resources of collection. Our empirical results are presented in Section 4, and Section 5 

concludes with a summary. 

 

2. Empirical Model and Bayesian Simulator 

2.1 The Model 

To fully capture the dynamics of biofuel stock prices, we apply the stochastic volatility 

model with correlated Merton jumps in returns and volatility (SVCMJ). The model was 

first proposed by Eraker, Johannes and Polson (2003, hereafter EJP) belonging to the 

class of affine jump-diffusion models in Duffie, Pan and Singleton (2000). Assuming that 

asset prices are driven by a continuous diffusion process and discontinuous Poisson 

jumps, the SVCMJ model provides a parsimonious and tractable method to estimate the 

time-varying volatility of returns. The model is motivated by recent studies documenting 

the need to simultaneously incorporate jumps in returns and volatility in order to better 

represent the observed price dynamics (e.g., Anderson, Benzoni and Lund 2002; Chernov 

et al. 2003). Specifically, while jumps in returns generate infrequently observed sudden 

changes in asset prices, incorporating jumps in volatility captures the rapid increases in 

volatility process and may remove model misspecification and significantly improve 

model performance (EJP 2003). 

We assume that the logarithm of stock price, log( )t tY S= , satisfies the following 

stochastic differential equations: 

(1)  
2

1 0

( ) 1

y
t t

t t v
t t tv v

dY dJ
dt V dW

dV V dJ
μ

κ θ ρσ ρ σ
−

−

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

where limt ss t
V V− ↑

= , tV  is the instantaneous volatility, tW  is a standard Brownian motion 

in 2 , and jumps in returns and volatility are represented by y
tJ  and v

tJ , respectively. 
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While μ  measures the mean return, κ  is the speed of mean reversion of volatility, θ  is 

the long-run mean of stochastic volatility, and vσ  is the so-called volatility of volatility 

measure. The correlation between returns and instantaneous volatility is denoted by ρ . 

Without jumps in returns and volatility, model (1) reduces to the square-root stochastic 

volatility model in Heston (1993). Model (1) is the same as the stochastic volatility with 

jumps in returns model presented in Bates (1996) while jumps in volatility are not 

included. 

To model daily stock prices, we apply the first-order Euler discretized version of the 

continuous time model specified in (1) with the discretization interval 1 / 250Δ = .1 The 

discretized empirical model is 

(2)  ( 1) ( 1) ( 1)

( 1) ( 1) ( 1)( )

y y
t t t t t

v v
t t t v t t t

Y Y V J

V V V V J

μ ε

κ θ σ ε
+ Δ Δ Δ + Δ + Δ

+ Δ Δ Δ Δ + Δ + Δ

= + Δ + Δ +

= + − Δ + Δ +
 

where ( 1)
y
tε + Δ  and ( 1)

v
tε + Δ  are (0,1)N  random errors with correlation ρ . The correlated 

error specification attempts to capture the leverage effect, a negative correlation between 

current returns and future volatility (Nelson 1991). The jumps in returns and volatility are 

defined as ( 1) ( 1) ( 1)
y y
t t tJ Nξ+ Δ + Δ + Δ=  and ( 1) ( 1) ( 1)

v v
t t tJ Nξ+ Δ + Δ + Δ= , respectively, where the 

contemporaneous jump arrivals ( 1)tN + Δ  follow a Poisson processes with constant intensity 

λ , i.e., ( 1)( 1)tP N λ+ Δ = = Δ  for small delta. The jump sizes, 1
y

tξ +  and 1
v
tξ + , are correlated 

with coefficient Jρ , and distributed as ( 1) ~ exp( ),v
t vξ μ+ Δ  and ( 1) ( 1)| ~y v

t tξ ξ+ Δ + Δ  

2
( 1)( , )v

y J t yN μ ρ ξ σ+ Δ+ . 

 The SVCMJ model has the significant advantage of containing three factors 

simultaneously (EJP 2003). These are the diffusive stochastic volatility, the jump in 

                                                 
1 Using daily price data, EJP (2003) prove that the discretization method does not show a significant bias. 
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returns, and jump in volatility, each of which has a different impact on the distribution of 

returns. While diffusive stochastic volatility and jumps in returns generate unconditional 

and conditional non-normality in returns consistent with empirical findings, jumps in 

volatility capture a rapidly changing but persistent component in volatility dynamics. 

 

2.2 Bayesian Estimation 

This section describes the Bayesian MCMC estimation method for the discretized 

SVCMJ model specified in (2). Estimation of double jump processes is challenging 

because the high dimensionality of latent variables, such as stochastic volatility, jump 

sizes and times in both returns and volatility significantly complicates the estimation. 

Computationally it is almost impossible to integrate the large number of latent variables 

when implementing either likelihood or moment-based approaches. To overcome this 

difficulty, we adopt a Bayesian MCMC method for the estimation. Compared with other 

estimation methods of stochastic volatility models such as efficient method of moments 

(EMM), simulated maximum likelihood (e.g., Brandt and Santa-Clara 2002), and 

generalized method of moments (GMM) (e.g., Pan 2002), a Bayesian approach is 

particularly suitable, having been proven to perform well and produce relatively accurate 

results. 

In model (2) only stock returns 1
1( )T

t tY +
=  are observable; stochastic volatility 1

1( )T
t tV +

= , 

jump times 1( )T
t tN = , and jump sizes 1( )y T

t tξ =  and 1( )v T
t tξ =  are latent.2 The set of parameters 

of interest is { , , , , ,vμ κ θ σ ρΘ =  , , , , }v y y Jλ μ μ σ ρ . The MCMC methods avoid 

marginalization issues by using a conditional simulation strategy. It is worth noting that 

                                                 
2 To simplify notation, we ignore the discretization interval Δ  associated with time t  and 1t +  in the 
subscripts in this and in the following sections.   
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the Kalman Filter block updating method is difficult to model since the square-root 

volatility process is nonlinear, non-Gaussian and correlated with returns. 

Conditioning on ,  ,  ,  y v
t t t tV N ξ ξ , the increments for return and volatility, 1t tY Y+ −  and 

1t tV V+ − , follow a bivariate normal distribution: 

(3) 1
2

1

1
| , , , ~ ,

( )

y
t t vy v t t

t t t t tv
t t v vt t t

Y Y N
V N N V

V V v N
ρσμ ξ

ξ ξ
ρσ σκ θ ξ

+

+

⎡ ⎤− ⎛ ⎞Δ +⎡ ⎤ ⎛ ⎞
Δ⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥− − Δ +⎢ ⎥⎣ ⎦ ⎝ ⎠⎝ ⎠⎣ ⎦

   

The joint distribution of Y , V , N , yξ , vξ , and the parameters Θ  is 

(4) 

( )2 2
1 1 1 122

1

1

( , )  ( | ) ( | ) ( | ) ( )

1 1                                 exp ( ) 2 ( )
2(1 )1

                                     (1 )t t

T
y y v v

t t t t
t v t

N N

p p p p p

V
ε ρε ε ε

ρσ ρ

λ λ

+ + + +
=

−

Θ ∝ Θ Θ Θ

⎧ ⎫
∝ − − +⎨ ⎬−Δ − ⎩ ⎭

× −

∏

y v y v y vY, V, N,ξ ,ξ Y, V N,ξ ,ξ ξ ,ξ N

2

2
1 1

0
1

( )1 exp
2

1                                      exp( ) ( )v
t

y vT T
t y J t

t t y y

vT
t

t v v

I p
ξ

ξ μ ρ ξ
σ σ

ξ
μ μ

= =

>
=

⎛ ⎞− −
× −⎜ ⎟⎜ ⎟

⎝ ⎠

× − × Θ

∏ ∏

∏

 

where 1
1

y
y t t t t

t
t

Y Y N
V
μ ξε +

+
− − Δ −

=
Δ

 and 1
1

( ) v
v t t t t t
t

v t

V V V N
V

κ θ ξε
σ

+
+

− − − Δ −
=

Δ
, while ( )p Θ  

denotes the joint prior distribution of model parameters. 

We use convenient conjugate priors wherever possible in order to obtain standard 

forms of posterior distributions from which to draw directly. The following prior 

distributions are chosen: ~ (0,1)Nμ , (0, )~ (0,1)TNκ ∞ , (0, )~ (0,1)TNθ ∞ , ~ (0,100)y Nμ , 

2 ~ (5,1 / 20)y IGσ , ~ (2,40)Betaλ , ~ (10,1 /10)v IGμ , and ~ (0,4)J Nρ .3 Similar to 

Jacquier, Polson and Rossi (1994), ( , )vρ σ  are re-parameterized as ( , )v vφ ω , where 
                                                 
3 2

( , ) ( , )a bTN μ σ  denotes a normal distribution with mean μ  and variance 2σ  truncated to the interval 

( , )a b , and IG  and Beta  represent the inverse gamma and beta distribution, respectively. 
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v vφ σ ρ=  and 2 2(1 )v vω σ ρ= − . The priors of the transformed parameters are chosen as 

| ~ (0,1 / 2 )v v vNφ ω ω  and ~ (2,200)v IGω . Following Li, Wells and Yu (2008), the 

applied MCMC algorithm generates samples by iteratively drawing from the derived 

conditional posteriors, which is fully described in Appendix A. 

We generate an artificial data set consisting of 1,000 data points, using the discretized 

model (2) with assumed true parameter values and the discretization interval 1 / 250Δ =  

to check the reliability of the Bayesian estimation approach. The 1,000 data points are 

chosen to be consistent with the number of observations we have for real stock price data. 

The estimation results on simulated data summarized in Appendix B indicate that the 

algorithm provides relatively accurate estimates for most of the model parameters and is 

capable of capturing major dynamics of the volatility path and jumps in both returns and 

volatility processes. 

 

3. Ethanol Companies and Data 

To investigate the biofuel stock price dynamics and link these dynamics to the 

uncertainty of production profitability, we construct a biofuel stock price index from the 

stock prices of twelve public traded companies in the U.S. ethanol sector over the period 

June 30, 2005 to July 9, 2009. The selected company names, trading symbols, weights 

used in the index, market capitalization and sample periods are listed in Table 1. 

Following the construction of the S&P 500 index,4 the ethanol stock price index is 

calculated using a base-weighted-average methodology to reflect daily ethanol stock 

variation relative to a particular base period. Instead of using a market-capitalization-

based system where weight on each stock is equal to its share in the total market values 

of included companies, we assign the particular weights to individual stocks based on 
                                                 
4 The calculation method for the S&P 500 index can be retrieved from 
http://www.cftech.com/BrainBank/FINANCE/SandPIndexCalc.html.  
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their market importance within the sector.5 The reason is two-fold: first, to ensure that the 

index does not depend on a few sector giants for its valuation; and second, to ensure that 

the index does not swing based on the volatility of a few thinly traded small-cap stocks. 

The base period is chosen as June 30, 2005, when the ethanol stock price index 

starts at 30. The index is calculated as weighted daily stock prices divided by an 

adjustment factor where the latter is employed to maintain the consistency of the index 

when new stocks are brought in and some companies are removed. 

The medium- and large-cap companies we consider in this study include Archer 

Daniels Midland (NYSE: ADM), Cosan (NYSE: CZZ), and Andersons (NASDAQ: 

ANDE), all of which have market capitalization of over $300 million and are not “pure-

play” ethanol companies. ADM is the second-largest corn-based ethanol producer in the 

United States after the privately held company POET, with an annual production capacity 

of more than 1 billion gallons.6 ADM is also the world largest processor of oilseeds, corn 

and wheat and operates one of the world’s largest crop origination and transportation 

networks. Ethanol is one of ADM’s most profitable businesses, generating about $600 

million in profit in 2007, which helped ADM’s stock price reach an all-time high of 

$48.18 in April 2008.7 Cosan is one of the world’s largest growers and processors of 

sugarcane and the largest sugarcane ethanol producer in Brazil. In 2008, it manufactured 

over 400 million gallons of sugar-based ethanol for both domestic and international 

markets. The grain and ethanol group is the fastest-growing segment of Andersons’ 

operating ethanol manufacturing capacity of 275 million gallons in Indiana and Michigan. 

As a diversified agribusiness group, Andersons also owns businesses in grain processing, 

a retail store chain and rail transportation. 
                                                 
5 We apply the same weights used by the Biofuel Digest Index (BDI), which are determined by an expert 
panel (personal communication with Jim Lane, editor and publisher of Biofuel Digest Daily).  
6 By the end of 2008, after a series of mergers and acquisitions, Verasun Energy became the largest ethanol 
producer in the U.S., but it filed for bankruptcy protection and liquidated its assets in mid-2009. 
7 Unless otherwise stated, company information was retrieved from company Web sites.  
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From 2006 to 2007, while ADM and Xethanol (AMEX: XNL) were already listed 

on the New York Stock Exchange and the American Stock Exchange, respectively, Green 

Plains Renewable Energy (NASDAQ: GPRE) and BioFuel Energy (NASDAQ: BIOF) 

joined other publicly traded ethanol producers such as MGP Ingredients (NASDAQ: 

MGPI) and Pacific Ethanol (NASDAQ: PEIX) on the NASDAQ stock market. VeraSun 

Energy (NYSE: VSE) and Aventine Renewable Energy (OTC: AVRNQ) followed the 

trend to list on the New York Stock Exchange. 

Green Plains Renewable Energy produces about 480 million gallons of ethanol 

annually, with six ethanol facilities in Indiana, Iowa, Nebraska and Tennessee. After 

merging with biofuels terminal company Blendstar, Green Plains also runs a number of 

terminal facilities throughout the southern United States. Distillery products accounted 

for 73% of the 2008 revenues of MGP Ingredients, with the other 27% of revenues 

coming from food/fuel graded alcohol and other industrial organic chemicals. Pacific 

Ethanol produces, markets and sells ethanol and other renewable fuels in the western 

United States and is the largest producer on the West Coast. Its subsidiaries that owned 

four ethanol plants filed for Chapter 11 bankruptcy protection on May 18, 2009. Founded 

in 2006, Biofuel Energy operates three large-scale ethanol production facilities located in 

Nebraska and Minnesota with an annual capacity of 230 million gallons of fuel-grade 

ethanol. VeraSun Energy was one of the leading ethanol producers in the United States, 

maintaining production facilities across the Midwest. Big expansions, including the 

acquisition of three facilities from ASAlliances Biofuels in 2007, and a merger with U.S. 

BioEnergy in 2008 increased VeraSun’s production capacity to more than 1 billion 

gallons. But in October 2008, VeraSun suffered heavy losses and then filed for 

bankruptcy protection. By early 2009 VeraSun requested permission to liquidate its assets 
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and was forced to put its plants up for auction, eventually choosing Valero to buy seven 

facilities for $477 million, a deal that was completed in March 2009. 

We also include three relatively small ethanol companies in the biofuel price 

index. Global Energy Holdings Group (NYSE: GNH), formerly Xethanol Corp., operates 

two waste-to-ethanol facilities in Iowa. Tiger Renewable Energy (OTC: TGRW) is an 

international ethanol producer, focusing on China’s corn ethanol market. Aventine 

Renewable Energy focuses on manufacturing and marketing corn-based ethanol, with 

two ethanol plants in Nebraska and Illinois and production of 188.8 million gallons of 

ethanol in 2008. It filed for bankruptcy protection on March 31, 2009. 

Historical stock prices of the companies described above were collected from 

DataStream Advance. All prices are closing prices after adjusting for historical corporate 

actions including stock splits, dividends, distributions and right offerings. Daily prices of 

the S&P 500 energy sector index, SPNY, were also collected to represent the price trend 

of oil company shares. 

The time series of the biofuel stock price index, which is presented in Figure 1, 

shows an obvious bubble-like pattern. Starting at 30 on June 30, 2005, the value of the 

ethanol stock index sharply increased and peaked at 78 on May 11, 2006, then gradually 

dropped to 50 in September 2006. After wandering in the range of 40-50 until June 2008, 

the index fell significantly, dropping to 20 by October 2008 and staying at that level to 

the end of the sample period. 

 Historical expected ethanol operating margins are collected from the Web site of 

the Center for Agricultural and Rural Development at Iowa State University.8 The margin 

is a measure of profit potential for ethanol production, which is calculated as the 

difference between revenues from production outputs including ethanol and distillers 

                                                 
8 The data were retrieved from http://www.card.iastate.edu/research/bio/tools/hist_eth_gm.aspx. (accessed 
8 September 2009).  
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dried grains with solubles and various input costs such as corn and natural gas. Ethanol 

and corn futures prices for the nearby contracts on the Chicago Board of Trade (CBOT) 

and natural gas futures prices from the New York Mercantile Exchange (NYMEX) are 

used for the calculation of expected ethanol margins. The daily margins over the sample 

period are presented in Figure 2. 

From late 2005 through much of 2006, high crude oil prices together with rising 

world energy demand drove gasoline prices to a near record high. High energy prices 

coupled with an increase in mandated use of ethanol in California led to higher ethanol 

prices. The ethanol operating margin peaked in June 2006, reaching $3.23 per gallon. 

During this boom, the U.S. ethanol industry grew from 3.4 billion gallons of capacity in 

2004 to 9.0 billion gallons in 2008. Excess capacity led to lower ethanol prices, and the 

ethanol operating margin was further reduced by high corn and natural gas prices. By 

July 2008, the margin was reduced to only $0.30 per gallon and stayed at that level or 

even lower afterwards. 

 

4. Estimation Results and Analysis 

We define the daily uncertainty of ethanol profitability as the standard deviation of 

ethanol operating margin over the most recent 30 days. We run the Bayesian MCMC 

algorithm on the constructed ethanol stock price index and the SPNY index for 50,000 

iterations with the first 40,000 draws discarded as burn-in. The last 10,000 iterations are 

used to estimate model parameters where the means and standard deviations of the 

posterior samples are calculated as parameter estimates and standard errors, respectively. 

Table 2 provides the estimation results for the two indices and Figures 3 and 4 present the 

estimated volatility processes. 
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The parameter estimates of the SVCMJ model for the ethanol stock index indicate 

(i) a strong mean-reverting effect in the stochastic volatility process with the speed, 

2.41κ = , and the long-run mean return *250 0.03*250 7.50%μ = = ; (ii) a negative 

correlation between return and instantaneous volatility, 0.15ρ = − ; and (iii) infrequent 

jumps in returns and volatility. The estimate of the jump intensity parameter 0.0019λ =  

suggests on average 0.0019 *250 0.48=  jumps per year. With only three years of data 

available, the jump components in returns and volatility are difficult to capture, as 

indicated by the relatively large standard errors associated with the jump-related 

parameters, including ,  y Jμ ρ , and yσ . 

The dynamic relationships among the volatilities of ethanol and SPNY indices as 

well as uncertainty are presented in Figures 3 and 4. There is a notable structural change 

in the biofuel price index over the sample period. Before July 2008, ethanol price 

volatility largely followed the pattern of profit uncertainty. However, the volatility 

patterns of the ethanol stock index and S&P 500 energy index are strikingly similar in the 

more recent period. We formally test for the structural change point in the estimated 

volatility of the ethanol stock index by employing the test proposed in Bai and Perron 

(1998) and the traditional CUSUM test, which is first introduced in Ploberger and 

Kramer (1992).9 Both tests identify the structural change point at July 15, 2008. 

Figure 3 overlays the volatility of ethanol stock prices and uncertainty of ethanol 

profitability, where the latter is computed daily over the most recent 30 days. As 

mentioned above, the empirical pattern of stock price volatility is quite similar to that of 

uncertainty before the structural change that happened in mid-July 2008. The volatility 

peaks in late 2005 to mid-2006, which was a time of high uncertainty in ethanol 
                                                 
9 Although these structural change tests are mainly developed for detecting endogenous breaks in the mean 
parameters of trend models, as mention, they can also accommodate changes in the variance (Bai and 
Perron 1998). The CUSUM test is employed for robustness check. Further evidence of application of the 
tests on volatility process can be found in, e.g., Cuñado, Biscarri and Hidalgo (2004).  
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profitability. This means that while investors anticipated the uncertainty associated with 

ethanol returns, the risks are fully reflected in the variation of ethanol stock prices. This 

relationship is further confirmed by the OLS regression of estimated ethanol volatility on 

uncertainty. The results show a positive (0.63) coefficient of uncertainty on stock 

volatility, which is statistically significant at the 1% level. Approximately 23% of the 

volatility variation can be explained by changes in uncertainty. 

Figure 4 plots the estimated volatility processes of the ethanol stock index and 

S&P 500 energy index. Before July 2008, ethanol stocks were more volatile than the 

general energy stocks, probably due to uncertainty associated with the new technology 

and/or business model. After July 2008, the evolution of ethanol volatility tracks with 

that of the S&P 500, which is consistent with the timing of the oil price shock in mid-

2008 and the corresponding binding ethanol blending mandate. As the crude oil price 

reached $140 in June 2008, there was an expectation that more ethanol facilities would 

come online. When crude oil prices began to fall, it was clear that additional facilities 

would not have to be built. In fact it became clear that the government mandate on 

ethanol consumption would be binding (Babcock 2008). With cheap crude oil, there was 

low demand for ethanol. The gasoline producers would be forced to buy ethanol even if it 

was sold at a loss. They offered ethanol producers just enough to stay in business and 

meet the mandate. Profitability in ethanol was close to zero, and the stock prices reflected 

this. 

 

5. Conclusion 

Employing a stochastic volatility model with correlated jumps in both returns and 

volatility, we examine the empirical links among volatility of ethanol stock prices, 

uncertainty associated with profitability of ethanol production and stock price variation in 
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the traditional energy sector. An ethanol stock price index is constructed to measure the 

price pattern of publicly traded ethanol stocks over the period June 2005 to July 2009. 

With increasing scale of adoption and production of ethanol, a strong and 

significant correlation is found between ethanol stock volatility and profit uncertainty 

before July 2008. This supports recent findings in the literature on the relationship 

between uncertainty and price variation during the evolution of an innovative technology. 

The volatility process of biofuel stock prices is found to have had a structural change in 

July 2008, which may have been induced by the interactions between agricultural and 

energy markets. Biofuel stock price volatility tracked closely with that of the traditional 

energy sector after that period. 



 16

References 

Ait-Sahalia, Y., & Kimmel, R. 2007. Maximum likelihood estimation of stochastic 

volatility models. Journal of Financial Economics 83 (2, February): 413-452. 

Anderson, T.G., Benzoni, L., & Lund, J. 2002. An empirical investigation of continuous-

time equity return models. Journal of Finance 57 (3, June): 1239-1284. 

Babcock, B.A. 2008. How low will corn prices go? Iowa Ag Review 14 (4): 1-3. 

Bai, J., & Perron, P. 1998. Estimating and testing linear models with multiple structural 

changes. Econometrica 66: 47-78. 

Bates, D. 1996. Jumps and stochastic volatility: Exchange rate processes implicit in 

deutsche mark options. Review of Financial Studies 9 (1, Spring): 69-107. 

Brandt, M., & Santa-Clara, P. 2002. Simulated likelihood estimation of diffusions with an 

application to exchange rate dynamics in incomplete markets. Journal of Financial 

Economics 63 (2, February): 161-210. 

Chernov, M., Gallant A.R., Ghysels, E., & Tauchen G. 2003. Alternative models of stock 

price dynamics. Journal of Econometrics 116: 225-257. 

Cuñado Eizaguirre, J., Biscarri, J., & Hidalgo, F.. 2004. Structural changes in volatility 

and stock market development: Evidence of Spain. Journal of Banking & Finance 28: 

1745-1773. 

DeMarzo, P., Kaniel, R., & Kremer, I. 2007. Technological innovation and real 

investment booms and busts. Journal of Financial Economics 85 (3): 735-754. 

Duffie, D., Pan, J., & Singleton K. 2000. Transform analysis and asset pricing for affine 

jump-diffusions. Econometrica 68 (6, November): 1343-1376. 

Eraker, B., Johannes, M., & Polson, N. 2003. The impact of jumps in volatility and 

returns. Journal of Finance 58 (3, June): 1269-1300. 



 17

Gelman, A., Carlin, J., Stern, H., & Rubin, D. 2007. Bayesian Data Analysis. Boca Raton, 

FL: Chapman & Hall/CRC. 

Hall, R. 2001. The stock market and capital accumulation. American Economic Review 

91 (5): 1185-1202. 

Henriques, I., & Sadorsky, P. 2008. Oil price and the stock price of alternative energy 

companies. Energy Economics 30: 998-1010. 

Heston, S. 1993. A closed-form solution for options with stochastic volatility with 

applications to bond and currency options. Review of Financial Studies 6: 327-343. 

Hobijn, B., & Jovanovic, B. 2001. The information technology revolution and the stock 

market: Evidence. American Economic Review 91 (5): 1203-1220. 

Jacquier, E., Polson, N., & Rossi, P. 1994. Bayesian analysis of stochastic volatility 

models (with discussion). Journal of Business and Economic Statistics 12: 371-389. 

Johnson, T. 2007. Optimal learning and new technology bubbles. Journal of Monetary 

Economics 54: 2486-2511. 

Laitner, J., & Stolyarov, D. 2003. Technological change and the stock market. American 

Economic Review 93 (4): 1240-1267. 

Li, H., Wells, M., & Yu, C. 2008. A Bayesian analysis of return dynamics with stochastic 

volatility and Levy jumps. Review of Financial Studies 21 (5): 2345-2378. 

Nelson, D.B. 1991. Conditional heteroskedasticity in asset return: A new approach. 

Econometrica 59 (2, March): 347-370. 

Nicholas, T. 2008. Does innovation cause stock market runups? Evidence from the Great 

Crash. American Economic Review 98 (4): 1370-1396. 

Pan, J. 2002. The jump-risk premia implicit in options: Evidence from an integrated time-

series study. Journal of Financial Economics 63 (1, January): 3-50. 



 18

Pastor, L., & Veronesi, P. 2003. Stock valuation and learning about profitability. Journal 

of Finance 58: 1749-1789. 

——. 2006. Was there a NASDAQ bubble in the late 1990s? Journal of Financial 

Economics 81: 61-100. 

——. 2009. Technological revolution and stock prices. American Economic Review, 99 

(4): 1451-1483. 

Ploberger, W., & Kramer, W. 1992. The CUSUM test with OLS residuals. Econometrica 

60: 271-285. 

Renewable Fuels Association (RFA). 2009. Historic U.S. fuel ethanol production. 

Available at: http://www.ethanolrfa.org/industry/statistics/. Last access 9/16/2009. 

Wall Street Journal (WSJ). 2008. The death of ethanol: One thing Wall Street saw 

coming. November 3.



 19

Table 1. Companies included in the ethanol stock price index. 
 

Name Symbol 

Market Capitalization 
(as of 15 Nov 2009, 

in million U.S. dollars) Weight Sample Period 
Archer Daniels Midland  NYSE: ADM 18290 1 30 Jun 2005–9 Jul 2009 
Cosan Limited NYSE: CZZ 2300 0.33 16 Aug 2007–9 Jul 2009 
The Andersons, Inc. NASDAQ: ANDE 622.20 0.33 30 Jun 2005–9 Jul 2009 
Green Plains Renewable Energy, Inc. NASDAQ: GPRE 183.92 0.1 15 Mar 2006–9 Jul 2009 
MGP Ingredients, Inc. NASDAQ: MGPI 66.73 0.1 30 Jun 2005–9 Jul 2009 
Pacific Ethanol, Inc. NASDAQ: PEIX 28.30 0.33 30 Jun 2005–9 Jul 2009 
BioFuel Energy Corp. NASDAQ: BIOF 23.09 0.25 14 Jun 2007–9 Jul 2009 
Aventine Renewable Energy Holdings, Inc. OTC: AVRNQ 7.95 0.33 29 Jun 2006–9 Jul 2009 
Global Energy Holdings Group, Inc. 
(former Xethanol Corp.) 

AMEX: GNH 
(former XNL) 4.94 0.1 30 Jun 2005–9 Jul 2009 

Cono Italiano, Inc. 
(former Tiger Renewable Energy)  

OTC: CNOZ 
(former TGRW) 1.45 0.1 11 Dec 2006–9 Jul 2009 

VeraSun Energy NYSE: VSE 
(delisted) N/A 0.33 14 Jun 2006–9 Jul 2009 
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Table 2. Estimation results of biofuel stock price index and S&P 500 energy sector 
index. 
 

 Ethanol Stock Index S&P 500 Energy Index 
 Mean Stand. Error Mean Std. Error 
μ  0.03 0.20 0.28 0.19 

yμ  0.66 1.96 -5.40 1.65 

Vμ  1.07 0.25 1.10 1.10 

Jρ  0.33 0.86 0.26 0.26 

yσ  2.30 0.69 2.04 2.04 
λ  0.0019 0.0014 0.0019 0.0014 
θ  1.43 0.43 1.37 0.44 
κ  2.41 0.69 2.24 0.71 

Vσ  2.49 0.14 2.37 0.12 
ρ  -0.15 0.10 -0.07 0.10 
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Figure 1. Constructed ethanol stock price index, 30 June 2005–9 July 2009. 
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Figure 2. Ethanol, corn, and natural gas prices and ethanol operating margins, 30 
June 2005–9 July 2009. 
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Figure 3. Ethanol stock volatility and profit uncertainty, 30 June 2005–9 July 2009. 
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Figure 4. Volatilities of ethanol stock index and S&P 500 energy sector index, 30 
June 2005–9 July 2009. 
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Appendix A: The Posterior Simulator 

In the following, we describe the Gibbs sampling algorithm employed for simulating the 

parameters of interest from their derived posterior distributions. Here, we let { }x−Θ  

denote all parameters in the set Θ  except x , the one being simulated. 

Step 1. { }| , ~  ( / ,1 / )N S W Wμμ −Θy vY, V, N,ξ ,ξ  
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where 2 2
1 1 1 1 12

1exp 2
2(1 )

A A B Bα ρ λ
ρ

⎧ ⎫
⎡ ⎤= − − +⎨ ⎬⎣ ⎦−⎩ ⎭

, 

2 2
2 2 2 2 22

1exp 2 (1 )
2(1 )

A A B Bα ρ λ
ρ

⎧ ⎫
⎡ ⎤= − − + −⎨ ⎬⎣ ⎦−⎩ ⎭

 , 1 1( ) /y
t t t tA Y Y vμ ξ+= − − Δ − Δ , 

2 1( ) /t t tA Y Y Vμ+= − − Δ Δ , and 1 1( ( ) ) / ( )v
t t t t v tB V V V Vκ θ ξ σ+= − − − Δ − Δ , 

2 1( ( ) ) / ( )t t t v tB V V V Vκ θ σ+= − − − Δ Δ . 

Step 11:  The posterior draw of ( y
tζ , v

tζ ) are jointly drawn from the following distribution.  

(0, ) 2 2 2| ~ ( / ,1 / )V
t TN S W Wξ ∞ΘY, V, N, , (0, ) 1 1 1| , ~ ( / ,1 / )y v

t t TN S W Wξ ξ ∞ΘY, V, N, . 

where 
2 2 2

2 2 2 2
1(1 )

t J

v t y

N BW
V W

ρ
ρ σ σ

= + −
− Δ

, 

2 2 2
1

1( )
(1 )

y Jt t
t

v t v y v

N D ABS C
V W

μ ρ
ρ

ρ σ ρ σ μ
= − + − − +

− Δ
, 

2

1 2 2

1
(1 )

t

t y

NW
Vρ σ

= +
− Δ

, 1
v
tS A Bξ= + , 

2 2( )
(1 )

yt t
t

t v y

N DA C
V

μρ
ρ σ σ

= − +
− Δ

, 
2

2 2(1 )
t J

v t y

NB
V

ρ ρ
ρ σ σ

= +
− Δ

, 1t t tC Y Y μ+= − − Δ , and 

1 ( )t t t tD V V Vκ θ+= − − − Δ . 

Step 12:  The posterior distribution of 1tv +  is time-varying. 
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Given the complicated distribution forms, it is difficult to sample from this posterior 

distribution of  tV . To update the latent volatility variables, we employ the random walk 

Metropolis-Hasting algorithm (Gelman et al. 2007). 

 

Appendix B: Simulation study 

The MCMC algorithm described in Section 2.2 is applied on a simulated data set to 

measure its accuracy. The program, written in Matlab, has a posterior sample size of 

50,000 for each run with the first 40,000 discarded as burn-in period. The sample mean 

and standard error of the last 10,000 posterior draws as well as the true parameter values 

used for simulation are reported in Table B-1. Figure B-1 presents the generated (true) 

and estimated volatility processes, while the generated and estimated jumps in return and 

volatility are shown in Figure B-2. 

The results in Table B-1 indicate that the algorithm provides relatively accurate 

estimates for most of the model parameters except the drift parameter μ . As Ait-Sahalia 

and Kimmel (2007) point out, the estimation of drift term is difficult, requiring a long 

period of samples to improve the quality of the estimate. As the volatility estimation is 

the major concern in this study, Figures B-1 and B-2 show that our algorithm is capable 

of capturing major dynamics of the volatility path and jumps in both returns and volatility 

processes. 
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Table B-1. Estimation results on simulated data set.  
 μ  yμ  Vμ  Jρ  yσ  λ  θ  κ  vσ  ρ  

True 0.05 3.00 1.00 -0.40 3.50 0.015 0.80 1.20 2.00 -0.40 
Mean 0.014 2.93 0.92 -0.54 2.39 0.023 0.84 1.32 1.68 -0.39 
Std. err. 0.53 0.75 0.14 0.70 0.35 0.0047 0.52 0.50 0.14 0.14 
 
 

 
 
Figure B-1. Volatility estimation results of simulated data set. 
 
 

 
 
Figure B-2. Jumps estimation results of simulated data set. 


