
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 
University of Massachusetts Amherst 

Department of Resource Economics 
Working Paper No. 2009-6 

http://www.umass.edu/resec/workingpapers 
 
 

Securing the Border from Invasives: 
 Robust Inspections Under Severe Uncertainty 

 
L. Joe Moffitt1, John K. Stranlund2, and Craig D. Osteen3 

 
 
 

Abstract: 
 
Two important features of agricultural quarantine inspections of shipping containers for 
invasive species at U.S. ports of entry are the general absence of economic considerations and 
the severe uncertainty that surrounds invasive species introductions. In this article, we propose 
and illustrate a method for determining an inspection monitoring protocol that addresses both 
issues. An inspection monitoring protocol is developed that is robust in maximizing the set of 
uncertain outcomes over which an economic performance criterion is achieved. The 
framework is applied to derive an alternative to Agricultural Quarantine Inspection (AQI) for 
shipments of fruits and vegetables as currently practiced at ports of entry in the United States. 

 
. 

 
Keywords: Inspection, Invasive Species, Uncertainty 
 
JEL Classification:  Q18, Q57, D81 
________________________ 

 
1L. Joe Moffitt, Department of Resource Economics 
University of Massachusetts, 212B Stockbridge Hall  
80 Campus Center Way, Amherst, MA  01003-9246 
E: moffitt@resecon.umass.edu  P: 413-545-5719  F: 413-545-5853 
 
1John K. Stranlund, Department of Resource Economics 
University of Massachusetts, 214 Stockbridge Hall  
80 Campus Center Way, Amherst, MA  01003-9246 
E: stranlund@resecon.umass.edu  P: 413-545-6328  F: 413-545-5853 
 
3Craig D. Osteen, Economic Research Service, USDA 
Room S4024, 1800 M Street NW  
Washington, DC 20036-5831 
E: costeen@ers.usda.gov    P: 202-694-5547    F: 202-694-5775 



 1 

August 2009 
 
 
 
 

Securing the Border from Invasives: Robust Inspections Under Severe Uncertainty 
 

 

L. Joe Moffitt, John K. Stranlund, and Craig D. Osteen∗

 

 

 

Correspondence to: L. Joe Moffitt 
 Dept. of Resource Economics  

212B Stockbridge Hall  
University of Massachusetts  
80 Campus Center Way  
Amherst, MA 01003-9246  
Phone: 413-545-5719  Fax: 413-545-5853  
Email: moffitt@resecon.umass.edu 

 
 

                                                 
∗ *L. Joe Moffitt and John K. Stranlund are professors in the Department of Resource 
Economics, University of Massachusetts at Amherst. Craig D. Osteen is an agricultural 
economist at the United States Department of Agriculture, Economic Research Service in 
Washington, DC. Funding for this research was provided by the U. S. Department of Agriculture 
under USDA/ERS/PREISM Cooperative Agreement No. 43-3AEM-4-80115. Additional support 
was provided by the Cooperative State Research Extension, Education Service, U. S. Department 
of Agriculture, Massachusetts Agricultural Experiment Station under Project No. MAS00861. 
The authors are grateful to the United States Department of Homeland Security, particularly 
National Data Quality Manager, Rojelio Lozano, for providing unpublished information on the 
Agricultural Quarantine Inspection program used in this research. Without implicating them, this 
article has benefited from the helpful input of Yakov Ben-Haim, Barry C. Field, and Peyton M. 
Ferrier. 

mailto:moffitt@resecon.umass.edu�


 2 

Securing the Border from Invasives: Robust Inspections Under Severe Uncertainty 

 

Abstract: Two important features of agricultural quarantine inspections of shipping containers 

for invasive species at U.S. ports of entry are the general absence of economic considerations 

and the severe uncertainty that surrounds invasive species introductions. In this article, we 

propose and illustrate a method for determining an inspection monitoring protocol that addresses 

both issues. An inspection monitoring protocol is developed that is robust in maximizing the set 

of uncertain outcomes over which an economic performance criterion is achieved. The 

framework is applied to derive an alternative to Agricultural Quarantine Inspection (AQI) for 

shipments of fruits and vegetables as currently practiced at ports of entry in the United States. 

 

JEL Codes: Q18, Q57, D81 

Key Words: Inspection, Invasive Species, Uncertainty 

 

1. Introduction 

At United States ports of entry, the contents of air, maritime, truck, and rail cargo, as well as air 

passenger baggage, vehicles, and mail are subject to Agricultural Quarantine Inspection (AQI) 

by the United States Department of Homeland Security (DHS), Customs and Border Protection 

officials. The purpose of AQI is to help ensure that United States agriculture is protected from 

accidentally or intentionally introduced pests and diseases, including the possibility of 

agroterrorism. In general, current practice for inspecting cargo shipments of fruits and vegetables 

at United States ports is based on inspecting 2% of the items in a container for the presence of 

pests, with some allowances for the size, contents, and origin of the container (USDA 2008a).  
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Although simple to apply, this inspection rule appears not to have any economic content; 

that is, it does not consider the costs of inspections or the losses of failing to prevent an invasive 

species from entering the country. Nor does it account for the severe uncertainty associated with 

infestations in shipping containers and the potential losses from introductions of poorly 

understood or surreptitiously introduced invasive species. In this paper, we propose an 

alternative decision criterion for determining inspection probabilities that incorporates economic 

considerations with particular emphasis on the severe uncertainties of pest introductions and 

damage. 

With probability distributions over invasive species introductions and their impacts one 

could cast the problem of determining optimal inspection rules in the familiar terms of risk 

analysis. Then it would be relatively straightforward to specify inspections rules that balanced 

the costs of inspections against the expected benefits of preventing introductions of pests. 

However, this would require information that policy makers don’t possess, cannot obtain at all, 

or cannot obtain within a timeframe that is useful. In many areas of economic decision making, 

including the management of invasive species, it is often difficult to measure and interpret 

probability distributions associated with uncertain outcomes. Consequently, concerns about the 

usefulness of risk assessment in the management of invasive species are evident among 

researchers and practitioners alike (Moffitt and Osteen 2006).  

Several approaches have been developed to analyze decision making in uncertain 

environments. These approaches include application of the maximin, maximax, Laplace, and 

Hurwicz criteria (Render et al. 2009). The first two of these approaches represent polar extremes 

in terms of optimism and pessimism while the latter two require information similar to 

probabilities to be applied. Similarly, quantification of other notions related to uncertainty such 
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as ignorance and surprise have also required the specification of functions confined to the unit 

interval (Katzner 1998; Horan et al., 2002).1

Other decision theory research has focused on the notion of robustness in decision 

making under uncertainty, but without any information on probabilities. Ben-Haim (2006) has 

developed a new approach known as information-gap (info-gap) decision theory, which he 

designed for cases in which probability distributions for uncontrolled events are not available. 

The essence of info-gap analysis is the pursuit of decisions that are robust in the sense that, 

roughly speaking, they maximize the range of uncertainty in the decision environment within 

which the decision maker is certain to achieve a specified performance requirement. One 

decision is more robust than another if the range of uncertainty under which the performance 

requirement is met is larger. Given a performance criterion, a robust decision gives the decision 

maker maximum confidence that his or her performance criterion will be met.

   

2

We adopt Ben-Haim’s approach to the problem of determining robust inspection 

protocols for detecting invasive species in imported agricultural goods. In this problem, we are 

uncertain about the likelihood of the presence of an invasive species in the goods being inspected 

and the economic impact of inspection failure. Nevertheless, we seek an inspection protocol to 

 

                                                 
1 The notion of ambiguity lies in the middle ground between risk and uncertainty. If the 
likelihood of uncontrolled events can be determined up to a convex set (e.g., ranges of 
probability values are known), then there is said to be ambiguity about the risks associated with a 
decision. For such cases, a decision criterion known as maxmin expected utility (Gilboa and 
Schmeidler 1989) suggests maximizing the minimum expected utility where the expectation is 
taken over the convex set.  
2 Info-gap decision theory is increasingly applied to real-world applications where probabilities 
or a convex set of probabilities are hard to identify but acceptable performance is not. 
Applications include, but are not limited to, financial risk assessment (Ben-Haim 2005), search 
behavior in animal foraging models (Carmel and Ben-Haim 2005), policy decisions in marine 
reserve design (Halpern et al. 2006), natural resource conservation decisions (Moilanen et al. 
2006), inspection decisions by port authorities to detect terrorist weapons (Moffitt et al. 2005) 
and invasive species (Moffitt et al. 2007; Moffitt et al. 2008), the choice of environmental 
policies (Stranlund and Ben-Haim 2008), and engineering model-testing (Vinot et al. 2005).  
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maximize the set of uncertain outcomes over which the expected loss from an introduction plus 

the cost of inspections will not exceed a critical value.  

The economic literature on invasive species is relatively recent. A bibliography of the 

economics of agricultural pest control covering the literature through 1980 does not contain a 

single reference to invasive species (Osteen et al. 1981). Some more recent studies have focused 

on the economics of managing invasive species once they have been introduced (e.g., White et 

al. 1995). From a similar perspective, Pimental et al. (2000) provide both background and an 

economic perspective on invasive species introductions that have occurred in the United States.  

However, there is a growing literature that has focused on the prevention of invasive 

species introductions and preparedness for these events, rather than retrospective analyses of 

introductions (e.g., Perrings et al. 2000; Shogren 2000; Brown et al. 2002; Barbier and Shogren 

2002; Eiswerth and van Kooten 2002; Endress 2002; Horan et al. 2002; Kaiser and Roumasset 

2002; Olson and Roy 2002; Perrings et al. 2002; Settle and Shogren 2002). A portion of this 

literature has focused on border inspections to prevent introductions.3

                                                 
3 Shogren (2000) provides a theoretical model of a policy maker who is charged with allocating 
resources to reducing the probability of an invasive species event (mitigation) and to reducing 
the adverse consequences of an introduction (adaptation). One could think of border inspections 
as part of the set of mitigation strategies, but Shogren is not explicit about this.  

  McAusland and Costello 

(2004) present theoretical models of international trade to consider the simultaneous choices of a 

tariff and inspections to prevent the entry of infested commodities. Surkov et al. (2008) focus on 

allocating fixed inspection resources across commodities and countries of origin to minimize the 

expected costs of introduced pests. They apply their model to inspections of chrysanthemum 

cuttings (Dendranthema grandiflora) imported to the Netherlands. Importantly, each of these 

works relies on known probability density functions, and hence, are models of risk rather than of 

uncertainty. 
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 Moffitt et al. (2007 and 2008) examine the inspection problem with info-gap models of 

uncertainty. Moffitt et al. (2007) develop a robust sample size for a risk averse decision maker 

faced with inspecting a generic shipping problem in which a shipment may contain at most a 

single contaminated item.  Moffitt et al. (2008) evaluate the relative robustness of alternative 

inspection rules for a risk neutral decision maker when the number of contaminated items can 

vary, but they assume that the loss when an invasive pest gets past port inspections is known. We 

extend this work in two important directions. First, we allow several elements of the inspection 

problem to be uncertain including the number of contaminated items in a shipment, the costs of 

inspections, and potential losses due to inspection failure. Second, we use recently available 

unpublished data provided by the U. S. Department of Homeland Security to illustrate the 

potential of our model to determine robust inspection rules.  

We demonstrate the utility of our approach by comparing robust inspection rules to the 

AQI 2% rule. We find that optimal inspection rules provide significant increases in robustness 

over the AQI rule over a wide range of feasible performance criteria. Moreover, robust 

inspection rules suggest significantly more scrutiny of incoming shipments than the AQI rule. 

This suggests a reallocation of federal resources to more intense inspections and away from 

efforts to deal with invasives that get through the inspection process.  

The rest of the paper proceeds as follows. We present the model of choosing inspection 

rules that are maximally robust to the uncertainty in the problem of detecting invasive species at 

ports. In the third section we apply the model with data about shipments that are subject to AQI, 

costs of inspections, and funds allocated to deal with pest introduction and outbreaks. The third 

section also contains our comparison of robust inspection rules to the AQI 2% rule. We conclude 

in the fourth section.  
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2. A Model of Robust Inspections for Invasive Species 

Suppose that a single containerized shipment selected for inspection at a maritime port of entry 

contains N boxes. Inspection of n of the boxes for the presence of invasives is intended to 

determine whether the contents of the shipment are infested. Inspection failure is defined to 

mean that there is an infested box in the shipment that is not detected; hence, under this 

assumption, failure cannot occur if either there are no infested boxes in the shipment or if all of 

the boxes in the shipment are infested. To simplify the analysis of the inspection protocol, we 

assume that if a box is inspected the presence of an invasive will be detected. Inspection 

failure—an undetected entry of an invasive species—generates a loss L. The loss due to 

inspection failure depends on which invaders are involved, how hard the invaders are to manage 

following inspection failure, and what the consequences of immigration are. Because each of 

these elements can be highly uncertain, we regard L as highly uncertain. Additionally, a linear 

function, cn, gives the cost of inspection where c is a parameter reflecting a constant per box 

inspection cost which can depend on a number of factors and can also be regarded as uncertain.4

 If the number of infested boxes in a container is s  > 0, then the probability of inspection 

failure is given by the ratio of binomial coefficients, 

  

 
N s N

n n
−   

   
   

;  

that is, the ratio of the number of possible samples of size n which do not contain an infested box 

to the total number of possible samples of size n. If s = 0, then the probability of inspection 

failure is also zero as just noted.

                                                 
4 The inspection cost function need not be linear for the model development, but we assume that 
it is linear in our simulations in the next section. We also recognize that inspection strategies 
may involve significant fixed costs. These costs do not affect our analysis so we ignore them for 
simplicity.   
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 The number of infested boxes in a container, if any, is uncertain, as is the potential loss 

from an inspection failure, and perhaps marginal inspection costs. Define the set  = {0, 1, 2, . . . 

, N} to depict the possible number of infested boxes in the container. Similarly let the set  = {0, 

1, 2, . . .} be potential losses (in dollars) associated with inspection failure, and let the set = 

{.01, .02, . . .} to be the possible cost in dollars of inspecting a box. In this case, an info-gap 

uncertainty model, , is a countable, non-convex set given by the power set of the cross product 

of , , and ; viz.;  = ( ×  × ). 

 For s  > 0 and a given L and c, expected loss plus inspection cost is  

 .
N s N

L cn
n n

 −    
+    

    
 

If s = 0 given c, expected loss due to undetected entry plus inspection cost is cn. Hence, 

conditional on N, n, s, L, and c, expected loss due to undetected entry plus inspection cost can be 

expressed as 

 [ ]
,  if 0;

| , , , ,
,  if 0 .

cn s
E Cost N n s L c N s N

L cn s N
n n

=
=  −     + < ≤    
    

 

For s  > 0 and a given L and c, the variance of loss plus inspection cost is 

 21
N s N N s N

L
n n n n

 −   −        
−          

          
. 

If s = 0 the variance of loss due to undetected entry plus inspection cost is 0. Hence, conditional 

on N, n, s, L, and c, the variance of loss due to undetected entry plus inspection cost can be 

expressed as 



 9 

 [ ] 2

0,  if 0;
| , , , ,

1 ,  if 0 .

s
Var Cost N n s L c N s N N s N

L s N
n n n n

=
=  −   −         − < ≤          
          

 

 Our objective is to provide an inspection protocol that is as applicable as AQI in addition 

to being most robust in meeting a performance requirement. To maintain equivalent simplicity to 

AQI, both conditional expected cost and the conditional variance of cost are respecified in terms 

of a constant percentage of items subjected to physical inspection; viz., 

[1]  [ ]
( ),  if 0;

| , , , ,
( ),  if 0 ;

( ) ( )

cr pN s
E Cost p N s L c N s N

L cr pN s N
r pN r pN

=
=  −     + < ≤    
    

 

[2] [ ] 2

0,  if 0;
| , , , ,

1 ,  if 0 ,
( ) ( ) ( ) ( )

s
Var Cost p N s L c N s N N s N

L s N
r pN r pN r pN r pN

=
=  −   −         − < ≤          
          

 

where p is percentage of items inspected and ( )r ⋅ denotes rounding to the nearest integer.  

 We now use [1] and [2] to characterize expected costs and variance of the total annual 

shipments T into a country. Let ( )f N  be the annual relative frequency of containers of size N. 

Annual expected loss plus inspection cost for all shipments is 

[3] ( ) [ ], , , | , , , , ( ) .
N

M p s L c E Co st p N s L c f N T= ⋅ ⋅∑  

The variance of annual loss plus inspection cost is 

[4] ( ) [ ] 2, , , | , , , , ( ) .
N

V p s L c Var Cost p N s L c f N T= ⋅ ⋅∑  

Both ( ), , ,M p s L c  and ( ), , ,V p s L c  can be used to specify performance of a constant percentage 

inspection protocol like AQI. If  performance is judged solely in terms of limiting expected loss 

from invasives plus inspection costs, then an inspection protocol is judged on its ability to satisfy 

( )M M ∗⋅ ≤ , where M ∗  is predetermined. If performance is also regarded as depending on 
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limiting variability of expected loss plus inspection cost then an inspection protocol is judged 

with respect to ( )M M ∗⋅ ≤  and ( )V V ∗⋅ ≤ , where V ∗  is also predetermined.  

 Now let us define robustness with respect to possible performance criteria. Let α  be an 

element of   = ( ×  × ), and let α̂  denote the number of elements (i.e., the cardinality) of 

α . Robustness, denoted ˆ ( )pα , expresses the size of the largest set in ( ×  × ) with 

satisfactory performance as a function of the percentage of boxes inspected, p.  An inspection 

protocol 0p  is more robust than 1p  ( )0 1ˆ ˆi.e., ( ) ( )p pα α>  in the sense that the specified 

performance criteria are satisfied under a larger set of possible outcomes under 0p  than under 

1p .  If the performance criterion is a limit M ∗  on expected loss from invasives plus inspection 

cost then 

[5] ( )ˆ ( ) max | |,  s.t. , , ,p M p s L c Mα α ∗= ≤ . 

If, in addition to ( )M M ∗⋅ ≤ , a limit on the variance of loss plus inspection costs is desired, then  

[6] ( ) ( )ˆ ( ) max | |,  s.t. , , , ,  , , , .p M p s L c M V p s L c Vα α ∗ ∗= ≤ ≤  

In either case, the optimal robust inspection strategy is the constant percentage of inspected 

containers ˆarg max ( ).p pα∗ =  

 

3. Agricultural Quarantine Inspections, Robustness, and Performance 

In this section we demonstrate the utility of the model by determining robust inspection protocols 

with data on various aspects of U.S. port inspections for invasives in fruit and vegetable 

shipments. We determine robust constant percentage inspection rules for shipping containers to 

compare to the current AQI protocol (the 2% inspection rule). 
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3.1 Approach and data 

For our simulations, we modify the problem so that our results will be in terms of the proportion 

of infested boxes instead of the number of infested boxes. This modification makes the 

interpretation of our results somewhat easier. Let w be the proportion of infested boxes in a 

shipping container, and note that the corresponding number of infested items is ( )s r wN= , 

where recall that r indicates rounding to the nearest integer. Define the set  = {0, .01, .02, ..., 

1}; that is, the set of discrete proportions in 0.01 unit increments from zero to 1. Our simulation 

replaces the set of potential infested items  in the model development with the set .  

Our first task is to construct an estimate of the mean and variance of expected loss plus 

inspection costs (equations [3] and [4]), modified so that potential infestations are in percentage 

terms. We take ( )f N  from the relative frequency of boxes per container in a sample of 893 

shipments subject to AQI inspection at maritime ports of entry in the United States from 2004-

2006 (the most recent years for which data are available). This frequency distribution is shown in 

Table 1. Average total shipments subject to physical inspection under AQI during this period 

provides an estimate for T of 496,265 shipments.  See United States Department of Agriculture 

(2008b) for these data.   

Although the model allows unit inspection costs to be uncertain, we have a reasonable 

point estimate for this value. Regardless of port and/or commodity, a typical inspection costs 

approximately $1.70 per box. This cost estimate is based on the typical time required to inspect 

fruit and vegetable commodities packaged in boxes and the government service pay scale in 

effect for inspectors during 2009. (Personal communication, Rojelio Lozano, U.S. Department of 
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Homeland Security).  For our simulation exercise we take this inspection cost value as certain 

and specify the set  as simply  ={1.70}.  In contrast, the set of potential losses is highly 

uncertain. We specify the set of potential losses as  = {0, 1×106, 2×106, … , 500×106}.  

We now turn to specifying the performance criteria, M ∗  and V ∗ , in equation [6]. Recall 

that the specifications of M ∗  and V ∗  are choice variables for the decision maker; they are not 

determined from the model, so they rely on the judgments of decision makers as to what 

constitutes acceptable performance. We use real USDA/APHIS annual emergency program 

expenditures, shown in Table 2 for 1987-2008, to help specify possible performance criteria 

(USDA 2008c).5

We specify 

 The amounts in the table are transfers from contingency funds for unforeseen 

pest introductions or outbreaks that threaten agricultural production. These funds are not 

necessarily all due to inspection failures, nor do they include all pest losses to agricultural 

producers, landowners, and others. Thus, there is not a one-to-one correspondence between these 

values and potential losses from inspection failures. However, we think they are useful because 

the variation in annual expenditures allow us to specify a wide range of performance criteria. 

Moreover, these emergency fund expenditures give us a basis for casting our results in terms of 

the trade off between allocating resources to inspections to prevent introductions and allocating 

resources to deal with the consequences of inspection failures.   

M ∗  as an estimate of variable inspection costs under AQI plus alternative 

levels of emergency program expenditures from the distribution given in Table 2. For variable 

inspection costs, the density function ( )f N  from the data in Figure 1 combined with T = 496,265 

                                                 
5 APHIS is the acronym for the USDA’s Animal and Plant Health Inspection Service. We use the 
Producer Price Index averaged over fiscal years to convert nominal emergency funds to real 
values. The baseline year is 2007.  
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shipments gives us a mean for the annual number of boxes subject to AQI inspections of 

586.306×106 with variance 846.593×1026.  These values, our estimate of variable per-box 

inspection costs of $1.70 and the AQI rule of inspecting 2% of boxes in a container produces an 

estimated annual variable inspection cost of 6$(1.70) (0.02 586.306 10 )r × × 619.934 10≈ × , with 

variance 2 26$(1.70) (0.04 846.593 10 )r × × . 

Our analysis is conducted with six levels of M ∗ . The variable inspection cost estimate is 

the same for each level, but we use six levels of real USDA/APHIS emergency expenditures. We 

use the mean of the distribution in Table 2 of $93.813×106, as well as the upper bounds of the 

quintiles of the distribution; $24.872×106, $36.343×106, $52.089×106, $159.031×106, and 

$470.883×106.  In addition, we also specify V ∗  as an additional performance criterion as in [6]. 

This value is set at the variance of annual inspection costs, specified above, plus the variance of 

the real USDA/APHIS emergency expenditures which is $12.786×109.  The variance 

performance criterion is held constant as M ∗  varies. For all of the results reported below, the 

variance performance criterion does not bind.  

 

3.2 Results 

Table 3 shows the optimal robust inspection rules and levels of robustness for alternative levels 

of performance in terms of M ∗  as well as the robustness levels of the AQI 2% rule. In the table 

iM ∗ , i = 1, …, 5,  are variable inspections costs plus the top boundary of the ith quintile of the 

distribution of real USDA/APHIS emergency funds. meanM ∗  is variable inspection costs plus the 

mean of the distribution of real USDA/APHIS emergency funds.  

The last two columns of Table 3 give the robustness measures of the optimal inspection 

rules and the AQI rule for the various performance criteria. Recall that robustness is the 
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cardinality of the largest element of the power set of the cross product of  and  under which a 

performance criterion is met. Thus, robustness is the number of potential outcomes in terms of 

discrete losses from undetected infestations and infestation percentages for which the 

performance criterion is met. For all performance criteria analyzed (except for AQIM ∗  which will 

be explained shortly), robustness under the optimal inspection rule is greater than under the AQI 

rule. This, of course, is by design because the optimal inspection rule maximizes robustness. It is 

more interesting that the optimal inspection rules are much more robust than the AQI rule; 

robustness under the optimal inspection rule ranges from more than 2.36 times greater than under 

the AQI rule for 1M ∗ , to nearly 4.5 times greater for 4M ∗ . At meanM ∗  the optimal inspection 

strategy is about 4.12 times as robust as the AQI 2% inspection rule. The AQI rule, which recall 

is devoid of the economic and uncertainty characteristics of the problem of detecting invasive 

species, is simply not very robust over a wide range of reasonable levels of economic 

performance. 

A graphical depiction of the relative robustness of the optimal inspection protocol and the 

AQI inspection protocol is provided in Figure 1. The robustness “curves” in the figure are 

derived under the assumption that the performance criterion is meanM ∗ . The left curve collects 

pairs of infestation rates and potential losses (w, L) for which meanM ∗  is met exactly under the 

robust optimal inspection rate of 11%.  Pairs of (w, L) to the right of this curve also meet the 

performance requirement under this inspection rule. We can think of the curve and the area to its 

right as a sort of “safety zone” in the sense that the decision maker is certain that the 

performance requirement is satisfied for all (w, L) outcomes in this zone. The right curve in 

Figure 1 is the boundary of the safety zone for the meanM ∗  performance requirement, but under the 
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AQI inspection rule of 2%.  Given our limit on L ($500 million), it is clear that the safety zone 

under the optimal robust inspection rule is much larger than under the AQI rule. 

In addition, the safety zone under the AQI inspection rule is a proper subset of the safety 

zone under the robust optimal inspection rule. This is a desirable attribute because it implies that 

every outcome that meets the performance criterion under the AQI inspection strategy also meets 

the performance criterion under the robust optimal inspection strategy.  We caution the reader 

that this is not a general result; that is, it is possible that the robustness curves could cross for 

some parameters of the problem or for some other application.  

Let us now return to the results in Table 3. The change in maximum robustness levels for 

1 5,...,M M∗ ∗  reveals a fundamental tradeoff between robustness and performance: robustness 

decreases with a more stringent performance requirement (i.e., lower M ∗  in this application). 

This reflects the fact that the circumstances under which a performance criterion is met are fewer 

if we insist on better performance. Although not seen in Table 3 it is easy to demonstrate that 

robustness is zero for 0M ∗ =  indicating that a decision maker has no confidence in limiting 

expected costs to zero. Greater robustness only comes from tolerating higher expected costs.  

The second and third columns of Table 3 reveal that the optimal inspection strategies for 

1 5,...,M M∗ ∗ , and meanM ∗  involve more inspections than the AQI 2% rule. Thus, for this range of 

performance criteria, greater robustness is achieved by more intense inspections than under AQI. 

Noting that the optimal inspection rule is monotonic in the performance criteria for this 

application, we asked whether there is a performance criterion at which the 2% rule maximizes 

robustness. This performance criterion does exist and it is approximately 6$22.286 10AQIM ∗ ≈ × . 

Given variable inspection costs of about $19.934×106, AQIM ∗  allows for emergency funds of only 

$2.352×106.  Note that this is lower than all of the emergency fund allocations in Table 2. This 
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suggests that the AQI inspection rule is optimally robust only for unrealistically low performance 

criteria.  

The data in Table 3 also reveal important information about how robustness is achieved 

with inspections. For now, focus on one performance criterion, say meanM ∗ .  That optimal 

inspections are substantially higher than AQI inspections under this performance criterion 

indicates that expected losses from introductions must be significantly less to hold variable 

inspection costs plus expected introduction losses to meanM ∗ .  The higher inspection percentage 

associated with the optimal robust protocol enables detections of much lower infestations, which 

reduces the chance of inspection failure and the expected losses due to inspection failure. The 

cost saving due to preventing inspection failure more than compensates for the added inspection 

cost. The tradeoff between lower expected introduction losses and higher inspections costs can 

be dramatic. At the performance criterion meanM ∗ , the variable costs of optimal inspections (11%) 

total $109.639×106 and expected emergency fund expenditures are only $4.108×106, or about 

3.7% of the performance criterion.  Under the 2% inspection rule with variable inspection costs 

of $19.934×106, expected emergency fund allocations are limited to $93.813×106 under meanM ∗ , 

or about 82.5% of the performance criterion. As noted above, the former inspection strategy is 

much more robust than the AQI strategy.  Thus, robust optimality appears to call for a shift in 

resources toward more inspections and away from emergency fund allocations to deal with 

invasive species introductions. 6

                                                 
6 That optimal inspection rates increase with the performance criterion in Table 3 is a further 
reflection of how maximizing robustness calls for shifting expenditures to more inspections. We 
should note, however, that the relative proportions of inspection costs and expected emergency 
expenditures do not change monotonically as the performance criterion is increased.  In general, 
it is worth noting that the comparative static results in Table 3 are limited to our simulation 
exercise and should not be taken as general results. 
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4. Conclusion 

We have proposed a protocol for determining inspection strategies for detecting invasive species 

in shipments of fruits and vegetables that considers the costs of inspections and potential losses 

from undetected introductions, but does not rely on probability distributions that real decision 

makers often lack. This protocol is to choose an inspection strategy that is robust in the sense that 

it maximizes the set of possible outcomes under which a performance criterion is met. We use 

this protocol to evaluate the robustness of the current practice of inspecting 2% of items in 

shipping containers of fruits and vegetables at U.S. ports. For a wide range of performance 

criteria the 2% rule is simply not very robust to the substantial uncertainty that characterizes the 

problem of preventing some invasive species introductions.   

 Moreover, our calculations of robust optimal inspection rules suggests that a shift of 

resources toward more inspections and away from allocating funds to deal with invasives that get 

past the inspection process may be justified. Currently, agricultural inspections are funded from 

AQI user fees collected when international passengers and conveyances (trucks, commercial 

vessels, rail cars, and aircraft) enter the United States. These fees are split between DHS and 

USDA’s Animal and Plant Health Inspection Service (APHIS), with DHS receiving about 60 

percent. The U.S. Government Accountability Office (USGAO 2008) estimated that the current 

cost of inspecting commercial vessels is considerably less than total fees collected. Increasing the 

agricultural inspection rate would require that a greater proportion of AQI user fees be allocated 

to inspections or an increase in funding to cover the costs of the greater workload. An increase in 

funding could require congressional action to increase budget appropriations or identify 

alternative funding sources. 
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 Our protocol for determining robust optimal inspection rules can be used to address 

important issues about agricultural inspections that the U.S. Government Accountability Office 

has raised over the years.  Since the protocol can be applied to poorly understood or 

surreptitiously introduced organisms for which probabilities are not easily available, it can 

address concerns about detecting new pests and agro-terrorism threats during inspection 

(USGAO 2005 and 2007).  By suggesting higher sampling rates than currently used under a wide 

range of performance criteria, the protocol can address concerns about inspection reliability 

raised by declining interceptions as import shipments increased (USGAO 1997, 2005, and 2007).  

Although our work is motivated by detecting invasive species in fruit and vegetable 

shipments, this same approach is applicable to an increasingly wide range of detection problems 

where uncertainty is severe and effective use of scarce inspection resources is required. Useful 

applications of this approach likely include border inspections for smuggled contraband, general 

law enforcement problems, and the early detection and control of infectious diseases. 

 



 19 

Table 1:  Frequency Distribution of Boxes per Shipment Subject to AQI Inspections, 
United States Maritime Ports, 2004-2006.  

 
Boxes per Shipment  Shipments Percent  

0-500 23 2.6% 
500-1000 328 36.6% 
1000-1500 385 42.9% 
1500-2000 99 11.0% 
2000-2500 34 3.8% 
2500-3000 28 3.1% 

Total sample shipments  897 100.0% 
 

Source: United States Department of Agriculture (2008b) 
 
 
 

Table 2: Total USDA/APHIS Emergency Program Funds, Plant Pests, 1987-2007* 
 

Year Costs 
(millions of 2007 dollars) 

Year Costs 
(millions of 2007 dollars) 

1987 9.647 1998 36.343 
1988 6.940 1999 52.089 
1989 13.730 2000 176.562 
1990 44.096 2001 250.455 
1991 9.802 2002 93.523 
1992 26.914 2003 97.414 
1993 24.872 2004 117.779 
1994 27.497 2005 232.169 
1995 26.753 2006 470.883 
1996 48.249 2007 159.031 
1997 45.325   

 
*Important pests (in order of allocated funds): citrus canker, Mediterannean fruit fly, emeral 
ash borer, asian longhorned beetle, karnal bunt, Pierce's disease/GWSS, sudden oak death, 
asian gypsy moth, grasshopper and morman cricket, potato cyst nematode, 
Mexican/oriental/olive/west Indian fruit flies, plum pox virus, and others. 
 
Source: United States Department of Agriculture (2008c) 
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Table 3: AQI and Optimal Robust Inspection Rules 
  

Performance 
Criterion 

Percent Boxes 
Inspected Robustness 

(Millions$) Optimum AQI Optimum AQI 
     

113.747meanM ∗ =  11% 2%  33027 7961 
     

1 44.806M ∗ =  4% 2% 15106 6394 

2 56.277M ∗ =  5% 2% 18826 6766 

3 72.023M ∗ =  7% 2% 24694 7173 

4 178.965M ∗ =  16% 2% 39195 8734 

5 490.817M ∗ =  47% 2% 47453 10484  
     

22.286AQIM ∗ ≈  2% 2% 5063 5063 
 
 
 

Figure 1: "Safety Zones" of Optimal Robust Inspections and AQI Inspections 
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