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Florida Citrus Planting Decisions:
Impacts of Expected Returns and Price Risks
on Varietal Choice

Abstract

A model is developed to explain Florida citrus planting levels by variety. The varietal choice
is based on the expected prices and price variances/covariances of the varieties under consideration.
Overall planting returns are maximized for a given level of price risk. The model’s price coefficients
are similar to those of the Theil and Barten Rotterdam demand model. As in the Rotterdam model,
both absolute and relative price coefficient specifications are considered, allowing an examination
of restrictions related to price risk. The empirical analysis considers two restricted specifications—
a varietal independence model, based on the assumption that only the price variances are important
for predicting planting levels, and a group independence model that additionally assumes the price
covariance for two varieties from the same (different) group(s) is nonzero (zero). Both models
substantially reduce the parameter space and may be of interest in situations where lack of degrees
of freedom is an issue. A varying parameter model was also estimated, indicating that with growth
in the world orange-juice market, orange prices have been perceived to be less unstable, and orange
planting responses to changes in total citrus acreage planted and orange prices have been stronger.



Florida Citrus Planting Decisions:
Impacts of Expected Returns and Price Risks
on Varietal Choice

Introduction

This study examines how Florida citrus growers allocate acreage to different citrus varieties.
A model is developed in which acreage is allocated based on the expected prices and price
variances/covariances of the varieties. Allocating citrus acreage is viewed like allocating wealth
across various assets in a portfolio (e.g., Bewley, 1986). The modeling approach taken in the present
study is similar to that suggested by Barten and Vanloot (1996) to determine how farmers allocate
land to various crops. The Barten and Vanloot model is specified in differences and its price
coefficients are specified following the approach taken in the absolute price version of the Rotterdam
demand model (Theil, 1971, 1975, 1976, 1980). In contrast, the model developed here to determine
varietal choice is specified in levels and its price coefficients are specified following the approach
taken in the relative price version of the Rotterdam model. For some analyses, modeling in terms
of levels, as opposed to differences, may be called for; and the relative price specification may be
useful to examine restrictions on the allocation decision. In the case of demand, the relative price
version allows restrictions for various types of separability of the utility function. For the present
varietal choice problem, the relative price version allows restrictions on the risk part of the planting
objective function. Finally, this study examines a varying parameter specification, allowing changes
in grower perceptions of orange price variances.

Acreage Allocation Model

The problem of determining the number of acres to be planted by citrus variety is viewed like
the investment problem of choosing different assets in a portfolio (e.g., Bewley). In the investment
problem, overall portfolio returns are maximized for a given level of risk. Similarly, overall
expected returns to planting various citrus varieties are maximized for a given level of price
variability. In this problem, the allocation of acreage by variety is specified as being dependent on
the individual varietal returns and their covariance matrix. First, a model focusing on the variances
is developed, followed by a generalization which considers both the variance and covariance terms,
and a specification that allows straightforward imposition of restrictions on these model components.



Varietal Independence Model

Consider the grower objective function
1 ¥ ap% -(k2)Y a%0’;

where a, is the acreage allocated to variety i; p®; is the expected return per acre for the variety; k is
a positive constant; and o, is the variance in the return for the variety.

The variance term o, is E(p;- p%)’, where p; is the actual return for variety i, and (p; - p°) is
the error in the return, with an expectation E(p;-p®,) =0. The term a’0? is the variance in the return
to the acres allocated to variety i (a;p,), and ¥ ; a%,0? is the perceived variance in overall returns. The
word perceived is used because there may be unperceived variance/covariance components.

The covariance termsdefined by E (p;-p®)(p;-p°), i* j will be subsequently considered but
initially these terms are assumed to be zero. Even if covariances are non-zero, in some cases,
growers may not be aware of their values or be able to recall exactly how the returns for any two
varieties move together.! Overall, we allow for the possibility that grower perceptions of the
variances/covariances may differ from their actual values, and in the subsequent model, the
coefficients depend on perceived values, not necessarily actual ones.

Equation (1) is maximized subject to the amount of land available for planting . Formalily,

the constraint is A =Y} ; a,, where A is the total acreage available to be planted,” and the Lagrangian
function for choosing a; is

(2) L=Yap%-(k2)Y 20" +MA-Y a)
where A is the Lagrange multiplier.

The first order conditions for problem (2) can be written as

() p5-0a =4,

! The returns for some of the citrus varieties tend to move independently as the markets by variety are often
driven by different factors. For example, the Florida orange market has been strongly impacted by factors in the
world OJ market like Brazil’s supply as well as factors in the domestic market like preference changes related to the
Atkins diet; on the other hand, the grapefruit market has been impacted by preference changes related to drug
interactions and exchanges rates (much of Florida’s grapefruit is exported in either fresh or processed form, while a
much smaller percentage of oranges is exported and little specialty citrus is exported); the specialty citrus market
demand is mostly a domestic one with important factors being the availability of substitutes like Clementines and
other fresh fruit.

2 One might consider how A is determined, but for this study we take it as given based on grower
investment decisions in land and the acreage available for replanting due to tree losses.



where o’; = ko’, and, the constraint,

4 A=Ya.

The Hessian matrix is a diagonal matrix with negative diagonal elements, -ko®, given the
variances (0%) are positive. Hence, the Hessian matrix is negative definite and the second order
conditions are meet.

To obtain our model from these results, we first solve for the Lagrange multiplier, by dividing
equations (3) by ¢';and summing over i to find

%) Yip5/oi- Yia=Y;Md,
or, rearranging, and using constraint (4),
(6) A=Qip5 /a"-A)/ Y (1/a").

Substituting result (6) into equation (3), and rearranging, we obtain our acreage allocation
model

(7 a=BA+OB(D5-LBp):
where

(3 B;= (1/0‘i)/(2,~ l/otj)
= (1/o®)(L; 1/0,

since 0", = ko? (the term k in the numerator and denominator cancels out), and

© ¢=Y;U0)
1K)y 0%

The term (1/0%) can be viewed as a measure of the certainty of p;; if the variance of p, is large
we have less certainty in the price. The term Y j(l/ozj) can be viewed as measure of the overall price
certainty across varieties. Thus, B; indicates the relative price certainty for variety i, while the term
¢ measures the general impact of price uncertainty in the model (the more important price risk is
in problem (1) or the higher k, the lower ¢, and the lower the impact of prices in the planting
decision).?

3 Although we will initially treat the coefficients B, and ¢ as constant in estimating model (7), note that an
increase in the variance o%, or a decrease in the level of price certainty of variety i, results in decreases in p,and =, ;

i.e., 9p/00% = (B;-1)B,/0% < 0 and 9=;/00% = (B-1)m; /0% < 0. Given constraint (8), the increase in o7 further results
in increases in the other B;’s, i.e., 3p;/30° = pB;/a’, > 0. Likewise, given constraints (8), (9), and (10), the increase in



Given variances are positive, the parameters (8) and (9) obey the inequalities 0 <, < 1 and

¢>0.

In equation (7), own- and cross-price effects can be defined by w; = OB;(A;- B;),where A, is
the Kronecker delta (A; =1 if i=j; A; = 0 if i#j. The price effects of the above model are similar to
those in Theil’s preference independent demand model or those in his uniform substitute demand
model (Theil, 1980) . Thus, model (7) will be subsequently referred to as a varietal independence
model, given the underlying price covariances are zero. In estimating this model, the parameters ¢
and the B;’s will initially be treated as constants. Alternatively, if the price coefficients were
specified with the =;;’s as constants, we would have a model similar to the absolute price version of
the Rotterdam model.

When dA =1 or A increases by one acre, the change in acreage allocated to variety i is f3,.
Hence, the term B, can be viewed as a scale coefficient.

If only the expected price of variety i changes (dp®,), the change in acreage allocated to variety
i is determined by ¢f,(1-B,)dp°.. Hence, &, = ¢f,(1- B,) can be viewed as an own-price coefficient.
This parameter is positive, given @ is positive and B, is between zero and one as noted above.

Likewise, when only the expected price of variety j changes (dp®), the change in acreage
allocated to variety i is determined by -¢B,B; dp®, and n; = -QB;B; is viewed as a cross-price
coefficient. This parameter is negative.

These scale and price coefficients obey the following properties.

Adding-up (}; a,= A):

(10) ZiBFI, Zinij=0-

Homogeneity (changing all expected prices by the same amount, with total acreage constant, leaves
the allocations unchanged):

) ¥ ;m=0.
Symmetry of price effects:
(12) my=m;

o’ results in increases in n;and w; j#i. It also follows from the foregoing changes and constraint (8), (9) and (10) that

the increase in o’ results in decreases in the other own-and cross- price coefficients.



Generalization

Considering both variances and covariances in the citrus returns, the grower objective
function can be written as

(13) ap°*-(k2)a’M+gu’)a

wherea=(a,, ..., a,) and p°*=(p°,, ..., p,) are nx1 vectors with a, and p®; defined as above; k is again
a positive constant; and M + g’ is the covariance matrix for expected returns with M being an nxn
matrix of specific covariance terms, 1 being an nx1 unit vector, and g being a positive scalar
representing a common tendency for returns to move together. That is, for the risk part of the
objective function, the error in returns is (p- p%); its expectation is E (p;-p®,)) = 0; and its covariance
matrix is E(p-p*)(p-pf)’ =M + gu’, where p is the vector of actual returns. Hence, a’(p-p°®) is the
error in overall expected returns across the allocated acres, and a’(M + gui’)a is its covariance
matrix.

The specific covariance matrix M reflects risks originating say from market conditions, while
the general covariance matrix gu’ reflects common risks, originating say from weather and
Statewide growing conditions. As shown below the common variation does not play a role in the
allocation. On the other hand, the structure of the specific matrix M underlies the subsequent model
restrictions analyzed.

Like equation (1), equation (13) is maximized subject to the constraint A =1’a or the amount
of land available for planting. Formally, the Lagrangian function for choosing a, is

(14) L= ap°-(k)a’M+g’w)a+A(A-1a).

The first order conditions for problem (14) can be written as
(15) p*-kM+gu’a=A,
and, the constraint,

(16) A=va.

The Hessian matrix is -k(M + gui”) which is negative definite, given k is positive and M +
gw’ is a positive definite covariance matrix. Thus, the second order conditions are meet.

Based on constraint (16), equation (15) can be expressed as p° - kMa - kgAi = Ai. Pre-
multiplying both sides of this expression by (1/k) M, and solving for vector a gives

(17)  a= (/KM - gAM™M - A(1/KM ™.
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Equation (17) shows the acreage allocation, conditional on the Lagrange multiplier A.
The solution for A is*

(18)  A=@MWYWM'p - k(UMM + g)A.
Substituting result (18) into equation (17) yields

(19)  a= (/KM 'p>= gAM™M - [(M) WM 'pe - k(UMM + g)AJ(1/KM™,

= (MYMhA + (/KM L [ MY M - @MY MY MM e,

BA + (dy/k) [B - B BIp,

where

200  B=[B]= &'M™",

and

(21) B = ¢0-l M-l’

with ¢, = M. Given M is positive definite, its inverse is positive definite and ¢, is positive.
Equation (19) is our generalized acreage allocation model. Note that in this model the

common variation involving the term g cancels out and does not play a role in determining the

varietal planting levels.

In terms of individual elements equation (19) can be written as

(22) a= BA+ (¢0/k)ZJ(BIJ - B; Bj)pej’

= BiA+(d/L[Y B D5 - B; Y B (distributive law)
= BA+ (¢o/k)[Z,B., PSi- Zjﬁij Y B, (Zj Bij =B)
= Bi A+ (d/0L B; (0 -X Bip%) (distributive law)

where [B;] =B;and )’ ; B; = B; and } ; B; =B;, given [B,]= ¢,'M 1. GivenM is symmetric, B; = B;ie
Further, note that adding-up, homogeneity and symmetry—restrictions (10), (11) and (12),
respectively—also hold for model (22) with m; = (¢y/k)(B; - B; B;)- As in the case for the varietal

* To find result (18) multiply both sides of result (17) by v’ and use constraint (16) to find A = (1/kK)\’M'p° -
gAUVM ™ - A(1/k)M . Multiplying both sides of this result by k (i"M'1)" and rearranging terms find A = k
WM (/KM 'p - (1 + gMV)A] or equation (18).
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independent model, the own-price effects (n;) are positive;’ the scale coefficients (B,), however, no
longer need be positive.

Based on the above results, B; = B;- ) ;,; B, and equation (22) can be written as

(23) a =BA+ (/KB - Zj;i Bij)(pei - Zij Pej) + (¢0/k)2j¢i Bij (Pej - Zij Pej),
=B A + (Gy/K)B(p; - Zij P+ (q)O/k)Zjﬁ Bij (P -p%)-

Equation (22)is a convenient form of the model as cross restrictions on the covariance matrix
Mimply restrictions on the coefficients [;;.

In context of the literature on differential demand, model (22) or (23) is a relative-price
specification with the coefficients B;, B;and ¢= ¢,/k treated as constants. In contrast, in the absolute-
price specification, the price coefficients would be defined as ;= ($y/k)(B; - B; B)); and the =;’s,
along with the scale coefficients, the B,’s, would be treated as constants. That is, formally, the
absolute-price specification is

(24) a =B A+Y;mD"

As shown by Theil, the relative price version cannot be estimated unless at least one restriction
is placed on the model’s coefficients. For example, if [B;] were diagonal (B;;= 0, i#j), the last term
on the right-hand side of model (23)—second line— vanishes leaving us with the varietal
independence model, equation (7). But less severe restrictions might also be considered. In this
study, we have three groups of citrus, each comprised of similar varieties; and we examine the
possibility that only the B; for i and j belonging to different groups are zero (B; for i and j for two
varieties within a group can be nonzero).

Given ;= 0a/0A and ;= 0a/dp°, the elasticities for the acreage allocation model are
25) €=0;(a/A) (elasticity of variety i acres with respect to total acreage planted)

and

> The price coefficients in terms of matrices are
® = (/KN M - &, ' ML M)
=1/KRM! - d, MM,
Pre- and post multiplying the covariance matrix M by = gives
(ii) Mn = (/KM - ¢, MUvMHM M - ¢, MhvMY)
= (/X - o' MU )M ! - o, MM
= (/KM - ¢, MM - o' MM + ¢, MwM?!
= (/KM - ¢,/ MM
= T.
Let o be a vector whose elements are zero except for element i which is one. Then, «’nMn a= o’n a = ;. Given M
is positive definite m; > 0.



(26) €;=m;(a /p%) (elasticity of variety i acres with respect to the expected price of
variety j).

Application

The empirical study examines Florida acreage planting levels for five citrus varieties—1) early
and midseason oranges, 2) late season, Valencia oranges, 3) white seedless grapefruit®, 4) red seedless
grapefruit, and 5) specialty citrus (Temple oranges, tangelos, and tangerines). Data on acres planted
were obtained from various issues of the”Commercial Citrus Inventory,” published by the Florida
Agricultural Statistics Service (FASS). Citrus returns were measured by on-tree prices per acre based
on on-tree revenue reported by the Florida Agricultural Statistics Service (FASS) in various issues
of “Citrus Summary.” On-tree prices per acre were calculated as total on-tree revenues divided by
the associated number of bearing acres. Annual planting levels from 1964 through 2003 were
studied, using on-tree prices from 1956 to 2003 to construct the expected price variables.” The on-
tree prices were deflated by the consumer price index (U.S. Department of Labor, Bureau of Labor
Statistics). Descriptive statistics for the acres planted and prices are shown in Table 1.

An adaptive expectations specification was used to model the expected prices in the model
as in the Barten and Vanloot study:

(27) pei,t = Ypi,t-l + (I'Y)pei,t-l,

where y is a scalar between zero and one. Through repeated substitution, equation (27) can also be
written as

(28) p%= Z k=ltot Y(I‘Y)k_I Piex + (I‘Y)tpei,o.

Based on result (28), the model’s price term, ), i P%» can be written as

(29) Zj T (Z k=ltot Y(I'Y)k'l P T (I'Y)tpej,o)a

or,

¢ Includes seedy grapefruit.

7 The first commercial citrus inventory, from which the planting levels were obtained, was made in 1965,
while complete data on all prices were available back to 1956.



(30) Zj T p‘j+ o (1-p*,

where P’ =Y o0 Y(I-Y)¥' D, and ; = ¥ ;myp%;, . The term p’; is that part of the expected price
based on the observed prices, while the term (1-y)'p%,, is that part based on the pre-sample expected
price. In the empirical analysis, (1-y)"' is treated as a variable and «; is treated as a coefficient to be
estimated.

The equation error terms were assumed to be contemporaneously correlated, and the system
of planting equations were jointly estimated by the maximum likelihood procedure (TSP), obtained
by iterating the seemingly unrelated regression method. The homogeneity and symmetry restrictions
were imposed as part of the maintained hypothesis. As the data add up—the sum of the dependent
variables, acres planted (a,), equals one of the independent variables, total acreage (A)— the error
covariance matrix was singular and an arbitrary equation was excluded (the model estimates are
invariant to the equation deleted as shown by Barten,1969). The parameters for the excluded equation
can be obtained using conditions (10), (11) and (12) or by re-estimating the model omitting a different
equation. The expected price parameter y was set to maximize the likelihood value of the system of
equations, based on a grid search (Maddala). The value of y chosen was .72 .

Three specifications of the acreage allocation model were estimated—unrestricted model (24),
varietal independence model (7), and a group independence model, based on a restriction imposed
on model (23). For defining the group model as well as for reporting the various model estimates,
the variety subscript is defined as follows:

i=1 for early and midseason oranges,
i=2 for Valencia oranges,
i=3 for white seedless grapefruit,
i=4 for red seedless grapefruit,
i=5 for specialty citrus.

For the group independence model, there are three groups—a) oranges (i=1 and 2), b)
grapefruit (i= 3 and 4) and ¢) specialty (i=5). For this model the coefficient ;= 0 or the covariance
between prices i and j is zero when i and j are from different groups. Thus, in equation (23), the only
nonzero Bij‘s are By, (=B,;) and ;4 (=Bss)-

The logarithmic likelihood values for these three models are shown in Table 2, along with the
likelihood test results. Under the null hypothesis, twice the difference between the logarithmic
likelihood value for the unrestricted model and that for the restricted model is asymptotically
distributed as a chi-square statistic with the number of degrees of freedom equal to the number of
restrictions (difference in the number of free parameters in the two models). The likelihood test
results do not provide strong support for either of the restricted models, with the probabilities of
exceeding the test values being .11 and .20 for the price independent and group independent models,
respectively. However, since these probabilities are not extremely small, particularly for the group
independent model, we will consider these restricted models further.
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The coefficient estimates for the three models are shown in Table 3. For the unrestricted
model, 12 out of 18 of the free parameters were significantly different than zero at the o = .10 level;
for the price independent and group independent models, 8 out of 9 and 9 out of 11 of the free
parameters were significant, respectively. All marginal propensities (f3;) across the models were
positive and significant, indicating an increase in total acres results in increased plantings across
varieties. In the unrestricted model, the own-price coefficient for each variety was positive,
indicating an increase in the variety’s price results in an increase in that variety’s planting level; all
own-price coefficients were significant except that for red seedless grapefruit; all cross price
coefficients were negative (indicating substitution) or not significantly different than zero. The pre-
sample price impact () was significant across models, except in the equation for early and midseason
oranges. In the price independent model, the factor of proportionality was positive and significant,
which along with the estimates of the B,’s in the zero-one interval imply positive and negative own-
and cross-price impacts, respectively. In the group independent model, the factor of proportionality
and P,’s were also positive, but the coefficient B,, between the white and red seedless grapefruit
varieties was large enough to result in a cross- price effect between these two varieties (1;,) that was
positive but not significantly different than zero.

The model elasticity estimates, calculated at the sample means, are shown in Table 3. The
planting responses to own-price changes tend to be inelastic, with the own-price elasticity estimates
(e;;) being less than unity, except for specialty citrus in the unrestricted model. The cross-price
elasticity estimates (€;) tend to be smaller (in absolute value) than the own-price elasticities. The total
acre elasticities (€;) across model were relatively close to unity for early and midseason oranges;
exceeded unity for Valencia oranges and red seedless grapefruit, except for red seedless grapefruit
in the price independent model; and were less than unity for white seedless and specialty citrus. That
is, the marginal propensity B, tends to equal (be greater than; be less than) the corresponding average
propensity, a; /A, for Early and midseason oranges (Valencia and red seedless grapefruit; white
seedless grapefruit and specialty citrus).

In each of the above models, the scale and price coefficients have been assumed to be
constants over the time period studied. Constancy of these coefficients further implies constancy
of the price variance/covariance terms (M), given these coefficients are functions of these terms—
equations (20) and (21). Below, we consider relaxing these constancy assumptions.

A major development over the period studied has been the emergence of Brazil as the
dominant orange and orange-juice (OJ) producer in the world. In the 1960s, the United States was
the largest orange and OJ producer in the world. Florida was the dominant producer in the United
States. In 1962-63, Florida’s citrus production was sharply reduced as a result of a freeze. The
shortfall in Florida orange and OJ production resulted in large orange price increases which in turn
stimulated Brazil’s orange and OJ production and its OJ exports to the Untied States. Freezes in
Florida in subsequent years, particularly those in the 1980s, further resulted OJ price increases and
expansion in the Brazil industry. Additionally, the world market for OJ grew, particularly in Europe.
As a result of these supply and demand changes, OJ prices have become relatively more stable—
major OJ supply shifts in Florida, for example, no longer tend to impact prices as sharply as in earlier
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years when they were largely determined by Florida supply and U.S. demand. For example, the
standard deviation in the early and midseason (Valencia) on-tree orange price was $868/acre
(849/acre) from 1994 through 1993 verus $241/acre ($253/acre) from 1994 trough 2003. Thus, in
our model, the perceived price variance/ covariance terms for oranges may have changed over time.

To allow for the above possibility, consider the varietal independence model. The coefficient
B, in this model is (1/6°)/(}. ; 1/6*) and ¢ is (1/k)’ ; (1/6*). The aim is to specify these coefficients
as varying parameters. The variance terms for the two orange varieties (07, i=1,2) will be allowed
to change over time.

Consider estimating the 0%.s and k. Note that 0% in B; and ¢ can not be identified— a
proportional change in all variances leaves 3, unchanged; while in the definition of ¢ the parameter
k can be changed to offset any proportional change in the variances. This problem can be solved by
normalizing the variances in some fashion. Here, we multiply and divide B, by the variance for the
last variety (i=5 or specialty citrus) which results in

Bl Bi= (Y (+ Y 11 s %507
=0;/(1+ X jt 104 P>

where p; = 0%,/0%.
Similarly, we specify

(32) ¢-= 1/ (ko’))(1+ ¥ j (0’ 02,')
=Kk'(1+ Zj =104 P)s

where k" =1/(ko%).
The term p, (i=1 and 2) are then specified as functions of the log of time, i.e.,
(33)  p;=98;;+ 8, log(t).

In general, the coefficient 8, in equation (33) could also have a variety subscript i but due to
collinearity between the two orange prices separate values of 8, could not be estimated. Moreover,
it was found that when the coefficient restriction §,, = &,, was imposed the log likelihood value
changed little and the restriction could not be rejected at any reasonable level of significance. That
is, the two orange varieties have the same price variance which may not be too surprising since both
are similar ingredients (close substitutes) in OJ products. The parameters p, (i=2,3 and 4) and k*
were treated as constants. Assuming that the coefficients B, and ¢ only varied over the sample
period when the structure of the OJ industry changed, the coefficients «; were continued to be treated
as constants.

A varying parameter specification for the group independence model was also estimated
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where the B, and ¢ were allowed to vary as in the varietal independence with the cross-price
parameter between the two orange varieties, B,,, further specified as a linear function of the log of
time. The likelihood value for this model declined relatively little compared to that for the above
time varietal independence model with varying parameters, and, based on the likelihood ratio test,
we will focus on the varietal independence model (twice the difference in the log likelihood values
for the varietal and group models was 2.74; the difference in the number of free parameters in the
two models (degrees of freedom) was 3; and area of the chi-square distribution with 3 degrees of
freedom exceeding 2.74 was .43).

The estimates of the varietal independence model with time varying parameters are shown
in Table 5. Eight out of 10 of the model coefficients, shown in left hand side of the table, were
statistically significant (the two insignificant estimates were for two of the pre-sample price effects).
The positive value of the parameter 8, indicates that the perceived orange-price variance has been
decreasing over time as expected. In the right hand side of the table, the values of the scale (B,),
proportionality (¢) and price(r;) coefficients are shown for three select years—the beginning of the
sample, 1964; the middle of the sample, 1984; and the end of the sample, 2003. The scale parameter
for oranges has been increasing while those for the other varieties have been decreasing. With the
decreased, variance over time, the factor of proportionality for the price effects has been increasing.
These results indicate the own-price effects have been increasing for the orange varieties, but have
been relatively stable for grapefruit and specialty citrus. Thus, these estimates are consistent with
the hypothesis that with the growth in the Brazil OJ industry and the world OJ market, growers have
viewed orange price as being less unstable which has resulted in stronger orange planting responses
to total citrus acre and orange-price changes.

The main purpose of the analysis of citrus variety planting levels has been to provide
examples for the various model specifications, but it should be noted that the estimated citrus varietal
planting equations can be important in themselves for analyzing the interaction between citrus supply
and demand. Barten and Vanloot show how planting equations for various agriculture crops in
Europe can be integrated into a supply and demand model to examine price dynamics. Similarly,
citrus planting equations can be included in a larger model. Planting levels are a major determinant
of future production, along with tree loses and yields (e.g., Spreen, Brewster and Brown). To
analyze, for example, the impact of changes in the U.S. citrus tariff structure on U.S. citrus
production as in the Spreen et al study or to simply estimate future production for industry planning
purposes requires some assumption or estimates on planting levels. In short, modeling planting
levels by variety can be an important input for the larger citrus supply-demand situation that one may
be interested in.

Concluding Comments

In this study, a model was developed to explain Florida citrus planting levels by variety.
Planting different citrus varieties is viewed like choosing alternative assets in a portfolio. The choice
of variety to plant is based on the expected prices and price variances/covariances of the varieties
under consideration. Overall planting returns are maximized for a given level of price risk. The
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model’s price coefficients are similar to those of the Theil and Barten Rotterdam demand model.
As in the Rotterdam model, both absolute and relative price coefficient specifications were
considered, allowing in the present study an examination of restrictions related to price risk. The
model here is also specified in terms of levels as opposed to differences in the Rotterdam model and
in a planting model suggested by Barten and Vanloot. A varying parameter model model allowing
the price variances to change over time was also considered in the present study.

In the empirical application, two restricted models were considered, each showing some
promise in explaining the citrus planting data analyzed. The first model was a price independent
specification which is based on the assumption that only the price variances are important for
predicting varietal planting levels. This model greatly reduces the parameter space and may be of
interest in situations where lack of degrees of freedom is an issue. The second restricted
specification was a group independent model allowing more flexibility in the cross- price responses
between varieties in a group. The unrestricted model, against which these two models were tested,
allows all price covariances to be non-zero.

Over the period studied, both world supply and demand for OJ has grown, and the variance
in orange prices has tended to decrease. The varying parameter model indicates that over time
growers have perceived orange prices as being relatively less unstable. As a result, the estimated
grower planting responses to total citrus acre and price changes have become larger.
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Table 1. Descriptive Statistics of Florida Citrus Acres Planted and Prices.

Variable Mean Std. Dev.
Annual Acres Planted®
Early and Midseason Oranges 12,737 9,149
Valencia Oranges 12,224 8,487
White Seedless Grapefruit 1,996 1,933
Red Seedless Grapefruit 2,398 1,917
Specialty Citrus 1,968 2,670
Total 31,324 20,790
Share of Total Acres Planted®
Early and Midseason Oranges 39.4% 9.1%
Valencia Oranges 38.9% 9.5%
White Seedless Grapefruit 7.6% 7.2%
Red Seedless Grapefruit 8.6% 6.3%
Specialty Citrus 5.5% 4.4%
Annual Dollar On-Tree Return Per Acre®©
Early and Midseason Oranges 2,434 970
Valencia Oranges 2,390 867
White Seedless Grapefruit 2,257 1,011
Red Seedless Grapefruit 2,669 1,248
Specialty Citrus 2,478 992

Source: Florida Agricultural Statistics Service-—various issues of the
Commercial Citrus Inventory and Citrus Summary.
4 Based annual data from 1964 through 2003.
® Based annual data from 1956 through 2003.
¢ Deflated by the consumer price index (in 2004 dollars).

Table 2. Logarithmic Likelihood Values for Alternative Rotterdam Model Specifications.

Item Model
Unrestricted Price Group Independent
Independent

Logarithmic Likeiihood Value -1355.86 -1363.08 -1360.76
Likelihood Ratio Test Value® — 14.44 9.8

Free Parameters 18 9 1

Degrees of Freedom® -— 9 7
P-Value® - 0.108 0.200

? Twice the difference between the logarithmic likelihood value for the unrestricted model and that

value for the restricted modei.

® Number of free parameters in the unrestricted model minus the number of free parameters in the

restricted model.

° Probability of obtaining likelihood ratio values exceeding the test vaiue shown in the table.
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Table 3. Maximum Likelihood Estimates of the Citrus Acreage Allocation Model.

. Unrestricted Variety Independent Group Independent
Coefficient
Coeff. Std. Coeff. Std. Error  Coeff. Std.
Est. Error Est. Est. Error

B1 0.403* 0.012 0.410* 0.011 0.406* 0.011
B2 0.428* 0.012 0.420* 0.010 0.423* 0.010
B3 0.043* 0.007 0.048* 0.006 0.043* 0.007
B4 0.083* 0.006 0.076* 0.005 0.082* 0.006
B5 0.043* 0.006 0.046* 0.005 0.046* 0.005
¢ 11.003* 2.105 10.450* 2.254
B12 -0.171 0.135
B34 0.039* 0.023
ai 44353 37492 28953 36248 38740 35936
a2 -165584* 20333 -154660* 31650 -163522* 31676
a3 74694* 34814 84791* 18719 83986* 18801
a4 -92525* 17522 -104034* 16828 -104242* 17158
ab 129061* 18586 144950 17346  145037* 17341
i1 4.539* 1.204
m2 -3.159* 1.156
m3 -1.002* 0.482
n4 0.351 0.393
nis -0.729 0.483
m22 4.312* 1.398
m23 0.086 0.491
n24 -0.485 0.410
m25 -0.755 0.536
m33 0.360 0.360
n34 0.119 0.265
n35 0.437 0.290
44 0.473* 0.245
45 -0.459* 0.228
n55 1.506* 0.379

* indicates the estimate is significantly different than zero at the a = .10 level.
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Table 4. Elasticity Estimates of the Citrus Acreage Allocation Model.”

Equation Unrestricted Variety Independent Group Independent
Variable Coeff. Est. Std. Error  Coeff. Est.  Std. Error  Coeff. Est.  Std. Error
EM Total Acreage 0.99* 0.03 1.01* 0.03 1.00* 0.03
EM Price 0.80* 0.21 0.47* 0.09 0.76* 0.20
Val Price -0.56" 0.20 -0.34* 0.07 063" 0.20
W. Price .0.18* 0.09 -0.04* 0.01 -0.03* 0.01
R. Price 0.08 0.09 -0.08* 0.01 0.08" 0.02
Spec. Price 0.14 0.09 0.04* 0.01 0.04* 0.01
T Tval T o Total Acreage 110" 003 T ost 003 " “qpg* 003~
EM Price -0.58* 0.21 -0.35* 0.07 -0.66* 0.21
Val Price 0.80* 0.26 0.49* 0.10 0.80* 0.21
W. Price 0.02 0.09 0.04* 0.01 0.04* 0.01
R. Price -0.11 0.10 -0.08* 0.01 0.08" 0.02
Spec. Price 0.15 0.11 .0.04* 0.01 0.04* 0.01
“"White Gt~ Total Acreage  0.67* 011 o7e* 009 oes* 011
EM Price 1.13* 0.54 -0.24* 0.05 021* 0.05
Val Price 0.10 0.55 0.25* 0.06 022* 0.05
W. Price 0.41 0.41 0.58* 0.13 0.02 0.32
R. Price 0.17 0.38 -0.06* 0.01 0.53 0.35
Spec. Price 0.54 0.36 0.03* 0.01 -0.03* 0.01
""'RedGR.  Total Acreage  1.09* 008 o0e9" 007 1074 008
EM Price 0.33 0.37 0.32* 0.06 0.33* 0.07
Val Price 0.46 0.39 033" 0.06 0.34* 0.07
W. Price 0.1 0.25 -0.04* 0.01 0.36 0.24
R. Price 0.56* 0.29 0.92* 0.16 044 0.28
Spec. Price 047" 0.23 -0.04* 0.01 -0.04* 0.01
""Specialty  Total Acreage 068" 010  o72* 008 073* 008
EM Price -0.83 0.55 -0.23* 0.05 0.22* 0.05
Val Price -0.86 0.61 0.24* 0.05 0.23* 0.05
W. Price 0.51 0.34 -0.03* 0.01 -0.02* 0.0t
R. Price 0.66* 0.33 -0.05* 0.01 -0.06" 0.01
Spec. Price 1.88* 0.47 0.60* 0.12 057* 0.13

* At sample mean values.

* indicates the estimate is significantly different than zero at the a = .10 level.
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Acreage Allocation Model with Time Varying Parameters.

Coefficient Coeff. Est. Std. Error Value by Year
| Boameter o6, 1984 2003
51° 6.832° 3127 B1 032 041 043
52° 4519* 1.021 B2 0.32 041 043
03 1.018* 0.108 B3 0.10 005  0.04
p4 1.545* 0.190 B4 016 008 006
K* 0.595* 0.119 B5 0.10 005 004
a 140550 56568 o 581 1241 14.82
a2 -22782 53280 M1 126 293 363
a3 15371 33806 n2 126 293 363
o4 -206030* 45238 n33  0.54 058 058
a5 72892* 30796 n4d4 0.7 0.85 086
ns5  0.53 057 057

? The restriction p1=p2 was imposed.

* indicates the estimate is significantly different than zero at the a = .10 level.
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