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A Family of Inverse Demand Systems
and Choice of Functional Form

In a recent study, Barten (1992) compared the Rotterdam model and almost ideal demand
system (AIDS), along with two mixed models--one with Rotterdam-type price effects and AIDS-
type income effects and the other with AIDS-type price effects and Rotterdam-type income
effects. A synthetic model that combines the features of the latter four models and allows non-
nested hypothesis testing among models has also been proposed by Barten (1992). The foregoing
models are all quantity dependent and treat prices as exogenous. However, for some goods,
supply may be quite inelastic and an inverse demand system with prices dependent on quantities
may be required. The Rotterdam inverse demand system (RIDS) and the almost ideal inverse
demand system (AIIDS) are two flexible specifications that have been proposed (Barten and
Bettendorf). Laitinen and Theil have also proposed an inverse demand system comparable to the
latter. These three inverse demand systems, a fourth variant and a general synthetic model are
examined in this paper.

The analysis focuses on choice of functional form. Just as Barten’s (1992) analysis of the
Rotterdam/AIDS specifications can be viewed as allowing the Rotterdam income coefficients
(marginal propensities to consume) and compensated price coefficients (Slutsky coefficients) to
be variational parameters dependent on budget shares, the analysis of the different inverse demand
systems here can be viewed as allowing the RIDS scale and compensated quantity or Antonelli
coefficients to be variational parameters dependent on budget shares.

The models examined are applied to data on demand for different types of fresh oranges--

California navel oranges, Florida navel oranges and other Florida early and midseason oranges.
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The supply of oranges in a given season is largely determined by weather conditions and past

tree-planting and grove-care decisions by growers and is very inelastic.

The paper proceeds as follows. In the next section, the different models analyzed are
developed. The application is then discussed and concluding comments are given in the final

section.

MODELS

In this section, we focus on consumer demand in order to directly compare our model
specifications with previous research. However, except for interpretation, our consumer demand
specifications are essentially the same as those for a producer for inputs (Theil, 1980).

We first review some of the basic results of consumer demand theory relevant for subse-
quent model development. The utility maximization problem for the consumer can be written

as
(1) maximize u(ql, . ‘1,.)

subject to Y pg, =x,
where u is utility, p, and g, are price and quantity for good i, respectively, and x is total expendi-
ture or income.

The first-order conditions for (1) are the budget constraint Z p;q; = x and

@ S . Ap, i=1,2 .,n
0q.

i
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where A is the Lagrange multiplier and is equal to the marginal utility of income, %li A system
x

of uncompensated inverse demand equations can be obtained from the first-order conditions using

Wold’s identity, i.e.,

* where T, = i (To obtain (3), multiply (2) by g,, sum the result over 1 and solve for A, and
x

substitute the solution for A in (2)).

A compensated inverse demand relationship can be found by working with the distance
function which is dual to problem (1). The distance function can be written as d(u, ¢q) and
indicates the amount by which vector ¢ = (q,, . . . , ¢,) must be divided to reach utility level u
(see, e.g., Anderson or Deaton and Muellbauer, 1980b). The distance function is increasing in
g, decreasing in u, homogeneous of degree one in ¢, and concave in q. Differentiation of the
distance function with respect to quantity yields a system of compensated inverse demand

relationships, i.e.,

- od(u, q)

4) =, = ni(u, q), i=1,2, ., n.

'qi

The Rotterdam inverse demand system can be found by totally differentiating (4), i.e.,

or. o,
(5) dn, = —du + —dg, i=1,2, .,n.
) 3 u ‘,‘: 5q, "
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%) . .
The term .a_n’ is known as the Antonelli substitution effect. The first term on the right side of
9,

om,
(5) involves the scale effect. Consider reference bundle g* and scalar k¥ where g = kg*. The term a_’ du
u

1s known as the scale

Ologm, dlogu Ologm,
, Where
dlogk dlogu dlogk

can then be written as m, [
dlogk

. . . Ologu dlogu Jlogu
elasticity for good . We can also wiite dlog u = dlog g. and = —_—=
g s E [8logqu 59 Ologk E dlogg,

dlogu
. . P9, dlogg, T,
, and, noting that (3) can be written as w, = = , we see that —du =
x E Ologu ou
;. Ologg,

0 logm.
8™ Z w.dlog ;. The variable w, is the expenditure or budget share for the consumer.

y A
dlogk 5

Hence, by multiplying (5) by ¢, and noting d z = z d log z for variable z in general, we have the

Rotterdam inverse demand system
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(6) w,dlogm, = h,dlogQ + Y h,dlogq,, i=1,2,.,n,

Ologm, dlogm,

and A, =w,
" Ologg,

y

where dlog O = Y~ w,d log g, (the Divisia volume index), , = w, Y

The parameters #; and 4, are thus the scale elasticity and compensated quantity elasticity

(flexibility), respectively, multiplied by the budget share w,. The following restrictions on /; and

h; hold: E h. = -1 and E h,.j = (0, for adding-up;z hij = 0 , for homogeneity (since d(u,
i i Jj

g) is homogeneous of degree one in g, w; is homogeneous of degree zero in g); h; = h;, for

Antonelli symmetry.

In estimating the RIDS, parameters 4, and A are treated as constants. However, other
parameterizations are possible. For example, Laitinen and Theil’s inverse demand model can be

derived by adding w, d log Q to both sides of (6), i.e.,

(7) w,(dlogn, + dlog Q) = (w, + h)dlogQ + Y h, dlogg,

or
dlog 2 = b dlogQ + " & dl
w,dlog — = b,dlog ; ;dlogg,
where b, =w,+ h,and dlog @, + dlog Q =dlogp,-dlogx +dlog Q =dlogp, -dlogP,
where dlogP = E wjd log p;, (the Divisia price index). The last result follows from the
relationship d log x = d log P + d log Q which is obtained by totally differentiating the budget
constraint. In (7), the adding-up condition requires E b, = 0. The Laitinen-Theil model can

be viewed as a variational parameter specification of the RIDS with 4, = 5, + w,.
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The almost ideal inverse demand system can be obtained by further adding a specific term
to each side of the Laitinen-Theil model as will be shown. However, first we show how the

AIIDS can be obtained from the distance function
®) logd(u, q) = alq) - ub(q),

alg) =a, + Y a,logg; + %Z Y vulogg,logg,,
k !

bk
b(q) = byma,'
Differentiation of (8) with respect to log g, yields

9 w,=a +Y v,logg -bublqg),
J

or

2
i

i ai+EYylogqj+bia<q)s
j
where for utility maximization d(u, g) = 1 and from (8) u b(q) = a(q). As an approximation,

similar to that used to linearize the AIDS, replace a(gq) with Z w,log g, and totally differentiate

(9), further approximating the term d( E w.log ql.) by d log O following the same procedure

suggested by Deaton and Muellbauer (1980a), as well as Barten and Bettendorf, in deriving the

differential form for the AIDS. The result is the differential version of the AIIDS

(10a) dw, =b,dlogQ + 3 y,dlogg,.
J

As shown by Barten and Bettendorf, (10a) can also be obtained by adding

w(d log g, - d log Q) to both sides of Laitinen and Theil’s model, equation (7), i.e.,
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(10b) w,(dlogp, + dlogq, - dlogP - dlog Q) = dw,

b, dlogQ +

3 (B + w8, - ww)dlogg,,

J

where 8, =1if i =, else §; = 0; and y; = h; + w; §; - w;, w,. Note that y; are subject to the
adding-up, homogeneity and symmetry conditions. As for the Laitinen-Theil model, the AIIDS
can be viewed as a variational parameter specification of the RIDS with #,= w; + b, and A, =y, -
w; 8,.1. +w; W,

Another variant can be found by subtracting w; d log O from both sides of (10), i.e.,

(11) dw, - w,dlogQ = (b, - w,)dlogQ + 3 v, dlogg,

= hdlogQ + Y y,dlogg;.
Model (11) has RIDS scale effects and AIIDS quantity effects, and is referred to subsequently
as RAIIDS. On the other hand, model (7) proposed by Laitinen and Theil has AIIDS scale
effects and RIDS quantity effects.

Following Barten’s (1992) approach in developing a synthetic model involving the AIDS
and Rotterdam models and variants, we can also develop a synthetic model for the inverse
demand models considered here. Note that, although the RIDS, AIIDS and associated variants
have different left-side variables, they all have common right-side variables, and can be written
as y; = x B, where x is a vector of the common right-side variables (d log Q and the d log g,’s)
and B, is the associated parameter vector, ] =1, 2, 3, and 4 for equations (6), (7), (10) and (11),

respectively. A synthetic model can be obtained by taking a scalar weighted average of the latter

model with the weights g, satisfying ¥ a, = 1, ie,
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3
Jj=2 j=2

4 4
Y = E aj(yl —yj) tx [Bl * E aj(Bj _BI)

where y, -y, =-w;dlog O, y, - y;=-w;dlog q; and y, -y, = -w, (d log g, - d log Q). Since

Oy =) - O -ys) + (3, - y,) =0, we can further write

5B, +iaj(Bj _Bl)}

J=2

(12) (@G ra)(n-n) (e a)(y -yt
or

wdlogn, = (e, - dyw)dlogQ + (ey. - dyw,(8, - wj))dlogqj.

J

Adding-up requires }_ ¢, = -1 + d, and ) e, = 0, homogeneity requires }_ e, = 0, and
i i J

symmetry requires e; = e;.

The scale and compensated quantity elasticities for (12) are

dlogm, e, - dw, e,
(13) = = = — - d (scale),
dlog QO w, w,
Glogm, - =dow (s - w e.
Ologm _ ey ~dwi(d W) _ L - d,(d; - w,) (compensated quantity).

i i

dlogg, ) w, w,

The uncompensated quantity elasticity is (Anderson)

0logm, Ologm,
+

(14) w. .
dlogg, 7 0log Q

We can also obtain the other models and their elasticities by restricting d; and d, appropriately

in (12), (13) and (14); ie.,
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(15) d, =0, d, =0 for the RIDS model 6);
d =1, d =0 for the Laitinen-Theil model (7);
d =1, d =1 for the AIIDS model (10);

d =0, d =1 for the RAIIDS model (11).

The restrictions above underlie the testing procedure to compare models.
APPLICATION

The preceding models were applied to data on different varieties of early and midseason
oranges: (1) California navel oranges, (2) Florida navel oranges, and (3) other Florida early
and midseason oranges. Although these types of oranges are close substitutes, they differ in
quality and appearance (e.g., California navels have few blemishes and a bright orange color;
Florida oranges often have blemishes and may not be bright in color; Florida oranges are
generally juicier than California oranges; and navel oranges have few seeds compared to other
early and midseason oranges). The period from the first week in November through the third
week in January for the 1984-85 through 1993-94 seasons was analyzed. The November-January
time period is the peak harvesting and marketing period for Florida navel and other early and
midseason oranges; a large volume of California navel oranges are also harvested and marketed
during this period. Twelve weekly observations per season were available, providing 120
observations for the analysis.

Data were obtained from the Citrus Administrative Committee’s (CAC) Annual Statistical
Report for the different seasons studied. Quantities used in the analysis were FOB wholesale

orange shipments. FOB wholesale prices were also used. The shipments are treated as
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predetermined since fresh oranges are marketed as they mature and are harvested. The orange
shipments are divided by population to induce homoscedasticity (Theil and Clements).'

Using wholesale data requires a slightly different motivation for our models. The models
in the preceding section were developed for consumer demand, but the data analyzed here reflect
input demand. However, from the producer’s cost minimization problem, we can obtain input
demand equations with the same form and restrictions as those for the consumer as shown by
Theil, 1980 (e.g, see Theil and Clements, Clements and Theil, and Huang for empirical studies
of input demand); the problem for the firm is essentially the same as that for the consumer. The
retail grocery store level of the domestic food industry is considered as a cost-minimizing
producer which buys food inputs. We assume an underlying technology with different varieties
of oranges being weakly separable from other foods and apply the theory of rational random
behavior (Theil, 1976, 1980) to estimate conditional demand equations for oranges.’

The data on orange shipments exhibit a seasonal pattern. Shipments peak twice over the
twelve-week period studied--once before Thanksgiving and once before Christmas. To account
for seasonality in (12), the basic log change variables (log changes in quantities and normalized
prices) were calculated as twelfth differences and the expenditure share variables were calculated
as averages of the present and twelfth-period-lagged expenditure share values (Duffy).

Over the period studied, weekly expenditure shares for California navels, Florida navels,
and other early and midseason oranges were .72 (.10), .13 (.09) and .15 (.05), respectively, with
standard deviations in parentheses. As the data add up by construction--total expenditure in the
models is the sum of expenditures on the three types of oranges--the error covariance matrix is
singular and the equation for other early and midseason oranges was excluded from the system

for estimation; the full information maximum likelihood procedure (TSP) was used to estimate
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the models with the errors across equations assumed to be contemporaneously correlated. As
shown by Barten (1969), the maximum likelihood estimates are invariant with respect to the
equation excluded from the system.

The likelihood ratio test was used to test restrictions (15). Under the null hypothesis of
the restricted model, twice the difference between the maximum logarithmic likelihood value for
the unrestricted and that value for the restricted model is asymptotically distributed as a chi-
square statistic. The number of degrees of freedom for the statistic is equal to the number of
restrictions imposed (the difference between the number of free parameters in the unrestricted and
restricted models). For testing the different models indicated by (15), there are two degrees of
freedom.

Synthetic model (12) with homogeneity and symmetry imposed was the unrestricted model
for testing (15). The homogeneity and symmetry restrictions were not rejected at the 10% level
of significance, based on the likelihood ratio test. The maximum likelihood values for (12)
without homogeneity and symmetry imposed, with homogeneity imposed, and with homogeneity
and symmetry imposed were 535.091, 534.514 and 533.013, respectively. The chi-square test
statistics with degrees of freedom in parentheses were 1.154 (2) for homogeneity and 4.156 (3)
for homogeneity and symmetry.

Table 1 shows the logarithmic likelihood values for the synthetic model and restricted
versions. For any reasonable level of significance, the RIDS, Laitinen-Theil model, AIIDS and
RAIIDS are rejected against the synthetic model. The hypotheses that 4, is zero with d, being
free and d, is zero with d, being free are also rejected.

The synthetic model estimates for 4, and d, were 1.14 (.122) and .26 (.090), respectively,

with asymptotic standard errors in parentheses, indicating both estimates are different from zero
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at the 10 % level of significance. The coefficients of determination for the synthetic model were
.981, .816 and .768 for California navels, Florida navels and other early and midseason oranges,
respectively. Although the resuits in Table 1 indicate that the synthetic model be chosen for
further analysis, we first compare the (conditional) scale elasticities and price flexibilities for the
different models to see if the basic demand responses for the synthetic model differ from those
for the restricted versions ( comparison of the elasticities/flexibilities is more straightforward than
comparison of the parameter estimates which have less clear interpretations). Table 2 shows the
scale and price flexibility estimates for the synthetic model, RIDS, Laitinen-Theil model, AIIDS
and RAIIDS. The estimates were made using the sample mean expenditure shares. Comparison
across models indicates substantial differences in the estimated demand responses. For example,
the own-price flexibility for Florida navels varies from -.20 for the RIDS to-.57 for the ATIDS,
with a value of -.33 for the synthetic model. A number of other substantial differences in
demand responses across models can also be seen. The differences in the basic demand responses
show that model choice is important, and, given the results in Table 1, the synthetic model is
chosen to further describe the demand for these varieties of oranges.

All the demand response estimates for the synthetic model in Table 2 are twice or larger
than their corresponding asymptotic standard error estimates. The scale elasticity estimates
indicate that a one-percent increase in aggregate quantity of oranges would result in decreases in
the normalized prices of 1.13 %, 1.06 % and.96 % for Florida navels, other Florida early and
midseason oranges and California navels, respectively. With a scale elasticity value of -1
indicating the expenditure share is constant as the scale changes, these results indicate that the
(conditional) expenditure share for either Florida variety (California navels) can be expected to

decrease (increase) slightly with an increase in scale.



-13-

The (conditional) uncompensated own-quantity elasticities or flexibilities for the synthetic ’
model in Table 2 are consistent with theory with negative signs. The cross flexibilities are also
negative, indicating substitute relationships. Overall, the magnitudes of the flexibilities indicate
that prices for the Florida varieties are relatively more sensitive to California navel shipments
than own shipments. California navel oranges have the highest own-flexibility at -.77, with
Florida early and midseason oranges, and navel oranges having own-flexibilities of ~.39 and -.33,
respectively. The cross-flexibility estimates indicating the impacts of California navel shipments

on the prices of Florida early and midseason oranges, and navels are -.53 and -.63, respectively.
CONCLUDING COMMENTS

For modelling quantity-dependent demand, Barten (1992) has shown that the Rotterdam
and AIDS models may be too rigid and a mixed model with features of both models may perform
better. In this paper, we show that, for modelling price-dependent demand, a similar mixed
model may be more appropriate than the Rotterdam inverse demand system or almost ideal
inverse demand system by themselves. A synthetic model which combines the features of the
RIDS and AIIDS can be used to test alternative model specifications and can serve by itself as

a demand model.
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FOOTNOTES

'Presence of heteroscedasticity was indicated by Goldfeld-Quandt tests. The sample was divided
into two partitions---one where the population variable was at relatively high levels, and the other
where this variable was relatively low. For each partition, non-per-capita inverse demand
equations for the different types of oranges were estimated. The Goldfeld-Quandt F statistic for
each type of orange was the sum of squares for the high population partition divided by the sum
of squares for the low population partition, with 50 degrees of freedom in both the denominator
and numerator. The F values were 2.41, 5.20 and .94 for California navels, Florida navels and
other Florida early and midseason oranges, respectively, indicating that the California navel and
Florida navel equations have heteroscedastic errors, at most reasonable levels of significance.

? Insufficient data on other goods precluded testing for weak separability.
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Table 1. Maximum likelihood test statistics.

System d, a, MLV? LRT*
RIDS 0 0 475.333 115.360 (2)
Laitinen-Theil 1 0 524.229 17.568 (2)
AIIDS 1 1 461.831 142.368 (2)
RAIIDS 0 1 402.354 261.318 (2)
Free d,, Zero 4, 0.969 0 524.304 17.418 (1)
Free d,, Zero d, 0 066 475.720 114.570 (1)
Synthetic 1.144 257 533.013 --

*Maximum likelihood value.

"2 x (MLV - MLV for synthetic); degrees of freedom in parentheses.
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Table 2. Scale elasticity and flexibility estimates for the five alternative models

Scale Elastlclty Flexibility Estimate

Estimate Cal. Navel Fla Navel Fla E&M

Synthetic Model

Cal. Navel : -0.963 -0.775 -0.095 -0.093
(0.032)* (0.015) (0.009 (0.013)

Fla Navel -1.131 -0.629 -0.330 -0.172
(0.064) (0.037) (0.032 (0.041)

Fla E&M -1.063 -0.526 -0.148 -0.389
0.117) (0.054) (0.041 (0.054)

RIDS

Cal. Navel -0.995 -0.755 -0.122 -0.119
(0.047) (0.019) (0.015 (0.017)

Fla Navel -0.867 -0.557 -0.199 -0.111
0.117) (0.047) (0.041 (0.049)

Fla E&M -1.146 -0.690 -0.139 -0.317
(0.145) (0.060) (0.046 (0.067)

Laitinen-Theil Model

Cal. Navel -0.974 -0.775 -0.103 -0.096
(0.030) (0.013) (0.009 (0.013)

Fla Navel -1.117 -0.654 -0.240 -0.222
(0.066) (0.035) (0.033 (0.036)

Fla E&M -1.022 -0.502 -0.191 -0.329
0.113) (0.045) (0.037 (0.055)

AIIDS

Cal. Navel -0.933 -0.760 -0.075 -0.097
(0.038) (0.014) (0.011 (0.015)

Fla Navel -1.091 -0.515 -0.566 -0.010
(0.104) (0.046) (0.037 (0.042)

Fla E&M -1.245 -0.700 -0.029 -0.515
0.115) (0.047) (0.039 (0.053)

RAIIDS

Cal. Navel -0.949 -0.739 -0.092 -0.118
(0.063) (0.024) (0.020 (0.022)

Fla Navel -0.846 -0.419 -0.518 0.091
(0.189) (0.078) (0.070 (0.058)

Fla E&M -1.390 -0.894 0.010 -0.506
(0.155) (0.058) (0.049) (0.070)

*Asymptotic standard errors in parentheses.
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