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Abstract 

 

 

This article has presented a farmer decision making model of participation in the Conservation 

Reserve Program (CRP) under the current rising bio-fuel production. The decision is specified as 

an optimal stopping problem and farming return is assumed following stochastic process with the 

uncertainty of growth rate. Nonliear Kalman filter approach is used to continuously upgrade the 

new information and estimate the random growth rate with the minimum error. The problem is 

formulated as a linear complementarity problem that is solved numerically using a fully implicit 

finite difference method.  It is found that participation in the CRP is sensitive to financial 

incentive, and shortening contract length is also an effective method to promote land enrollment 

in the CRP. These results have implications for the design and implementation of conservation 

programs. 
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The U.S. Conservation Reserve Program (CRP), enacted in 1985, is by far the most important 

conservation program in terms of scale and budget. It aims to reduce erosion, improve water 

quality, establish wildlife habitat, and provide other environmental benefits through retiring 

highly erodible and environmentally sensitive cropland from production. In its first twenty years 

of implementation, the program has prevented an estimated 450 million tons of soil from eroding 

and provided millions of acres of wetlands and buffers (USDA-FSA 2006). However, operation 

of the CRP is becoming more challenging due to ethanol production as the agricultural sector has 

been adjusting to a new role of bio-fuel production. Over the past few years, annual ethanol 

production in the U.S. has increased rapidly from less than 3 billion gallons in 2003 to over 9 

billion gallons in 2008 (Gruenspecht 2009), and was projected to exceed 12 billion gallons by 

2010 (USDA 2008a). The USDA forecasts that the acreage of corn, the major feedstock for 

ethanol production, will reach 93 million acres by 2010 from 78 million acres in 2006 (USDA 

2008b). The ethanol driven structural shift has been crowding land out of alternative uses and 

pressuring environmental conservation programs. As of June 2008, CRP enrollment stood at 34.7 

million acres, approximately 2 million acres lower than September 2007 (Cowan 2008). 

Notwithstanding the temporary ease of pressure due to the recession, many predict that economic 

recovery will soon push up the ethanol demand and will again increase the pressure. CRP 

acreage would be about 30.5 million acres on October 1, 2009—about 1.5 million acres below 

the cap
1
if USDA holds no general signups and offers no further contract extensions (The 

Biomass Research and Development Board 2009). Therefore, it is more difficult to maintain the 

impressive achievement of the CRP. Given competing land use between conservation and 

intensive production, a better understanding of farmers‘ land use choice is important for 
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identifying potential policy options to keep land enrollment in the program and preserve public 

interests in environmental benefits from conservation.  

 

Literature Review 

Studies about what drives land-use change include two broad categories: the econometric model 

approach and the real options approach. The econometric-model approach focuses on empirically 

identifying economic and policy factors with discrete choice models. Multinomial-choice model 

(Skaggs, Kirksey, and Harper 1994), logistic model (Janssen and Ghebremicael 1994; Isik and 

Yang 2004; Lubowski, Plantinga, and Stavins 2008), and ordered probit model (Cooper and 

Osborn 1998) can be found in the literature. Various factors affecting farmer participation in the 

conservation programs have been identified. Demographic characteristics such as farmer age and 

education, farm attributes such as farm tenure, location within the state, soil erosion rate, and 

economic factors such as farming return and anticipated levels of federal price/income support 

and bid cap have been found to influence enrollment in the programs. In general, under 

econometric framework land-use choices are modeled in a static way, without looking into the 

dynamic aspects of participation decision process and the mechanism underlying the process. 

Although the econometric approach can accommodate and examine different determinants of 

farmer participation in the CRP, the static and often ad hoc nature of econometric models call for 

alternative approaches that could generate more insights into the dynamic decision making 

process and the factors underlying it.  

The real option approach in the literature is based on underlying theory on land use 

decision making process and emphasizes the effect of uncertainty and irreversibility when 

making conversion decisions. The option to retiring land is valuable because land return, the 
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main driver of land use change, is uncertain and land use change is irreversible under the current 

CRP design. When farmers delay conversion, more information about future returns is gained 

before making the irreversible enrollment. In the process, there exists a threshold expected return 

which will trigger participation. The optimal conversion thresholds from real option models 

reflect both the expected relative returns from alternative land uses and the conversion option 

value. Therefore, real option model provides a potential explanation of the process and 

mechanism underlying land-use changes. The real option approach has been applied in a growing 

body of literature on land use decisions. Capozza and Li (1994) use a real option framework to 

analyze land conversion decisions when land-capital ratio or capital intensity is variable and 

demonstrate that the option to varying intensity increases the hurdle rent and delays 

development. The conversion option has also been used to explain the failure to participate in 

land conversion. For example, the Conservation Reserve Program has been found ineffective in 

promoting cropland conversion to more permanent uses, e.g. forests (Schatzki 2003).  

This paper follows real option approach to develop an optimal-stopping framework to 

model cropland enrollment in the CRP in the era of biofuel production. Traditionally, the 

uncertainty of agricultural return from cropland is summarized in a stochastic process, for 

example, Geometric Brownian Motion, with known parameters, such as mean and standard 

deviation or drift and volatility (Capozza and Li 1994, Schatzki 1998; Carey and Zilberman 

2002). However, the implicit assumption, more specifically, known drift or return growth rate, is 

no longer true in the ear of biofuel production because of structure change in agriculture 

resulting from biofuel demand. One contribution of the paper is to capture the effect of biofuel 

production on agricultural returns. The movement of agricultural return is assumed to follow the 

process of Brownian motion with stochastic growth rate of certain distribution (Brennan 1998) to 
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capture the structural change. The response of participation triggers to distribution parameters 

reflects the magnitude of the effect of biofuel production on enrollment. The non-linear Kalman 

filtering approach (Kalman 1960) is introduced to derive the optimal estimators of the stochastic 

growth rate. The Kalman filter is a recursive algorithm which allows one to upgrade model 

estimates using new information. Compared to other estimation procedure, this approach 

generates estimated parameters with better statistical properties in terms of efficiency and 

forecasting. In this paper, we make a methodological contribution by deriving the numerical 

solution of the CRP participation decision problem under parameter uncertainty to a specified 

degree of accuracy using a technique that can handle a fairly general class of specifications for 

more uncertainty sources. 

The paper departs from earlier land-use studies due to examining more different factors. 

First, we examine the effect of contract characteristics on participation in the CRP to identify 

effective contract designs that efficiently increase incentives for land enrollment. Little research 

has been done on the relationship between CRP enrollment and CRP contract characteristics, e.g. 

contract length. As we know, once enrolled in the CRP, lands will be locked in the contract for 

10 or 15 years. However, the rigid contract design has undesirable consequences for landowners. 

For example, in the context of increasing ethanol production, landowners who participate in the 

CRP are losing out economically due to the forgone high agricultural returns. Another contract 

characteristic is financial incentive, which is implemented in other conservation programs. 

Farmers‘ participation might be sensitive to financial incentives in addition to the land rental 

payments. In the paper, we account for the effects of these two characteristics on participation 

triggers in the model. Sensitivity tests are undertaken to determine the effects which changes in 

the movement of contract length or financial incentives of various parameters have on 



6 

 

enrollment triggers. The analysis can provide policy makers with guidance regarding how to 

increase enrollment in an effective manner through adjustments in contract design and/ financial 

incentives. The comparative-static analysis provides a number of important new results. We 

show that participation triggers is sensitive when contract length is shortened, while financial 

incentive for landowners can also be an effective instrument to help increase participation in the 

program. The comparative static analysis provides testable empirical implication for the model.  

Second, sensitivity tests were undertaken to determine the effects changes in the uncertainty of 

agricultural return on enrollment triggers. Farmers will wait till a lower agricultural return to 

warrant smaller loss of opportunity cost when standard deviation of the logarithm of agricultural 

returns increases.  

 

Parameter Uncertainty in Farming Return 

The participation problem is similar in nature to an American put option, with rental payment by 

government as the exercise price. The American option can be best described as an optimal 

stopping problem: landowners have the option (to participate) and wait for the best time at which 

they would stop waiting and exercise the option if they would participate at all. It is well known 

that valuing the American option is implemented under the assumption that asset return is 

following certain Ito processes. In the literature the often used stochastic diffusion process is 

Geometric Brownian Motion: 

(1)  𝑑𝑅𝑡 = 𝜃𝑅𝑡𝑑𝑡 + 𝜍𝑅𝑡𝑑𝑊𝑡 ,   

where 𝜃 is a drift term, 𝜍 is a constant volatility parameter, and 𝑊𝑡 is a Brownian motion, defined 

in a complete probability space. However, this model always makes a strong assumption that 

parameters of this process are known in advance. That is, all possible sources of uncertainty that 
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affect farming return are singled out and summarized in the form of a log-normal distribution 

with known parameters such as growth rate and volatility. The assumptions made about farming 

return are too restrictive and inconsistent with the reality because the landowners do not really 

know the parameters of the truly probability distribution from which farming returns are drawn. 

Whereas farming return is clearly observable, it is hard to argue that parameters of stochastic 

processes representing the variable can be observed as well. In practice, these parameters must 

be estimated from the time-series of observable historical farming returns and are assumed to be 

constant. In the process of estimation, an additional ‗estimation error‘ will be inevitably 

introduced (Gennotte 1986). In the ethanol surge, the error of growth rate (the drift term in eq. 

(1)) thus derived may be substantial, because the rising corn demand has caused structural 

changes in the sector and as a result the characteristics of farming return distribution differ 

substantially from previous ones. Therefore, it is more realistic to assume that farmers have only 

partial information about the growth rate in the bio-fuel era and form or update their expectations 

about farming return, conditional (rather than unconditional) on the new information they have at 

the time of decision.  

When making participation decision, farmers have to take into account the fact that the 

market (or more specifically, the resulting agricultural return growth rate distribution) is no 

longer the same as the past because of the biofuel factor. To capture this uncertainty, we allow 

growth rate (𝜃) of agricultural return from cropland to be stochastic and unobservable in this 

study. We use a two-stage stochastic Gordon growth process to model 𝜃𝑡 . The model assumes it 

goes through a relatively short period of high growth rate (𝛼) first, and then changes to the 

average long-term industry growth rate (𝛽) when the ethanol industry matures and reaches a 

long-term equilibrium. The maturity may result from the technological breakthrough in the cost-
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effective production of cellulosic ethanol, from a wide variety of cellulosic biomass feed-stocks 

such as cereal straws, switchgrass, and other agricultural residuals. The model is specified as: 

(2)  𝜃𝑡 ∈  𝛼,𝛽 ,     𝛼 > 𝛽 

where  𝛼  and 𝛽  are two states. The time of staying in state 𝛼  denoted by 𝑇𝛼  follows an 

exponential distribution with parameter 𝜆: 

(3)  𝑝𝑟𝑜𝑏 𝑇𝛼 ≥ 𝑡 = exp(−𝜆𝑡). 

We use Kalman filter approach to estimate 𝜃𝑡 . The Kalman filter is a set of mathematical 

equations that implement a predict-corrected type estimator that is optimal in the sense that it 

minimizes the estimated error covariance (Kalman 1961). We allow farmers to update their 

information and thus learn about the true parameter distribution with each new farming return 

realization. Examination of past data at time zero provides some initial idea about growth rate 

and we can model this knowledge as a prior probability distribution of this random parameter. 

Based on new observations of farming return over time, prior distribution is upgraded in a 

continuous mode. Liptser and Shiryayev (1977) have derived the basic equation of optimal 

nonlinear filtering in the partially observable random process. The conditional probability of 

growth rate reverting to the average profit level on the observable farming return is defined as: 

(4)  𝑝𝑡 = 𝑝𝑟𝑜𝑏 𝜃𝑡 =  𝛽 Ω𝑡
𝑅  

Based on the information set
2
 Ω𝑡

𝑅  available to farmers at time 𝑡, farmers form expectations about 

the value of 𝜃𝑡 , 

(5)  𝑚𝑡 = 𝐸(𝜃𝑡 Ω𝑡
𝑅) = 𝛼 1 − 𝑝𝑡 + 𝑝𝑡𝛽 . 

Under the uncertainty of parameters, the Brownian motion 𝑊𝑡  is also unobserved. The 

innovation process 𝑊 𝑡 , derived from the observable process, is defined as the normalized 

deviation of the return from its conditional growth rate 



9 

 

(6)  𝑑𝑊 𝑡 =
1

𝜍
 

1

𝑅𝑡
𝑑𝑅𝑡 −𝑚𝑡 𝑑𝑡.  

Substituting (1) into (6) yields 

(7)  𝑑𝑊𝑡 = 𝑑𝑊 𝑡 −
1

𝜍
 𝜃𝑡 −𝑚𝑡 𝑑𝑡. 

Substituting 𝑑𝑊𝑡  into Eq.1, the stochastic process 𝑅𝑡  becomes 

(8)  𝑑𝑅𝑡 = 𝑅𝑡𝑚𝑡𝑑𝑡 + 𝑅𝑡𝜍𝑑𝑊 𝑡 . 

Farmers seek to extract information on future expected farming return from their 

observation of past returns, and then update the information when new return realization comes 

up. The conditional mean 𝑚𝑡  evolves according to (Refer to Appendix A for the derivation). 

(9)  𝑑𝑚𝑡 = 𝜆 𝛽 − 𝑚𝑡 𝑑𝑡 +
1

𝜍
 𝛼 − 𝑚𝑡  𝑚𝑡 − 𝛽 𝑑𝑊 𝑡 . 

 

Farmer’s Decision under Uncertainty 

The CRP provides an annual per-acre rent payment (which varies prior to entry, but is fixed once 

enrolled in the CRP) to farmers to take highly erodible or environmentally sensitive cropland out 

of production for 10 or 15 years. The program also provides cost-share assistance to participants 

who establish approved cover on eligible cropland. The cost-share assistance can be an amount 

no more than 50 percent of the participants' costs in establishing approved practices. Other 

financial incentive payments are also offered. The farmer who decides to enroll in the program 

must enter into a 𝑇  year contract (10 or 15 years).  

Consider a risk neutral farmer facing a decision whether to convert a unit of land from 

corn production to conservation in the CRP program. The optimal decision in relation to 

participation will be determined in a continuous-time, infinite horizon framework
3
. If the farming 

return from production at time t is defined by eq. 1, then the expected farming return forgone 

over the 𝑇  year farming at year t is: 
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(10)  𝑀 𝑅𝑡 = 𝐸𝑡  𝑅𝑡𝑒
−𝜌𝑡𝑑𝑡

𝑇 +𝑡

𝑡
=

𝑅𝑡(1−𝑒− 𝜌−𝜃 𝑇
 

)

𝜌−𝜃
 ,  

where 𝜌 is the continuous discount rate.  

Since after participation the rental payment 𝑄 will be locked in the length of the contract 

duration without inflation adjustment, the expected land rental payment received over the 𝑇  year 

CRP contract at year t is 

(11)  𝑀 𝑄 =  𝑄𝑒−𝜌𝑡𝑑𝑡
𝑇 +𝑡

𝑡
−  1 − 𝑘 𝐶 + 𝜋 =

𝑄(1−𝑒−𝜌𝑇
 

)

𝜌
−  1 − 𝑘 𝐶 + 𝜋  

where 𝐶 is the total restoration costs when participating in the CRP, and 𝑘 is the portion that is 

paid by government, who pays the part as the incentive for participation. 𝜋 is additional financial 

incentives, e.g. a one-time sign-up incentive payment. This payment is made soon after the 

contract has been signed and approved. 

Denote 𝑀 𝑅𝑡 ,𝑄 = 𝑀 𝑄 −𝑀(𝑅𝑡) as the land conversion opportunity. The minimum 

requirement for participation is that 𝑀 𝑅𝑡 ,𝑄 be positive. The farmer‘s land conversion decision 

can be specified as a question of at which year participating in the program can generate the 

maximum positive opportunity value. The optimal stopping problem can be represented as: 

(12)  𝐽 𝑅𝑡 ,𝑄 = max𝑡 𝐸 𝑒
−𝜌𝑡𝑀 𝑅𝑡 ,𝑄   

Thus we arrive at the following optimal stopping problem under the uncertainty of growth rate: 

(13)   

𝐽 𝑅𝑡 ,𝑚𝑡 = max𝑡 𝐸 𝑒
−𝜌𝑡𝑀 𝑅𝑡 ,𝑄  

𝑑𝑅𝑡 = 𝑅𝑡𝑚𝑡𝑑𝑡 + 𝑅𝑡𝜍𝑑𝑊 𝑡

𝑑𝑚𝑡 = 𝜆 𝛽 − 𝑚𝑡 𝑑𝑡 +
1

𝜍
 𝛼 − 𝑚𝑡  𝑚𝑡 − 𝛽 𝑑𝑊 𝑡

   

In this framework, landowners try to maximize the option value by choosing the optimal 

time t to enter the CRP contract with duration 𝑇  in the era of ethanol production. In the process, 

they continuously update the estimate of the growth rate of farming returns based on new return 

realizations. When the uncertain parameter is introduced into the optimal-stopping problem, 
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there is no analytical solution. The real option problem is formulated as a linear complementarity 

problem, and is solved numerically using an implicit finite difference approach (Wilmott, 

Dewynne, and Howison 1993).  

 

Linear Complementarity Problem 

Given certain regularity conditions, there will be a critical value of return 𝑅∗  such that 

participating in the CRP is optimal if 𝑅𝑡 < 𝑅∗, while continue farming is optimal if 𝑅𝑡 ≥ 𝑅∗. The 

solution to the participation problem involves finding the free boundary 𝑅∗ . Dynamic 

optimization techniques are used to derive the participation threshold (Dixit and Pindyck 1994). 

Using Ito‘s lemma, we derive a partial differential equation in the continuous region (Refer to 

Appendix B for derivation): 

(14)  𝜌𝐽 −  
𝑅𝑡𝑚𝑡𝐽𝑅 + 𝜆 𝛽 − 𝑚𝑡 𝐽𝑚 +

1

2
𝑅𝑡

2𝜍2𝐽𝑅𝑅

+
1

2𝜍2 (𝛼 −𝑚𝑡)
2(𝑚𝑡 − 𝛽)2𝐽𝑚𝑚 + 𝑅𝑡 𝛼 − 𝑚𝑡  𝑚𝑡 − 𝛽 𝐽𝑅𝑚

 = 0, 

where 𝐽𝑅  denotes the derivative of 𝐽 with respect to 𝑅𝑡 . 𝐽 denotes the put option value. Wilmott, 

Howison, and Dewynne (1993) formulate a full optimal stopping problem (eq.13) as a linear 

complementarity problem (LCP) to find a transformation that reduces the free boundary problem 

to a fixed boundary problem. We define an expression as  𝐻𝐽: 

(15) 𝐻𝐽 = 𝜌𝐽 −  
𝑅𝑡𝑚𝑡𝐹𝑅 + 𝜆 𝛽 − 𝑚𝑡 𝐹𝑚 +

1

2
𝑅𝑡

2𝜍2𝐹𝑅𝑅

+
1

2𝜍2
(𝛼 −𝑚𝑡)

2(𝑚𝑡 − 𝛽)2𝐹𝑚𝑚 + 𝑅𝑡 𝛼 − 𝑚𝑡  𝑚𝑡 − 𝛽 𝐹𝑅𝑚
  

where  𝜌𝐽 represents the return required on participation opportunity for the rational farmer to 

holding the participation option. The expression within brackets represents the actual return on 

the time interval 𝑑𝑡.  

Then the LCP can be specified as  
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(16)   

𝐻𝐽 ≥ 0
𝐽 ≥ 𝑀(𝑅𝑡 ,𝑄)

𝐻𝐽 ∙  𝐽 − 𝑀(𝑅𝑡 ,𝑄) = 0

  

This LCP describes the strategy with regard to holding versus exercising the option to 

participation in the CRP. If 𝐻𝐽 ≥ 0, it states that the required return for holding the option must 

be at least as great as the actual return. If 𝐻𝐽 > 0, it means that the required return from holding 

the option exceeds the actual return, and it is optimal to exercising the option immediately. 

If 𝐻𝐽 = 0, it means that the required return equals the actual return, it is optimal to continue 

holding the option. If 𝐽 ≥ 𝑀(𝑅𝑡 ,𝑄), it means that the option value is no less than opportunity 

values from immediately participating in the CRP. 𝐽 would never drop below opportunity values 

from participating immediately because the rational investor would participate in the CRP before 

that could happen. When 𝐽 = 𝑀(𝑅𝑡 ,𝑄), it is optimal to participate in the CRP immediately. 

When  𝐽 > 𝑀(𝑅𝑡 ,𝑄) , holding the participation option is a wise choice. The equality of 𝐻𝐽 ∙

 𝐽 − 𝑀(𝑅𝑡 ,𝑄) = 0 states that at least one of 𝐻𝐽 = 0  and  𝐽 − 𝑀(𝑅𝑡 ,𝑄) = 0  becomes a strict 

equality.  If both 𝐻𝐽 and 𝐽 − 𝑀(𝑅𝑡 ,𝑄) equal zero, then farmers are indifferent to participation in 

the CRP and non participation.  

 

Parabolic LCP 

In order to solve American free boundary problem, we can take an implicit finite-difference 

approximation of the linear complemnetarity problem (eq.16). In our model, LCP is time-

independent, or elliptic type. Although it seems that elliptic LCPs are relatively easy to handle 

compared to parabolic LCPs that has an additional time dimension, it is not true in practice 

because there is no satisfactory method dealing with elliptic LCPs (Abasov 2005). In the process 

of discretizing parabolic partial differential inequalities, the matrices with tridiagonal structure 
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arise, which generates a highly efficient algorithm for solving inequalities. Meanwhile, good 

convergence of the implicit finite-difference approximation to the solution of the partial 

differential inequalities is also associated with diagonal dominance of those matrices. However, 

dicretization of elliptic partial differential inequalities cannot produce the matrices with 

tridiagonal structure. The reason is that there is no time variable in elliptic LCPs. This suggests 

an idea to introduce an artificial time variable into partial differential inequality of elliptic LCP 

and solve the resulting parabolic LCP. We follow Abasov (2005) to implement the idea in the 

optimal stopping framework: (a) choose a sequence of 𝑡𝑖 , such that 𝑙𝑖𝑚𝑡𝑖 = ∞; (b) for each 𝑖 find 

an optimal value function 𝐽(𝑅,𝑚, 𝑡); (c) since it can be shown that the sequence of solutions 𝐽𝑖  

will converge to 𝐽, we can choose sufficiently large 𝑡𝑖  to reach the convergence value. After 

incorporating time component into the LCP, the parabolic LCP is as follows: 

(17)  

(𝐽𝑖)𝑡
′ + 𝐻𝐽𝑖 ≥ 0

𝐽𝑖 ≥ 𝑀(𝑅𝑡 ,𝑄)

 (𝐽𝑖)𝑡
′ + 𝐻𝐽𝑖 ∙  𝐽𝑖 −𝑀(𝑅𝑡 ,𝑄) = 0

  

The subscript denotes derivative. Discretizing the LCP will yields matrices with dominating 

diagonals.  

 

Boundary Conditions 

For a numerical solution of LCP, we must specify the boundary conditions. Note that because the 

linear complementarity formulation does not depend explicitly on the free boundary we do not 

have to specify the value matching and smooth pasting conditions. 

Boundary condition 1. It can be seen that from the eq.1 that once 𝑅𝑡  reaches zero, it will 

stay there forever because of 𝑑𝑅𝑡 = 0. Therefore, it is optimal to exercise the option immediately 

for farmers. 



14 

 

(18)  𝐽 0,𝑚, 𝑡 = 𝑀(𝑅𝑡 ,𝑄) 

Boundary condition 2. At a very high farming return 𝑅𝑚𝑎𝑥 , the put option is deeply out of 

the money and  we can simply set the option value equal to zero or 𝐽 𝑅𝑚𝑎𝑥 ,𝑚, 𝑡 = 0 (in the 

implementation, 𝑅𝑚𝑎𝑥  is set  three times the average farming return). 

Boundary condition 3. Since we are searching for solution on  rectangular domain formed 

by (𝑅𝑡 ,𝑚𝑡) in the process of implementation we also use numerical boundary conditions on two 

other boundaries, that is, 𝑚𝑚𝑖𝑛 = 𝛽 and 𝑚𝑚𝑎𝑥 = 𝛼. In particular, we use BC2
4
 (Tavella and 

Randall 2000) boundary condition on 𝑚𝑚𝑖𝑛  and 𝑚𝑚𝑎𝑥 . 

Terminal condition 1. The terminal condition follows from the observation that at 𝑡 = ∞  

there is no uncertainty about the true value of growth rate. As a result, 𝑚𝑡  remains constant, 

hence 𝐽 𝑅𝑡 ,𝑚,∞ is found as a solution of one-dimensional problem 

(20)   
𝐽 𝑅𝑡 ,𝑚,∞ = max𝑡 𝐸[𝑒−𝜌𝑡𝑀(𝑅𝑡 ,𝑄)]

𝑑𝑅𝑡 = 𝑚𝑅𝑡𝑑𝑡 + 𝜍𝑅𝑡𝑑𝑊 𝑡
  

which can be solved in closed form. After the transformation we can reach the put option value 

(refer to Appendix C for derivation), that is,  

(21)  𝐽 𝑅𝑡 ,𝑚,∞ =  
 𝑀( 𝑅∗,𝑄) (

𝑅𝑡

𝑅∗
)𝛾                                                       𝑅𝑡 ≥ 𝑅∗

𝑀( 𝑅𝑡 ,𝑄)                                                                  𝑅𝑡 ≤ 𝑅∗
  

where the threshold value 𝑅∗ is defined as  

(22)  𝑅𝑡
∗ =

𝛾

𝛾−1
∙

(𝜌−𝑚)𝑀(𝑄)

 1−𝑒− 𝜌−𝑚 𝑇  
 

(23)  𝛾 =
− 𝑚−

1

2
𝜍2 −  𝑚−

1

2
𝜍2 

2
+2𝜌𝜍2

𝜍2  

When incorporating more uncertainty into the model, it is unlikely to result in closed-

form solutions. We have to resort to a number of numerical techniques to solve complex optimal 

problems, and thus limit the method‘s application to a more realistic setup. However, the 
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development of options theory in finance literature and the solution techniques in mathematics 

lend themselves to more sophisticated real options problems. The numerical algorithm for 

determining the value of the option involves the discretization of the linear complementarity 

problem using an implicit finite difference method. Details can be found in Appendix D. 

 

Data  

The model developed above is applied to Michigan farmers‘ participation in the CRP. In 

Michigan, 276,151 acres are enrolled in the CRP in 2007, among which 191,660 acres are the 

general contract
5
. The total rental payment in 2007 for the general contract is 11,113 thousand 

dollars, and average payment is about 57.98 dollars/acre (USDA/FSA 2007).  When participating 

in CRP, landowners are making a decision to retire the environmentally sensitive lands from 

production purposes. The opportunity cost of CRP participation is the forgone net agricultural 

returns. Since eligible land is ―cropland (including field margins) that is planted or considered 

planted to an agricultural commodity 4 of the previous 6 crop years from 1996 to 2001, and 

which is physically and legally capable of being planted in a normal manner to an agricultural 

commodity‖, cropland return in Michigan is used to be the main opportunity cost. Two major 

crops in Michigan, corn and soybean, are harvested 2.35 and 1.74 million acres respectively in 

2007, the proportion of which to total harvested acres of field crops are 36.5% and 27% 

(Michigan Agricultural Statistics 2007-2008). Therefore, a weighted state-level average of the 

net returns per acre for the two crops are computed and used. State-level marketing-year-average 

prices and yields are from the National Agricultural Statistics Services (NASS). Data on cash 

costs as a share of revenue at the regional level are from the Economic Research Service (ERS). 

State acreage from NASS provided weights for averaging across individual crops. Government 
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payments are also important for farmers when making land use decisions; therefore, per acre 

government payments are estimated to be included in cropping returns. However, the estimation 

is difficult due to constant changes in the farm acts, e.g., in 1996 income support payments tied 

to commodity prices were eliminated in favor of production flexibility contract payments, while 

under 2002 farm act, deficiency payments were eliminated in favor of counter-cyclical payments. 

The proportion of state-level government payment to crop receipts is used to be a share of per 

acre government payment. In this paper, state-level federal program payments are from Michigan 

Agricultural Statistics and include receipts from deficiency payments, support price payments, 

indemnity programs, disaster payments, and production flexibility contract payment and so on. 

Conservation program payments are excluded. Annual cropland return from 1970 to 2008 is 

collected to form 39 samples.  

Return data are aggregated, average returns, reflecting the average productivity of all 

feasible crop production land. In general, the land eligible for CRP participation is of low 

productivity. Land productivity is mainly determined by the physical characteristics of the soil. 

For example, grain crop yields decrease as slope increases and erosion becomes more severe. 

Therefore, it is necessary to make adjustments to crop yield to precisely estimate the return of 

land eligible for CRP. Previous studies have sought to measure the role of land quality in 

explaining differences in agricultural productivity. Using crop yield as a proxy measure for soil 

productivity, Den Biggelaar et al. (2004) uses the data from 179 plot-level studies from 37 

countries to calculate absolute and relative yield losses of soil erosion for various crops, 

aggregated by continent and soil type and found that for most crops, soils, and regions, yields 

decline by 0.01-0.04 percent per ton of soil loss. In North America case, corn and soybean mean 

yield losses are equally 0.01 percent per ton of soil loss.  Estimating annual erosion-induced 
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yield losses requires information on the rate at which soil is being lost to erosion. We rely on the 

Universal Soil Loss Equation (USLE), which estimates average annual soil loss from sheet and 

rill erosion as a function of rainfall, soil erodibility, slope (both steepness and length of slope), 

land cover and management, and conservation practices. We use USLE soil loss data (in tons per 

acre per year) estimated from 1997 National Resources Inventory to compute the weighted 

average soil loss for Michigan land enrolled in the CRP in 1997. This resulted in a 1997 average 

erosion rate of 6.0 tons per acre. Annual yield loss rates are estimated by multiplying the 

percentage yield loss per ton of soil loss by the estimated annual erosion rate. We estimated that 

corn and soybean yield loss from soil erosion in Michigan is on average 0.06 percent per year, 

which is consistent with other estimations. Therefore, cropland returns in the land eligible for the 

CRP can be adjusted according to the relationship between land quality and agricultural 

productivity.  

 

Parameter Estimates 

With Ito‘s lemma it is known that if farming return follows Geometric Brownian Motion (GBM), 

the logarithm of return will follow simple Brownian motion with drift. Then ln(𝑅𝑡) will be 

described as 

(24)  𝑑𝑙𝑛 𝑅𝑡 =  𝜃 − 0.5𝜍2 𝑑𝑡 + 𝜍𝑑𝑊𝑡  

To test whether ln(𝑅𝑡)  follows a process of Brownian motion with a drift, eq.24 must be 

approximated in discrete time. This can be done as 

(25)  𝑙𝑛 𝑅𝑡 − 𝑙𝑛 𝑅𝑡−1 =  𝜃 − 0.5𝜍2 ∆𝑡 + 𝜍𝜀𝑡 ∆𝑡 

where 𝜀𝑡  is a normally distributed random variable with mean 0 and standard deviation 1. We 

performed an augmented Dickey–Fuller (ADF) test on the logarithm of return series to 
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investigate whether the data-generating process is a random walk (and hence nonstationary). Let 

𝑐0 =  𝜃 − 0.5𝜍2 ∆𝑡, and 𝑒𝑡 = 𝜍𝜀𝑡 ∆𝑡. The null hypothesis of a unit root can be tested using the 

𝑡 statistic from the regression: 

(26)  ∆𝑙𝑜𝑔𝑅𝑡 = 𝑐0 + 𝑐1𝑙𝑜𝑔𝑅𝑡−1 +  𝑐𝑖∆𝑙𝑜𝑔𝑅𝑡+1−𝑖 + 𝑒𝑡
𝑞
𝑖=2  

To appropriately select the lag length 𝑞 in the above equation, we started with a relatively long 

lag length and test down the model. Once a tentative lag length has been determined, the Ljung-

Box Q-tests are conducted to ensure that no significant autocorrelations are in the residuals. 

After investigations, 𝑞 = 5  was selected for the given return series. The statistics of the 

augmented Dickey-Fuller tests, and the associated hypothesis and their critical values are 

summarized in Table 1. From table 1, t-value is larger than the critical values at the standard 

significant levels, implying the null hypothesis of unit root (𝐻0: 𝑐1 = 0) is not rejected.  

<Table 1> 

Therefore, the analysis will be undertaken assuming that cropland return follows GBM. 

In making this assumption we are ignoring the lagged dependent variable term which was found 

to be insignificant in the Dickey Fuller test. If we assume that return follows a process of GBM, 

the maximum-likelihood estimates of the drift 𝜃 and the variance 𝜍2 for cropland return 𝑅𝑡  will 

be 𝜃 = 𝜙 + 0.5𝜑2 and 𝜍 = 𝜙,
,
where 𝜙 is the mean and 𝜑 is the standard deviation of the series, 

𝑙𝑛 𝑅𝑡 − 𝑙𝑛 𝑅𝑡−1 . After the estimation, we can get 𝜃 = 0.0225 + 0.5 ∗ 0.21152 = 0.0672 and 

𝜍 = 0.2115. 

 Based on eq.3, the expected time of staying in the first state is 1/𝜆. After the growing 

stage, the ethanol industry will be in equilibrium. Tokgoz et al. (2008) consider that the long-run 

equilibrium may be achieved in 2016-17 where investors are indifferent between building and 

not building a new ethanol plant. Investment in new ethanol plants will take place the market 
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price of corn allows a prospective plant to cover all the costs of owning and operating an ethanol 

plant. This indifference occurs because the ethanol industry stops growing in response to earlier 

negative earnings.  Economic production of cellulosic ethanol resulting from the technological 

breakthrough may necessitate the equilibrium condition to be achieved. In the paper, we assume 

that 𝜆 = 0.125. Higher growth rate of cropland return in the future is referred to the report of 

USDA Agricultural Projections to 2018
6
. The report shows that although increases in corn-based 

ethanol production in the United States are projected to slow, ethanol demand remains high and 

affects production, use, and prices of farm commodities throughout the sector.  As a result, 

although net farm income initially declines from the highs of 2007 and 2008, it remains 

historically strong and rebounds in the projections. With the projected corn price, yield data we 

reach a 15.35% annual corn return growth rate and a 13.91% annual soybean return growth rate 

covering the periods between 2008 and 2016-17. In views of the proportion between planted 

corn and soybean, we estimate the growth rate 𝛼 in the first state is 14.81%. We use the original 

rate 6.72% as one in the second rate. Among other parameters, a discount rate 𝜌 of 20% is used. 

And the cost share proportion (𝑘) establishing land cover is 50%. The total restoration cost (𝐶) 

when participating in the CRP depends on the land cover cost. In general, the cost is $60. In 

some specific program, participants will also receive a sign-up incentive payment (𝜋) equal to 

$100 or $150 per acre upon enrollment into the program.  

 

Empirical Results 

Option value, 𝐽(𝑅𝑡 ,𝑚𝑡), is determined using the numerical method described in Appendix D. 

Figure 1 plots the value of the option of participating in the CRP for the baseline case where   
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𝛼 = 0.1481, 𝛽 = 0.0672, 𝜆 = 0.125, 𝑘 = 0.5, 𝐶 = 60,𝜍 = 0.2115, 𝜌 = 0.2,𝑇 = 10, 𝑄 = 80, 

and 𝜋 = 150.  

<Figure 1> 

In this figure, the vertical axis measures the option value 𝐽(𝑅𝑡 ,𝑚𝑡), which joint smoothly onto 

the horizontal plane of the colored grids in the 3-dimensional space. On the vertical lines of this 

plane the growth rate is constant and the farming return varies. On the slanted (diagonal) lines 

the return is constant while the growth rate varies. The option value increases (decreases) as the 

farming return and/or its growth rate decreases (increases). Table 2 show all the option values in 

the grid and free boundaries are highlighted in the cells, on which option value equals the 

opportunity value of immediately participating in the CRP and the landowner is therefore 

indifferent to the two activities. On the lower side of the boundary (including the revenue-growth 

plane), opportunity value of participation is lower than the option value; the landowner would 

choose to wait and not to participate. The boundary represents the critical returns and growth 

rates that would trigger participation in the CRP. On the other side of the boundary, with lower 

agricultural returns and growth rates, the option has a positive, larger value and it‘s optimal to 

exercise the option and participate immediately.  

<Table 2> 

The main findings are as follows: 1) option value decreases with farming returns 𝑅𝑡  and 

return growth rate 𝑚𝑡 , which is illustrated in figure 1; 2) the option value increases with 𝜆 (recall 

that 1/𝜆 represents the average time of staying in the high growth state), which means that the 

longer the high growth state persists, the lower the value of the option, suggesting that in a time 

of extended high growth, the conservation option is of less value to landowners; 3) the boundary 

declines with the landowners‘ updated expectation of the growth rate; 4) the boundary also 



21 

 

declines with the growth rate at the high growth stage 𝛼 . All results presented above are 

intuitive: higher farming return, higher expectations of the growth rate, and longer average time 

of staying in the state of higher growth will result in an lower option value, which means the 

farmer will wait longer before participating in the CRP or would not participate in the CRP. This 

result is consistent with the observation in the last few years when farming returns grew rapidly 

due to the demand from biofuel production.  

 

Sensitivity Analysis 

The parameters in the baseline impact on participation triggers in the model. Therefore, 

sensitivity tests were undertaken to determine the effects changes in various parameters had on 

the participation boundaries. First, CRP contract characteristics have played a role in 

participation in the CRP. However, not each characteristic is good to facilitate enrollment. An 

understanding of these motivating factors from contract characteristics could be helpful to policy 

makers in improving contract design and implementation of such crucial conservation programs 

and their cost-effectiveness. Second, an analysis is undertaken to determine the effects changes 

in volatility of farming return had on boundary values.  

 

Contract length 

As we know, once enrolled in the CRP, lands will be locked in the contract for 10 or 15 years. 

The rigid contract design may well deter landowners from participating in the CRP because of 

the risk of being locked-in. Farmers‘ sensitivity to contract length is investigated by selecting 

various contract length values. Figure 2 plots the boundary of participation and non-participation 

in the Return-Growth space, under different contract lengths, 5, 10, 15, 20 and 30 years, while 
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keeping other parameters unchanged (  𝛼 = 0.1481,  𝛽 = 0.0672 , 𝜆 = 0.125 , 𝑘 = 0.5 , 𝐶 =

60,𝜍 = 0.2115, 𝜌 = 0.2, 𝑄 = 80, and 𝜋 = 150). 

<Figure 2> 

In this figure, landowners would participate when the agricultural return and its growth rate are 

low, in the area below the boundaries, and they would not participate otherwise. The downward 

sloping boundaries indicate that at higher growth rates, CRP participation requires lower return 

threshold. The figure shows that there are no clear-cut conclusions whether landowners will 

more readily participate when offered shorter contracts of 5 years compared to the longer ones of 

20 or 30 years. But we find that participation triggers rise from 50-60$/acre to about 70-80$/acre 

when contract length is shortened from 10 years to 5 years. The jump is substantially greater than 

those when contract length is extended.  

<Table 3> 

Table 3 gives the elasticity of participation triggers to changes of contract length from the 

baseline case (10-year contract). It suggests that when contract length is extended from 10 to 15 

years till 30 years, the sensitivity of participation trigger to contract length is gradually 

decreasing. It means that if only longer-term contracts are offered, threshold return triggering 

participation in the CRP have no substantial difference among these contracts. When contract 

length is shortened from 10 to 5 years, the degree of sensitivity of return trigger is prominently 

increased. Among the majority of different growth expectations, its elasticities are two times 

more than those in the case from 10 to 15 years. It indicates that shortening contract length is an 

effective method to encourage enrollment. 

The results have implications for the design of conservation programs promoting shifts in 

behavior and cost-effectively preserve environmental benefits. First, when the CRP land was 
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squeezed out by ethanol production, shortening contact lengths is a good scheme to attract more 

land in the CRP. Second, for high environmentally sensitive cropland a longer term contract 

should be offered to reach cost-effectiveness because participation threshold is more insensitive 

to contract length. Third, the results are in favor of contracts with different lengths. Currently, 

only 10- or 15-year contract is offered to farmers. Its distribution of contract length is too 

concentrated to offer more options to farmers or to supply policy maker more effective 

instruments to reach optimal cost-benefits of such programs. 

 

Financial Incentive 

Except annual rental payments and cost-share assistance, Farm Service Agency(FSA) also 

provides CRP participants additional financial incentives, for example, one-time signing bonus. 

Farmers‘ sensitivity to financial incentive is investigated by selecting various incentive values. 

Figure 3 plots the boundary of participation and non-participation in the Return-Growth space, 

under different incentives, 50, 100, 150, 200, 250, and 300$/acre, while keeping other parameters 

unchanged (𝛼 = 0.1481,  𝛽 = 0.0672 , 𝜆 = 0.125 , 𝑘 = 0.5 , 𝐶 = 60 , 𝜍 = 0.2115 , 𝜌 = 0.2 , 

𝑇 = 10, and 𝑄 = 80). 

<Figure 3> 

 Compared to the contract length scheme, this figure gives a completely different scene. 

The boundary is more sensitive to the financial incentive. For example, in the baseline, if the 

farmer expects a 6.7% growth rate, he will accept the 10-year contract when the farming return 

reached $65 per acre, but if given an incentive of $300, he will be willing to participate even if 

the farming return reached $85. Therefore, providing sign-up incentives in addition to the land 

rental payments would substantially increase participation in these programs. This justifies the 
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practice adopted in the supplementary programs such as the continuous CRP and the 

Conservation Reserve Enhancement Program (CREP), which aim to improve water quality and 

wildlife by offering additional financial incentives to landowners for conservation. Table 4 

provides the elasticity analysis. In sum, the average elasticity rates are greater than those in 

different contract lengths scenario expect one case—contract length is shortened from 10 to 

5years. Meanwhile, financial incentive is basically equally effective in all situations, either high 

or low growth rate. It suggests that financial incentive is always an effective tool to motivate 

participation in the CRP.  

<Table 4> 

 

The Effect of Volatility  

Real option allows researchers to build uncertainty, irreversibility, and the ability to wait to make 

a decision into one framework and determines the impact three factors have on the profitability 

of the decision. The opportunity value of participation in the CRP incorporates these factors. In 

the sector, we study the effects of uncertainty and irreversibility on participation triggers. We 

keep other parameters unchanged in the baseline while varying the standard deviation of the 

logarithm of cropping returns. The impact of changes in volatility within the model can be seen 

in figure 4.  

<Figure 4> 

 Net present value method (NPV) ignores risk or uncertainty inherent to cropland return. 

Standard NPV will overestimate the participation triggers by not including the value of wating 

for new information to reduce the uncertainty of the cash flows (Pindyck 1988). Figure 4 shows 

that uncertainty in the cropland return contributes approximate $14/acre the increase in 
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participation triggers relative to the baseline. Figure 4 also demonstrates the effect of different 𝜍 

on the trigger value. As expected, while the variance of the model increased, the triggers 

decreased. It means that the producer will wait a lower cropland return to participating in the 

CRP. Table 5 gives the elasticity analysis of participation in the CRP on different uncertainty 

parameters. Reducing the variance can increase participation boundaries. The implication is that 

government programs aimed to reduce income risk can play a role in encouraging farmer to enter 

in the CRP. However, since these programs also support income increase, the aggregate effect on 

participation is not clear.  

<Table 5> 

 

Concluding Remarks 

This paper proposes a land use decision model under uncertainty in the era of bio-fuel 

production. The decision is modeled as an optimal stopping problem in the real option 

framework, and farming return is assumed to follow stochastic process with parameter 

uncertainty. The model captures the structures changes in the agricultural sector caused by 

biofuel production and further accommodates the potential shocks in relation to the possible 

technological breakthroughs in cellulosic ethanol production. The decision model provides a 

useful tool both for landowners to determine optimal land use and the optimal timing of land use 

conversion, and for policy makers to make informed environmental policies and to make more 

efficient use of taxpayers‘ money. Methodologically, we use nonlinear Kalman filter approach to 

continuously upgrade the information and estimate the random growth rate with the minimum 

error. The problem is formulated as a linear complementarity problem, which is addressed with a 

fully implicit finite difference approach.  
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Sensitivity analysis was conducted for key parameters. As with ordinary financial put 

options, an increase in farming returns decreases the value of the real option to participate in 

conservation. Importantly, we find the threshold returns (critical value) is elastic to contract 

lengths from 10 to 5 years, which means that shortening contract length may be effective in 

motivating participation in the CRP. Meanwhile, financial incentive is found to be an effective 

means to stimulate participation, justifying the observed supplementary program practices. When 

public policies are increasingly relying on the use of land retirement and conversion programs to 

achieve environmental policy goals, the results of this study have implications for the design of 

conservation contracts promoting enrollment in the CRP.  
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1
 The Food, Conservation, and Energy Act of 2008 imposes a 32-million-acre maximum for CRP 

starting October 2009, which is 7.2 million acres below the former cap established in the 2002 

farm bill. 

2
 In the farmers‘ information set, agricultural return 𝑅𝑡  is an observable component, while 𝜃𝑡  is 

an unobservable component. 

3
 Although it is only the limiting case of the discrete time problem and nonstandard, the 

continuous framework has an analytic convenience. 

4
 Boundary conditions proposed by Tavella and Randall are to apply the pricing equation itself as 

a boundary condition rather than other financial argument to which to appeal for one condition. 

BC1 is to postulate a linear dependence of option value on the price, while BC2 is to discretize 

the drift terms and volatility terms with second order one-sided different operators. BC2 will 

have smaller error when we compute option value using finite difference method.  

5
 General contract is contrasted with continuous contract. General contract means land sign-up 

enrollment occurs only during designated sign-up periods, while in continuous contract land can 

be enrolled at any time under CRP continuous signup, which is generally appropriate for 

environmentally desirable land devoted to certain conservation practices, e.g. buffer.  

6
 This report provides projections for the agricultural sector through 2018.  Projections cover 

agricultural commodities, agricultural trade, and aggregate indicators of the sector, such as farm 

income and food prices. Prospects for the agricultural sector in the near term reflect adjustments 

to the global economic slowdown and the U.S. recession.   
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Table 1.  Results from Augmented Dick-Fuller Unit Root Tests 

Coefficients Estimates t-statistic 

𝑐0   2.71  1.89 

𝑐1 -0.63 -1.86 

𝑐2 -0.03 -0.11 

𝑐3   0.11   0.42 

𝑐4 -0.15 -0.67 

𝑐5 -0.12 -0.64 

Note: Observation number: 39. The null hypothesis: 𝑐1 = 0. Dickey Fuller critical value: 1%, -

3.58; 5%, -2.93; 10%, -2.60.  
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Table 2. Option Value of Participation in the CRP 

𝑅\𝑚 0.067 0.075 0.083 0.092 0.100 0.108 0.116 0.124 0.132 0.140 0.148 

0 465.9 465.9 465.9 465.9 465.9 465.9 465.9 465.9 465.9 465.9 465.9 

5 438.2 437.3 436.3 435.4 434.3 433.2 432.1 430.9 429.6 428.3 426.9 

10 410.5 408.7 406.8 404.9 402.8 400.6 398.3 395.9 393.3 390.7 387.9 

15 382.8 380.1 377.3 374.3 371.2 367.9 364.5 360.9 357.1 353.1 348.8 

20 355.2 351.6 347.8 343.8 339.7 335.3 330.7 325.9 320.8 315.5 309.8 

25 327.5 323.0 318.3 313.3 308.1 302.7 296.9 290.9 284.5 277.9 270.8 

30 299.8 294.4 288.8 282.8 276.6 270.0 263.1 255.9 248.3 240.3 231.8 

35 272.2 265.9 259.2 252.3 245.0 237.4 229.3 220.9 212.0 202.7 192.8 

40 244.5 237.3 229.7 221.8 213.5 204.7 195.6 185.9 175.7 165.1 153.8 

45 216.8 208.7 200.2 191.3 181.9 172.1 161.8 150.9 139.5 127.5 114.8 

50 189.1 180.1 170.7 160.8 150.4 139.5 128.0 115.9 103.2 89.9 75.8 

55 161.5 151.6 141.2 130.3 118.8 106.8 94.2 80.9 66.9 53.0 40.9 

60 133.8 123.0 111.7 99.8 87.3 74.2 61.0 49.1 38.7 29.8 22.4 

65 106.1 94.4 82.1 69.9 58.5 48.0 38.6 30.3 23.3 17.5 12.9 

70 79.4 68.5 58.2 48.6 39.8 32.0 25.2 19.4 14.6 10.8 7.7 

75 59.6 50.6 42.2 34.6 27.9 22.0 17.0 12.8 9.5 6.8 4.8 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

385 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

390 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

395 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

400 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 



34 

 

 

Table 3. Elasticity Analysis to Critical Value of Participation in the CRP on Changes in 

Contract Length (Baseline Case:𝑇 = 10) 

𝑇 \𝑚 0.067 0.075 0.083 0.092 0.100 0.108 0.116 0.124 0.132 0.140 0.148 

5 years -0.46 -0.67 -0.67 -0.67 -0.50 -0.50 -0.73 -0.73 -0.73 -0.80 -0.80 

15 years -0.15 0.00 -0.17 -0.17 -0.33 -0.33 -0.18 -0.36 -0.36 -0.40 -0.40 

20 years -0.15 -0.08 -0.17 -0.17 -0.25 -0.25 -0.18 -0.27 -0.27 -0.30 -0.30 

25 years -0.06 -0.06 -0.11 -0.17 -0.17 -0.22 -0.18 -0.24 -0.24 -0.27 -0.27 

30 years -0.08 -0.08 -0.08 -0.13 -0.13 -0.17 -0.14 -0.18 -0.18 -0.20 -0.25 
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Table 4. Elasticity Analysis to Critical Value of Participation in the CRP on Changes in 

Financial Incentive (Baseline Case: 𝜋=150$/acre) 

π\m 0.067 0.075 0.083 0.092 0.100 0.108 0.116 0.124 0.132 0.140 0.148 

$50  0.35 0.35 0.25 0.38 0.38 0.38 0.27 0.41 0.41 0.30 0.30 

$100  0.23 0.46 0.25 0.25 0.25 0.50 0.27 0.27 0.55 0.30 0.30 

$200  0.46 0.23 0.50 0.50 0.25 0.25 0.55 0.27 0.27 0.30 0.30 

$250  0.35 0.35 0.38 0.38 0.38 0.25 0.41 0.27 0.27 0.45 0.45 

$300  0.31 0.31 0.42 0.33 0.33 0.25 0.36 0.36 0.27 0.40 0.30 
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Table 5. Elasticity Analysis to Critical Value of Participation in the CRP on Different 

Volatilities (Baseline Case: 𝜍 = 0.2115) 

σ\m 0.067 0.075 0.083 0.092 0.100 0.108 0.116 0.124 0.132 0.140 0.148 

0.10 -0.29 -0.47 -0.32 -0.32 -0.32 -0.16 -0.34 -0.17 -0.17 -0.19 -0.19 

0.40 -0.26 -0.28 -0.28 -0.28 -0.28 -0.28 -0.31 -0.31 -0.31 -0.22 -0.22 

0.80 -0.22 -0.21 -0.21 -0.21 -0.21 -0.24 -0.23 -0.23 -0.23 -0.22 -0.22 
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Figure 1. Option Value of Land Conversion Opportunity (Baseline Case) 
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Figure 2. Critical Farming Return versus Growth Rate under Different Contract Lengths 
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Figure 3. Critical Value versus Growth Rate under Different Financial Incentives 
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Figure 4. Critical Value versus Growth Rate under Different Volatility Parameters 
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Appendix A 

Assume the probability of random growth rate is:  

(A.1)  𝑝𝑡 = 𝑝𝑟𝑜𝑏 𝜃𝑡 = 𝛽 Ω𝑡
𝑅 = 𝑝𝑟𝑜𝑏 𝜃 = 𝛽 𝑅𝑡  

According to Bayes formula, 

(A.2) 𝑝𝑡 =
𝑓 𝑅𝑡  𝜃𝑡=𝛽 𝑝𝑟𝑜𝑏  𝜃𝑡=𝛽 

𝑓 𝑅𝑡  𝜃𝑡=𝛽 𝑝𝑟𝑜𝑏  𝜃𝑡=𝛽 +𝑓 𝑅𝑡  𝜃𝑡=𝛼 𝑝𝑟𝑜𝑏  𝜃𝑡=𝛼 
 

where 𝑓(∙) is the density function of 𝑅𝑡 .  

(A.3)  𝜃𝑡 = 𝛼 ⇒ 𝑅𝑡 = 𝑅0exp[ 𝛼 −
𝜍2

2
 𝑡 + 𝜍𝑊𝑡] 

(A.4)   𝜃𝑡 = 𝛽 ⇒ 𝑅𝑡 = 𝑅0exp[ 𝛽 −
𝜍2

2
 𝑡 + 𝜍𝑊𝑡] 

𝑅𝑡  has a conditional lognormal distribution, therefore 

(A.5)  𝑓 𝑅𝑡  𝜃𝑡 = 𝛼  =
1

 2𝜋𝑡𝜍𝑅𝑡
𝑒𝑥𝑝  −

[ln 𝑅𝑡 −ln 𝑅0 −(𝛼−
𝜍2

2
)𝑡]2

2𝜍2𝑡
  

(A.6)  𝑓 𝑅𝑡  𝜃𝑡 = 𝛽 =
1

 2𝜋𝑡𝜍𝑅𝑡
𝑒𝑥𝑝  −

[ln 𝑅𝑡 −ln 𝑅0 −(𝛽−
𝜍2

2
)𝑡]2

2𝜍2𝑡
  

𝑇𝛼 , the time of staying in state 𝛼, has a exponential distribution with parameter 𝜆.  

(A.7)   𝑝𝑟𝑜𝑏 𝑇𝛼 < 𝑡 = 1 − exp −𝜆𝑡 . 

Substituting these above into 𝑝𝑡  implies 

(A.8)  𝑝𝑡 =
1

1+𝐵𝑒𝑥𝑝  
 𝛼−𝛽 [(ln  𝑆𝑡 −ln  𝑆0 ]

𝜍2 +
𝛽2−𝛼2+(𝛼−𝛽 )𝜍2

2𝜍2 𝑡 
 

where 𝐵 = exp 𝜆𝑡 − 1. 

According to the Geometric Brownian Motion 𝑑𝑅𝑡 = 𝑅𝑡𝑚𝑡𝑑𝑡 + 𝑅𝑡𝜍𝑑𝑊 𝑡 ,  

(A.9)  𝑅𝑡 = 𝑅0exp[ 𝑚𝑡 −
𝜍2

2
 𝑡 + 𝜍𝑊 𝑡],  

Then  
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(A.10) 𝑝𝑡 =
1

1+𝐵𝑒𝑥𝑝  
 𝛼−𝛽 (2𝑚𝑡−𝛼−𝛽 )

2𝜍2 𝑡+
(𝛼−𝛽 )

𝜍
𝑊 𝑡 

 

Using Ito‘s Lemma to 𝑝𝑡  , 

(A.11)  𝑑𝑝𝑡 = −
 𝛼−𝛽 

𝜍
𝑝𝑡 1 − 𝑝𝑡 𝑑𝑊 𝑡 + 𝜆 1 − 𝑝𝑡 𝑑𝑡 

For 𝑚𝑡 = 𝛼 1 − 𝑝𝑡 + 𝑝𝑡𝛽, we can derive  

(A.12)  𝑑𝑚𝑡 = 𝜆 𝛽 − 𝑚𝑡 𝑑𝑡 +
1

𝜍
 𝛼 − 𝑚𝑡 (𝑚𝑡 − 𝛽)𝑑𝑊 𝑡  
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Appendix B 

The derivation is through Ito‘s Lemma. We know that 𝑑𝑅𝑡 = 𝑅𝑡𝑚𝑡𝑑𝑡 + 𝑅𝑡𝜍𝑑𝑊 𝑡  and 𝑑𝑚𝑡 =

𝜆 𝛽 − 𝑚𝑡 𝑑𝑡 +
1

𝜍
 𝛼 − 𝑚𝑡  𝑚𝑡 − 𝛽 𝑑𝑊 𝑡 . Take the square of the first equation, we get 

(B.1)  (𝑑𝑅𝑡)
2 = (𝑅𝑡𝑚𝑡𝑑𝑡)

2 + 2𝑅𝑡
2𝑚𝑡𝜍𝑑𝑡𝑑𝑊 𝑡 + 𝑅𝑡

2𝜍2(𝑑𝑊 𝑡)
2. 

We already know that (𝑑𝑡)2 and cross product 𝑑𝑡𝑑𝑊 𝑡  are equal to zero in the mean square sense, 

and (𝑑𝑊 𝑡)
2 = 𝑑𝑡, therefore 

(B.2)  𝐸(𝑑𝑅𝑡)
2 = 𝑅𝑡

2𝜍2𝑑𝑡. 

Similarly, we can get  

(B.3)  𝐸(𝑑𝑚𝑡)
2 =

1

𝜍2
 𝛼 − 𝑚𝑡 

2(𝑚𝑡 − 𝛽)2𝑑𝑡 

(B.4)  𝐸 𝑑𝑅𝑡𝑑𝑚𝑡 = 𝑅𝑡 𝛼 − 𝑚𝑡  𝑚𝑡 − 𝛽 𝑑𝑡 

Applying Ito‘s Lemma to 𝐽 𝑅𝑡 ,𝑚𝑡 , we can derive a partial differential equation 

(B.5)  𝑑𝐽 𝑅𝑡 ,𝑚𝑡 = 𝐽𝑅𝑑𝑅𝑡 + 𝐽𝑚𝑑𝑚𝑡 +
1

2
 𝐽𝑅𝑅(𝑑𝑅𝑡)

2 + 2𝐽𝑅𝑚𝑑𝑅𝑡𝑑𝑚𝑡 + 𝐽𝑚𝑚 (𝑑𝑚𝑡)
2  

Substituting B.2, B.3, and B.4 into B.5, we can get  

(B.6)   

𝐸 𝑑𝐽 𝑅𝑡 ,𝑚𝑡  =  
𝑅𝑡𝑚𝑡𝐽𝑅 + 𝜆 𝛽 − 𝑚𝑡 𝐽𝑚 +

1

2
𝑅𝑡

2𝜍2𝐽𝑅𝑅

+
1

2𝜍2
 𝛼 − 𝑚𝑡 

2 𝑚𝑡 − 𝛽 2𝐽𝑚𝑚 + 𝑅𝑡 𝛼 − 𝑚𝑡  𝑚𝑡 − 𝛽 𝐽𝑅𝑚

 𝑑𝑡 

The Bellman equation for eq.13 is expressed as: 

(B.7)  𝜌𝐽 𝑅𝑡 ,𝑚𝑡 𝑑𝑡 = 𝐸 𝑑𝐽 𝑅𝑡 ,𝑚𝑡   

Therefore,  

(B.8)  𝜌𝐽 −  
𝑅𝑡𝑚𝑡𝐽𝑅 + 𝜆 𝛽 − 𝑚𝑡 𝐽𝑚 +

1

2
𝑅𝑡

2𝜍2𝐽𝑅𝑅

+
1

2𝜍2
(𝛼 −𝑚𝑡)

2(𝑚𝑡 − 𝛽)2𝐽𝑚𝑚 + 𝑅𝑡 𝛼 − 𝑚𝑡  𝑚𝑡 − 𝛽 𝐽𝑅𝑚
 = 0 
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Appendix C 

The simple optimal stopping problem without parameter uncertainty is  

(C.1)   
𝐽 𝑅𝑡 ,𝑚,∞ = max𝑡 𝐸[𝑒−𝜌𝑡𝑀 𝑅𝑡 ,𝑄 ]

𝑑𝑅𝑡 = 𝑚𝑅𝑡𝑑𝑡 + 𝜍𝑅𝑡𝑑𝑊 𝑡
  

Using Ito‘ lemma, the fundamental differential equation of this optimal stopping problem is an 

ordinary differential equation. 

(C.2)  
1

2
𝑅𝑡

2𝜍2𝐽𝑅𝑅 + 𝑅𝑡𝑚𝐽𝑅 − 𝜌𝐽 = 0 

where 𝐽𝑅 and 𝐽𝑅𝑅  are the first and second derivatives of 𝐽 with respect to 𝑅𝑡 . Let 𝑅∗ represent the 

threshold value, which triggers participation in the CRP. This partial differential equation is 

solved subject to the boundary conditions. 

The continuity condition is  

(C.3)  𝐽 𝑅∗ = 𝑀 𝑅∗,𝑄 = 𝑀(𝑄) −
𝑅∗(1−𝑒− 𝜌−𝑚 𝑇 )

𝜌−𝑚
 

The smooth pasting condition is 

(C.4)  𝐽𝑅 𝑅
∗ = 𝑀𝑅 𝑅

∗,𝑄 = −
(1−𝑒− 𝜌−𝑚 𝑇 )

𝜌−𝑚
 

In addition we have 

(C.5)  𝐽 ∞ = 0 

which says that when farming return approaches infinity, the land conversion option is worthless. 

The general form of the solution to equations is  

(C.6)  𝐽 𝑅𝑡 ,𝑚,∞ =  
 𝑀( 𝑅∗,𝑄) (

𝑅𝑡

𝑅∗
)𝛾                                                       𝑅𝑡 ≥ 𝑅∗

𝑀( 𝑅𝑡 ,𝑄)                                                                  𝑅𝑡 ≤ 𝑅∗
  

where 𝛾 =
− 𝑚−

1

2
𝜍2 −  𝑚−

1

2
𝜍2 

2
+2𝜌𝜍2

𝜍2 , which is the negative root of the fundamental quadratic 

equation  
1

2
𝜍2𝛾 𝛾 − 1 + 𝑚𝛾 − 𝜌 = 0, and the threshold 𝑅𝑡

∗ =
𝛾

𝛾−1
∙

(𝜌−𝑚)𝑀(𝑄)

 1−𝑒− 𝜌−𝑚 𝑇   
. 
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Appendix D 

This Appendix describes the numerical approach used to solve the linear complementarity 

problem for valuing the option of participating in the CRP. For a general discussion of numerical 

methods of option valuation, refer to Wilmott et al. (1993). A finite difference scheme is used in 

this paper, which involves reducing a continuous partial differential equation to a discrete set of 

difference equations. In choosing a discretization approach, attention must be given to the 

properties of stability and convergence. Stability is a problem if the discretized model is sensitive 

to small errors that arise from the finite precision of computer algorithms. Convergence refers to 

whether the solutions of the discretized model converge to the solutions of the partial differential 

equations when the discretization is increasingly refined. Two basic finite difference methods are 

the implicit method and the explicit method. When applied to the diffusion equation backward 

and forward difference approximation for the derivative of option value with respect to time lead 

to explicit and implicit finite-difference schemes, respectively (Wilmott et al. 1993). Implicit 

finite-difference method is robust because it can overcome the stability and convergence 

limitations imposed on the explicit finite-difference method. Implicit finite difference method 

allows us to use a large number of mesh points without having to take ridiculously small time-

steps. In the paper we use an implicit difference scheme—the Crank-Nicolson scheme, an 

average of the fully implicit and explicit methods. 

We handle the three-dimensional (𝑅,𝑚, 𝑡) discretization for eq. 17. Consider a three-

dimensional grid with the horizontal plane formed by farming returns 𝑅 and the growth rate 𝑚 

and the vertical axis 𝑡. We divide the 𝑅-axis into equally spaced nodes a distance ∆𝑅 apart, 𝑚 –

axis into equally spaced nodes a distance ∆𝑚 apart, and 𝑡-axis into equally spaced nodes a 
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distance ∆𝑡.  This divides the (𝑅,𝑚, 𝑡) plane up into a mesh, where the mesh points have the 

form (𝑠∆𝑅,𝑛∆𝑚, 𝑖∆𝑡). We then compute the option value, 𝐽, at these points.  

(D.1)  𝑅 =  𝑅0,𝑅1,𝑅2,⋯ ,𝑅𝑆 , 

  𝑚 =  𝑚0,𝑚1,𝑚2,⋯ ,𝑚𝑁 , 

𝑡 =  𝑡0, 𝑡1, 𝑡2,⋯ , 𝑡𝐼 . 

The finite difference method involves replacing partial derivatives by approximations based on 

Taylor series expansions near the point or points of interest. At any point on the grids (𝑅,𝑚, 𝑡) =

(𝑅𝑠 ,𝑚𝑛 , 𝑡𝑖) and the value of the option is 𝐽𝑠,𝑛 ,𝑖 . A formula of approximating the partial 

derivatives using the implicit difference method can be found in Wilmott et al.(1993).  Replacing 

these derivatives in eq.17 yields difference scheme: 

(D.2)  𝐻𝐽𝑖 =  𝑎𝑠−1,𝑛−1𝐽𝑠−1,𝑛−1 + 𝑎𝑠−1,𝑛𝐽𝑠−1,𝑛 + 𝑎𝑠−1,𝑛+1𝐽𝑠−1,𝑛+1 + 𝑎𝑠,𝑛−1𝐽𝑠,𝑛−1 + 𝑎𝑠,𝑛𝐽𝑠,𝑛 +

𝑎𝑠,𝑛+1𝐽𝑠,𝑛+1+𝑎𝑠+1,𝑛−1𝐽𝑠+1,𝑛−1+𝑎𝑠+1,𝑛𝐽𝑠+1,𝑛+𝑎𝑠+1,𝑛+1𝐽𝑠+1,𝑛+1𝑖, 

where 𝑎𝑠−1,𝑛−1=−
𝑅𝑠−1 𝛼−𝑚𝑛−1 (𝑚𝑛−1−𝛽)

4∆𝑅∆𝑚
 

 𝑎𝑠−1,𝑛 =
𝑅𝑠−1𝑚𝑛

2∆𝑅
−

𝑅𝑠−1
2 𝜍2

2∆𝑅2 ; 

 𝑎𝑠−1,𝑛+1 =
𝑅𝑠−1 𝛼−𝑚𝑛+1  𝑚𝑛+1−𝛽 

4∆𝑅∆𝑚
; 

 𝑎𝑠,𝑛−1 = −
𝜆 𝑚𝑛−1−𝛽 

2∆𝑚
−

 𝛼−𝑚𝑛−1 
2 𝑚𝑛−1−𝛽 

2

2𝜍2∆𝑚2 ; 

 𝑎𝑠,𝑛 =
𝑅𝑠

2𝜍2

∆𝑅2
+ 𝜌 +

 𝛼−𝑚𝑛  
2 𝑚𝑛−𝛽 

2

𝜍2∆𝑚2
;  

            𝑎𝑠,𝑛+1 = −
 𝛼−𝑚𝑛+1 

2 𝑚𝑛+1−𝛽 
2

2𝜍2∆𝑚2 +
𝜆 𝑚𝑛+1−𝛽 

2∆𝑚
; 

            𝑎𝑠+1,𝑛−1 =
𝑅𝑠+1 𝛼−𝑚𝑛−1 (𝑚𝑛−1−𝛽)

4∆𝑅∆𝑚
 

            𝑎𝑠+1,𝑛 = −
𝑅𝑠+1

2 𝜍2

2∆𝑅2 −
𝑅𝑠+1𝑚𝑛

2∆𝑅
.  
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            𝑎𝑠+1,𝑛+1 = −
𝑅𝑠+1 𝛼−𝑚𝑛+1 (𝑚𝑛+1−𝛽)

4∆𝑅∆𝑚
 

The superscript 𝑖 on the right-hand side means that all variables within the braces are evaluated 

at 𝑡𝑖 . 

(D.3)  (𝐽𝑖)𝑡
′ =

𝐽𝑠,𝑛 ,𝑡−𝐽𝑠,𝑛 ,𝑡−1

∆𝑡
 

The discretized partial differential equation must also be specified when the growth rate 

is at its maximum and minimum points. We use BC2 boundary condition on 𝑚𝑚𝑖𝑛 = 𝛽 and 

𝑚𝑚𝑎𝑥 = 𝛼 . One-sided difference for 𝐽𝑚𝑚  (the second derivative of 𝐽  with respect to 𝑚) and 

forward-backward difference for 𝐽𝑅𝑚  (the cross derivative of 𝐽with respect to 𝑅 and 𝑚.) are used 

at 𝑚𝑚𝑎𝑥 = 𝛼.  

(D.4) 𝐽𝑚𝑚 =  
𝐽𝑠,𝑛−2𝐽𝑠,𝑛−1+𝐽𝑠,𝑛−2

∆𝑚2  
𝑖

 

  𝐽𝑚𝑚 =  
𝐽𝑠,𝑛−𝐽𝑠−1,𝑛−𝐽𝑠,𝑛−1+𝐽𝑠−1,𝑛−1

∆𝑚∆𝑅
 
𝑖

 

Then in eq. 17,  

(D.5)  𝐻𝐽𝑖 =  𝑎𝑠−1,𝑛−1𝐽𝑠−1,𝑛−1 + 𝑎𝑠−1,𝑛−1𝐽𝑠−1,𝑛 + 𝑎𝑠,𝑛−2𝐽𝑠,𝑛−2 + 𝑎𝑠,𝑛−1𝐽𝑠,𝑛−1 + 𝑎𝑠,𝑛𝐽𝑠,𝑛 +

𝑎𝑠,𝑛+1𝐽𝑠,𝑛+1+𝑎𝑠+1,𝑛𝐽𝑠+1,𝑛𝑖, 

where 𝑎𝑠−1,𝑛−1 = −
𝑅𝑠−1 𝛼−𝑚𝑛−1 (𝑚𝑛−1−𝛽)

∆𝑅∆𝑚
; 

 𝑎𝑠−1,𝑛 =
𝑅𝑠−1 𝛼−𝑚𝑛   𝑚𝑛−𝛽 

∆𝑅∆𝑚
+

𝑅𝑠−1𝑚𝑛

2∆𝑅
−

𝑅𝑠−1
2 𝜍2

2∆𝑅2 ; 

   𝑎𝑠,𝑛−2 = −
 𝛼−𝑚𝑛−2 

2 𝑚𝑛−2−𝛽 
2

2𝜍2∆𝑚2 −
𝜆 𝑚𝑛−2−𝛽 

2∆𝑚
 

 𝑎𝑠,𝑛−1 =
 𝛼−𝑚𝑛−1 

2 𝑚𝑛−1−𝛽 
2

𝜍2∆𝑚2 +
𝑅𝑠 𝛼−𝑚𝑛−1  𝑚𝑛−1−𝛽 

∆𝑅∆𝑚
; 

 𝑎𝑠,𝑛 =
𝑅𝑠

2𝜍2

∆𝑅2 + 𝜌 −
 𝛼−𝑚𝑛  

2 𝑚𝑛−𝛽 
2

2𝜍2∆𝑚2 −
𝑅𝑠 𝛼−𝑚𝑛   𝑚𝑛−𝛽 

∆𝑅∆𝑚
+

𝜆 𝑚𝑛−𝛽 

2∆𝑚
;  

             𝑎𝑠+1,𝑛 = −
𝑅𝑠+1

2 𝜍2

2∆𝑅2 −
𝑅𝑠+1𝑚𝑛

2∆𝑅
.  
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Similarly, one sided difference for 𝐽𝑚𝑚  and backward-backward difference for 𝐽𝑅𝑚  are used at 

𝑚𝑚𝑖𝑛 = 𝛽: 

(D.6)  𝐽𝑚𝑚 =  
𝐽𝑠,𝑛+2−2𝐽𝑠,𝑛+1+𝐽𝑠,𝑛

∆𝑚2
 
𝑖

 

 𝐽𝑚𝑚 =  
𝐽𝑠,𝑛+1−𝐽𝑠,𝑛−𝐽𝑠−1,𝑛+1+𝐽𝑠−1,𝑛

∆𝑚∆𝑅
 
𝑖

 

Then in eq.17, 

(D.7)  𝐻𝐽𝑖 =  𝑎𝑠−1,𝑛𝐽𝑠−1,𝑛 + 𝑎𝑠−1,𝑛+1𝐽𝑠−1,𝑛+1 + 𝑎𝑠,𝑛𝐽𝑠,𝑛 + 𝑎𝑠,𝑛+1𝐽𝑠,𝑛+1 + 𝑎𝑠,𝑛+2𝐽𝑠,𝑛+2 +

𝑎𝑠+1,𝑛𝐽𝑠+1,𝑛𝑖, 

where 𝑎𝑠−1,𝑛 =
𝑅𝑠−1𝑚𝑛

2∆𝑅
−

𝑅𝑠−1
2 𝜍2

2∆𝑅2 −
𝑅𝑠−1 𝛼−𝑚𝑛  (𝑚𝑛−𝛽)

∆𝑅∆𝑚
; 

 𝑎𝑠−1,𝑛+1 =
𝑅𝑠−1 𝛼−𝑚𝑛+1  𝑚𝑛+1−𝛽 

∆𝑅∆𝑚
; 

 𝑎𝑠,𝑛 =
𝑅𝑠

2𝜍2

∆𝑅2 + 𝜌 +
𝜆 𝑚𝑛−𝛽 

2∆𝑚
−

 𝛼−𝑚𝑛  
2 𝑚𝑛−𝛽 

2

2𝜍2∆𝑚2 +
𝑅𝑠 𝛼−𝑚𝑛   𝑚𝑛−𝛽 

∆𝑅∆𝑚
;  

            𝑎𝑠,𝑛+1 =
 𝛼−𝑚𝑛+1 

2 𝑚𝑛+1−𝛽 
2

𝜍2∆𝑚2
−

𝑅𝑠 𝛼−𝑚𝑛+1  𝑚𝑛+1−𝛽 

∆𝑅∆𝑚
; 

            𝑎𝑠,𝑛+2 = −
 𝛼−𝑚𝑛+2 

2 𝑚𝑛+2−𝛽 
2

2𝜍2∆𝑚2 ; 

            𝑎𝑠+1,𝑛 = −
𝑅𝑠+1

2 𝜍2

2∆𝑅2 −
𝑅𝑠+1𝑚𝑛

2∆𝑅
.  

Equations D.2, D.3, D.5 and D.7can form a system equation, which can be written in matrix 

form and solved by iteration (Insley 2002). 

 

 

 

 


