
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 

Optimal Groundwater Extraction under the Linear Response and Plateau 

Technology 

 

Chenggang Wang 

Department of Agricultural and Applied Economics, Texas Tech University and Texas AgriLife 

Research, Texas A&M University, Lubbock, Texas 79409, USA 

Eduardo Segarra 

Department of Agricultural and Applied Economics, Texas Tech University, Lubbock, Texas 

79409, USA  

 

Contributed Paper prepared for presentation at the International Association of Agricultural 

Economists Conference, Beijing, China, August 16-22, 2009 

 

 

 

 

Copyright 2009 by Chenggang Wang and Eduardo Segarra.  All rights reserved.  Readers may 

make verbatim copies of this document for non-commercial purposes by any means, provided that 

this copyright notice appears on all such copies.



 

Optimal Groundwater Extraction under the Linear Response and Plateau Technology 

 

Groundwater is one of the most cited examples of a common property resource.  Conventional 

theory suggests that commonality or nonexcludability leaves resource owners or users little 

incentive to care about the future, resulting in overexploitation of the resource.  Empirical 

evidence abounds, however, that the welfare gain from socially managing groundwater resources, 

as opposed to competitive exploitation with rent dissipation, is practically negligible (e.g., Allen 

and Gisser 1984;  Gisser and Sanchez 1980;  Lee et al. 1981; Nieswiadomy 1985).  Koundouri 

(2004) in a thorough review of this literature concludes that the magnitude of such welfare 

improvements depends crucially on the elasticity of the derived water demand; a highly inelastic 

water demand entails negligible welfare gain.  This important finding points us to a way to 

reconcile theory and empirical evidence; namely, by introducing into groundwater extraction 

models meaningful structure to arrive at an inelastic water demand, closing the gap between the 

social and private rates of extraction.   

In this paper we incorporate into a simple groundwater mining model some plausible 

agronomic and hydrologic assumptions, which can lead to inelastic water demand.  Inelastic 

water demand has been persistently found in the agricultural economics literature (e.g., Berbela 

and Gómez-Limón 2000; Bontemps and Couture 2002; Clark et al. 1986; Gardner and Young 

1984; Moore et al. 1994; Shumway 1973).  More interestingly, most of the studies cited above 

have found that water demand is particularly inelastic when water price is low.  Our point of 

departure therefore is to look for a production function that entails inelastic water demand at low 

price.  Here we assume that the crop production technology is approximated by a one-factor linear 

response and plateau (LRP) model in which yield responses linearly to applied water until some 

other factors become limiting and yield taps into a plateau.  The LRP model derives its origin 
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from the agronomic law of the minimum, also known as Liebig’s law, which states yield 

responses to each factor until some other factor is limiting.  Under such technology, water 

demand is perfectly inelastic up to the point where water price is too high to sustain profitable 

irrigation.   

Another assumption we introduce into the model is that water availability is constrained by 

well-yield capacity, i.e., the maximal amount of water that can be pumped from the well in a 

given period.  Well-yield capacity depends on some hydrological conditions of the aquifer.  This 

is an important condition that unfortunately has largely been ignored in the economics literature 

of groundwater management.  In many areas of U.S. where groundwater use is intense water 

demand frequently fails to be satisfied because of limited well-yield capacity; for example, 

drilling multiple wells is a common practice in the High Plains region where the Ogallala aquifer 

is the mainstay of agriculture.    

The rest of the paper studies dynamic water use patterns in a simple groundwater mining model 

with the above two assumptions incorporated.  Specifically, in a two-farm model both cooperative 

and non-cooperative solutions are derived and then compared so that insight is gained into 

welfare implications of commonality.  We conclude with a discussion of groundwater 

management policy. 

 

The two-farm model 

 

Consider two adjacent farms 1,2i =  overlying the same aquifer.  By the Rule of Capture, both 

farms have unlimited access to the groundwater in the aquifer.  The crop production technology 

adopted by the farms are approximated by a LRP function.  Following Dillon (1977), the LRP 

function is written  
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where iw  is the amount of water applied to the crop, ia  crop yield corresponding to non-irrigated 

or dryland farming, ib the marginal product of applied water, and 0iW >  the minimal amount of 

applied water needed for yield to reach the plateau.  

Let (0,1)ie Î  denote irrigation efficiency.  One unit of water pumped from the aquifer, that is, 

amounts to only ie  units of water applied to the crop.  Production function (1.1) thus can be 

expressed in terms of the amount of water pumped from the aquifer 
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Let is  and s  represent the elevations of the farmland surface and water table in the aquifer, 

respectively.  Note that the two adjacent farms may have different elevations, but the water table 

is the same for both by the “bathtub” analogy.   The cost of pumping per unit of water per unit of 

lift, denoted by g , is the same for both farms, too. This is an innocuous assumption because 

unitary pumping cost is determined by the engineering properties of the pump and energy price.  

Total pumping costs are assumed to be linear in pumping lift is s- , i.e.,   

 ( , ) ( )i i i iP s x s s xg= - . (1.3) 

Other operating costs are assumed away as they are irrelevant to the dynamic decision of 

groundwater extraction. 

The dynamics of water table is governed by the differential equation 
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where k  is a function of the specific yield of the aquifer, which represents the volumetric fraction 

of the aquifer that is occupied with water.  Every unit of water withdrawn from the aquifer lowers 

water table by k  inches.  Note that implicit in (1.4) is a zero recharge rate assumed on the aquifer.  

In addition, because it is practically impossible to drain an aquifer, we assume the aquifer to be 

bottomless, i.e., ( )s t  is unbounded from below.    

Assume that crop price is taken as given by the farms and, for simplicity purposes, equals unity.  

The farms’ problems are to determine the optimal path of groundwater extraction that maximizes 

over an infinite horizon the present value of a stream of profits 

 
0

( ( ( )) ( ( ), ( )))rt
i i i ie G x t P s t x t dt

¥
- -ò  (1.5) 

subject to equations (1.2-1.4) and the hydrological constraint 

 0 ( )i ix t X£ £ ,  (1.6) 

where r  is the interest rate and iX  well-yield capacity in farm i .  

An inspection of the farms’ problems reveals that extracting more than /i iW e  units of water at 

any point of time generates no extra revenue but raises pumping costs in the future.  An optimal 

path of extraction, therefore, is necessarily bounded above by /i iW e .  With this in mind, the two 

farms’s problems can be written in a familiar form 
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2

1

0
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                             (P.1) 

The current-value Hamiltonians of (P.1) are 
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 [ ( ) ]i i i i i i i i jH a b s s x xe g kl kl= + - - - - , , 1, 2 and i j i j= ¹ ; (1.7) 

where il  are the current-value shadow price of the groundwater resource to farm i . 

Maximization of (1.7) with respect to the constraint set 0 i ix Z£ £  yields the necessary 

condition 

 
 if 
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where ( )i i ic s sg kl= - +  is marginal economic cost composed of marginal pumping cost 

( )is sg -  and marginal user cost ikl . 

The canonical equations are (1.4) and 

 ( ) ( ) ( )i i i it r t x tl l g= - . (1.9) 

The necessary transversality condition is 

 lim ( ) 0rt
i

t
e H t-

+¥
= . (1.10) 

The sufficient trasversality condition is that given ( )jx t for any admissible pair ( ( ), ( ))is t x t  , 

 lim ( )( ( ) ( )) 0rt
i

t
e t s t s tl-

+¥
- £ .  (1.11) 

The key to solving (P.1) is to understand the properties of the paths of il .  Indeed, il  are 

nonnegative throughout as shown in the following lemma.  

 

Lemma 1.  The current-value shadow prices of groundwater stock in problem (P.1) are 

nonnegative,  i.e., ( ) 0,  0i t tl ³ " ³  .   

 

This makes economic sense in that the price of a freely disposable good should always be 

nonnegative.  The proof of it is provided in Appendix 1. 
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It follows immediately that marginal economic cost is nondecreasing in time  since 

0i i jc r xk l gk= + ³ .   Ruling out the case in which marginal economic cost ic  will never exceed 

marginal revenue of applied water i ib e , the maximum of the Hamiltonian can be written 

 
             for    
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0               for    

i i
i

i
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; 1, 2i = ; (1.12) 

where [0, )iT Î +¥  is determined by the following complementary slackness condition 
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 (1.13) 

By the sufficient trasversality condition (1.11) one can establish that ( ) 0,  i it t Tl = " ³ .  Thus, 

(1.13) reduces to  

 

0;

( ( )) 0;

[ ( ( )) ] 0.

i

i i i i

i i i i i

T
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g e
g e

³

- - ³
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 (1.14) 

When 0iT > , farm i  practices irrigated farming until marginal pumping cost ( ( ))i i is s Tg -  equals 

marginal revenue i ib e .  When marginal pumping cost exceeds marginal revenue at the initial state, 

i.e., 0
i i is s b e- > ; irrigation is not profitable at all and dryland farming is practiced throughout, 

i.e., 0iT = . 

Assume, without loss of generality, that 1 1 1 2 2 2/ /s b s be g e g- ³ - .  Since /i i is b e g-  solves 

the equation ( )i i is s bg e- = , it is the critical water table at which marginal pumping cost equals 

the marginal revenue.  By definition, a relatively lower critical water table results from more 

favorable technical and environmental conditions for irrigation, in terms of land surface elevation 

is , marginal product of applied water ib , irrigation efficiency ie , and unitary pumping costs g .   
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It follows immediately from this assumption and (1.14) that 1 2( ) ( )s T s T³ , which in turn 

implies 1 2T T£  since water table ( )s   is nonincreasing in time. As expected, farm 1, who is 

assumed to have less favorable irrigation conditions and therefore a higher critical water table, 

will stop irrigation at least as early as farm 2 will.  Integrating (1.4) and substituting from (1.12), 

the path of the water table then can be written 

 

0
1 2 1

0
1 1 2 1 2

0
1 1 2 2 2
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( )         for [ , )
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 (1.15) 

And, given the terminal condition ( ) 0i iTl =  the current-value shadow price can be solved in 

terms of the switching times 
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  1, 2.i =  (1.16) 

Note that the commonly owned stock of groundwater resource may be of different value to the 

two farms because of the difference in upper bound iZ  and switching time iT .   

It remains to solve for the Nash Equilibrium switching times for the two farms.  Substituting 

for ( )is T  from (1.15) into (1.14) to obtain 

 max{0, }i iT t= ,    1, 2i =  (1.17) 

where  

 
0

1 1 1
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Farm 1, who is assumed to have less favorable irrigation conditions and a higher critical water 

table, abandons irrigated farming before farm 2 does so, simply because a higher critical water 

table will be reached earlier.  As shown in (1.18), farm 1’s switching time is equal to the amount 

of time needed for the water table to decline from the initial level 0s  to the critical level 

1 1 1 /s b e g-  at a constant rate 1 2( )Z Zk + .  In (1.19), farm 2’s switching time equals the amount of 

time needed for the water table to decline from the initial level 0s  less the drawdown caused by 

farm 1 1 1Zkt  to the critical level 2 2 2 /s b e g-  at a constant rate 2Zk .  

It is worth pointing out that the Markov-Perfect-Nash equilibrium solution derived above 

coincides with the solution in a rent-dissipation model in which the farms maximize their own 

instantaneous profits.  The intuition behind this result is that marginal user cost is ineffective in 

determination of the extraction rate because the constraints are binding whenever marginal user 

cost is positive.   

Next we consider that the two farms jointly determine the rates of extraction to maximize the 

present value of their total profits over an infinite horizon.  Formally, the problem is written 
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The joint current-value Hamiltonian is  

 
2

1

[ ( ) ]i i i i i
i

H a b s s xe g kl
=

= + - - -å  (1.20) 

where l  represents the current-value social shadow price of the groundwater stock.    
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Maximization of the Hamiltonian subject to the constraint set 0 i ix Z£ £  yields 

 
 if 
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0   if 

i i i i
i

i i i

Z c b
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e
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where ( )i ic s sg kl= - +  is marginal economic cost composed of marginal pumping cost 

( )is sg -  and marginal user cost kl .  Note that (1.21) is different from (1.12) in that marginal 

user cost kl  in the cooperative model  is different from – and presumably larger than – ikl  in 

the non-cooperative model.  As is well known, it is this difference that drives a wedge between 

the social and private rates of extraction. 

The other necessary conditions includes equation (1.4) and 

 
2

1

( ) ( ) ( )i
i

t r t x tl l g
=

= - å ; (1.22) 

and the transversality condition, 

 lim ( ) 0rt

t
e H t-

+¥
= .  (1.23) 

The sufficient transversality condition is that for any admissible triplet ( 1 2( ), ( ), ( )s t x t x t   ), 

 lim ( )( ( ) ( )) 0rt

t
e t s t s tl-

+¥
- £ ,  (1.24) 

where ( )s t  is the stock path associated with the control paths 1( )x t and 2 ( )x t  by way of (1.4). 

We use a star notation to distinguish the solution paths of the state, costate, and control 

variables in the current model from those in the non-cooperative production model above.  As in 

the non-cooperative model, the nonnegativity of the current-value shadow price ( )tl  implies that 

marginal economic costs in both farms are nonincreasing in time since 0ic rk l= ³ .  Ruling out 

the case in which ic  will never exceed the marginal revenue i ib e , the maximum of the 

Hamiltonian is written 
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where iT *  is determined by the following complementary slackness condition 
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Maintain the assumption that 1 1 1 1 2 2 2 2/ /s b s be g e g- ³ - .  That is to say, farm 1 has relatively 

less favorable technical and environmental conditions for irrigation and, therefore, a higher 

critical water table as defined earlier.  By (1.26) it must hold that 1 2( ) ( )s T s T³ , which, on account 

of the nonincreasing water table, implies that 1 2T T£ .  Not surprisingly, the farm with less 

favorable irrigation conditions will abandon irrigation earlier.  By the sufficient transversality 

condition (1.24) one can arrive at 2( ) 0,  t t Tl = " ³ .  With the terminal condition, 2( ) 0Tl = , the 

costate equation (1.22) can be solved in terms of the switching times.  Integrating (1.22) and 

substituting from (1.25), the path of the current-value shadow price is written 
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Similarly, the path of water table ( )s t  can be solved in terms of the switching times iT *  by 

substituting from (1.25) and using the initial condition 0(0)s s=  as 

 

0
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0
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. (1.28) 
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Finally, substitute for ( )iTl* *  and ( )is T* *  respectively from (1.27) and (1.28) into (1.26) to 

obtain the optimal switching times 

 max{0, }i iT t* *= , 1, 2;i =  (1.29) 

where it
*  solve the following two equations  

 

2 1( )1 1
0 1 2

1
1 2
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*
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= . (1.31) 

Note that the solution paths of the control and state variables (1.25) and (1.28) in the 

cooperative model look almost identical to their respective counterparts (1.12) and (1.15) in the 

non-cooperative model.  The only difference lies in the different switching times as can be seen 

by contrasting (1.18) to (1.30) and (1.19) to (1.31).   Specifically, the difference for farm 1 is 

 
2 1( )

1 2
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1 2 1 2
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0
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k
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+ +
. (1.32) 

where the equality holds when irrigation is simultaneously abandoned by the two farms, i.e., 

1 2t t* *= .  Subtracting (1.31) from (1.30) yields 

 
2 1

1 1 2 2
1 2 ( )

2 1
2

( ) ( )
1- r

b b
s s

e

Z r

t t
e e
g gt t

k

* *- -
* *

- - -
- = + .  (1.33) 

One can verify that 1 2t t* *=  if and only if 1 1 1 2 2 2/ /s b s be g e g- = - , i.e., if and only if 

marginal pumping cost equals marginal revenue at the same critical water table for the two farms.  

Worth noting is that identical farms are a sufficient but not necessary condition for this to hold 

true.     
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As one should expect, the difference in switching time shown in (1.33) emanates from the 

discrepancy between the social and private shadow value of the groundwater resource.  In 

cooperative production when farm 1 quits irrigation the social shadow price of the groundwater 

remaining in the aquifer is not necessarily zero because it may well have value to another farm; in 

non-cooperative production, however, a farm quits irrigation only if the resource’s shadow value 

to itself is zero, regardless of the value to another farm.   

The difference in switching time for farm 2 is easily obtained by subtracting (1.31) from (1.19) 

 1
2 2 1 1

2

( ) 0
Z

Z
t t t t* *- =- - £ . (1.34) 

where, again, the equality holds whenever 1 2t t* *=  or 1 1 1 2 2 2/ /s b s be g e g- = - .  

Unless the two farms face equally favorable conditions for irrigation so that 

1 1 1 2 2 2/ /s b s be g e g- = - ,  non-cooperative production always leads the farm with less favorable 

irrigation conditions to irrigate longer than is socially desirable, leaving less water for the farm 

with more favorable irrigation conditions.  If instead 1 1 1 2 2 2/ /s b s be g e g- = - , it must hold that 

1 2 1 2t t t t* *= = = .  That is to say, when that equality holds both farms pump the groundwater as 

fast as their respective hydrological and agronomic constraints permit and then switch to dryland 

farming simultaneously.  But, this is exactly what a benevolent social planner would like them to 

do – commonality is completely innocuous.  

 

Discussion 

 

The backbone of the model is the linear technology with agronomic and hydrologic constraints.  

Conventional resource exploitation models have developed upon smooth technology, assuming 
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away that constraints could bind.  In our model, rather, smoothness is striped away so as to 

expose the behavioral implications of binding constraints.  We have found that when a constraint 

binds the social rate of extraction is no different than the private, although the time when the 

constraint stops binding may be different under certain circumstances.  It should be emphasized 

that by no means are the binding constraints being studied pathological.  The agronomic 

constraint derives from Liebig’s law of the minimum and is set by some other limiting factors in 

the field.  That well-yield capacity could in reality restrain groundwater availability is best 

explained by the observation that multiple wells are frequently drilled in a single farm in many 

irrigation-intensive regions in the United States, such as the Southern High Plains.   

Not only do the binding constraints introduced in the model render themselves relevant, but so 

does the water use behavior to which they lead.  We have shown that when a constraint binds 

water demand is perfectly inelastic except at the switching point.  But highly inelastic demand has 

been persistently found in the agricultural economics literature.  Hence, one may infer that the 

inelastic demand is likely due to some binding constraints which stop demand from increasing 

even if it remains profitable to do so at the margin.  Binding constraints offer a way to rationalize 

sticky water demand.  

The linearity assumption in the model is responsible for the bang-bang behavior.  If it is 

relaxed and we take a nonlinear plateau technology, say, the Liebig-Paris specification (Paris, 

1992), after the constraint stops binding the rate of extraction, rather than jumping to zero, will 

decline along the nonlinear portion of the concave response curve, much as described in 

conventional groundwater extraction models.  The assumption appears strong at first glance.  But 

its practical significance should not be understated.  Evidence of a LRP model approximating 

well the yield response curve abounds – and at least as much as of nonlinear plateau models – in 

the agronomic and agricultural economics literature [e.g., Bronson et al. (2006) in a recent study 
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find a linear plateau yield-water relation; Dillon (1977)  provides a list of empirical studies before 

the 1970’s that support the LRP model].  Even if the actual crop production technology is a 

nonlinear Liebig model, estimating its curvature can be prohibitive to the producer.  But a LRP 

model always serves as a safe approximation of any nonlinear plateau model.  Again, the 

empirical evidence of inelastic water demand offers support for such reasoning.     

When the situations described in our model indeed prevail in reality, conventional corrective 

measures prescribed for common property resources are seriously challenged.  A system of quotas 

is completely ineffective when the quota is set higher than the binding constraint, and lowers the 

rate of extraction to a suboptimal level if the quota instead is set lower than the binding constraint.  

A tax on each unit of water extracted that is set equal to the marginal user costs can in theory 

internalize the externalities and close the gap between the social and private rates of extraction.  

Yet, in the situations described in our model, only the switching time needs to be altered.  Also, a 

water tax is effective only when the producer needs to stop irrigation, and anytime before that 

period it is merely a financial burden on the producer.  A tax system varying over time and among 

tax payers apparently is difficult to implement.   

A more constructive approach seems to be something similar to the Conservation Reserve 

Program (CRP).  For regions with heterogeneous hydrological and productive conditions, a 

payment can be made to producers who are willing to abandon irrigation earlier than they would 

otherwise.  The regime, in light of our findings, has to allow farmland with less favorable 

irrigation conditions convert to dryland farming earlier, leaving more water to those with more 

favorable conditions.  For regions with relatively homogeneous hydrological and productive 

conditions, however, there may not exist a need for any interventional effort to slow down water 

uss—at least not so for the reason of commonality.      
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Appendix:  Proof of Lemma 1 

 

We assume ( ) 0i tl <  for some 0t t= ³  and then derive a contradiction from the assumption.  

Because from (1.8) the rate of extraction ix  is nonnegative, an inspection of (1.9) suggests that 

( ) 0il t <  implies ( ) 0i tl <  for all t t³ .  Differentiating with respect to time both sides of 

equation ( )i i ic s sg kl= - +  yields i ic rk l=  and ( )i i i ic r r r xk l k l g= = - .  It follows 

immediately that ( ) 0ic t <  and ( ) 0ic t <  for t t³ .  This implies that lim ( )i i it
c t b e

+¥
< , which, on 

account of (1.8), leads to lim ( ) min{ , / } 0i i i it
x t X W e

+¥
= > .  Because as time goes to infinity water 

table either decreases linearly in time or remains constant, lim ( ) 0rt

t
e s t-

+¥
= .  Hence, the 

necessary transversality condition (1.10) reduces to lim ( ) 0rt
i

t
e tl-

+¥
= .  But by ( ) 0i tl <  for all 

t t³ , lim ( ) 0rt
i

t
e tl-

+¥
< , a contradiction. 

 

 

17




