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Abstract

The issue of production function estimation has received recent at-

tention, particularly in agricultural economics with the advent of preci-

sion farming. Yet, the evidence to date is far from unanimous on the

proper form of the production function. This paper reexamines the use of

the primal production function framework using nonparametric regression

techniques. Speci�cally, the paper demonstrates how a nonparametric re-

gression based on a kernel density estimator can be used to estimate a pro-

duction function using data on corn production from Illinois and Indiana.

Nonparametric results are compared to common parametric speci�cations

using the Nadaraya-Watson kernel regression estimator. The parametric

and nonparametric forms are also compared in terms of describing the

true technology of the �rm by obtaining measures of the elasticity of

scale and the marginal physical product through nonparametric estima-

tion of the gradient of the production surface. Finally, the elasticities of

substitution are compared between both parametric and nonparametric

representations.
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1 Introduction

Contributions in duality theory have alleviated the need to specify primal

production functions in the economic literature, allowing researchers to rely on

optimizing behavior to estimate factor demand and output supply functions.

However, the issue of production function estimation has received recent atten-

tion, particularly in agricultural economics. Revived interest in the primal pro-

duction function stems not only from a more recent understanding that output

supply and input demand is most e�ciently derived from the empirical produc-

tion function (Mundlak 1996), but also stems from the needs of the agricultural

economist. New agricultural technologies in precision farming empowers farm

managers with micro-level �eld management, permitting inputs to be applied

at varying levels to very small plots of land. Such decisions can only be guided

by speci�cation of the primal (Moss and Schmitz, 2006).

While polynomial forms such as the quadratic, translog, and square-root

have been used since Heady and Dillon's seminal work, Agricultural Production

Functions (1961), an e�ort to combine agronomic and ecologic principles to

crop yield response and production has led to interest in von Liebig's �law of

the minimum� and the aptly named von Liebig production function(.1 Yet,

the evidence to date is far from unanimous on the proper form of the crop

response function, and the literature still remains unsettled on the best practice

for estimating agricultural production functions, which has implications for farm

pro�tability and environmental management.

For example, the primary economic bene�t of precision agriculture is more

e�cient use of inputs resulting in lower costs and higher pro�ts. However. the

pro�tability of precision agriculture is contingent upon the ability to render

accurate, timely, and quality information to the decision maker. One aspect of

this information is in the form of crop response models where yield is determined

from an equation relating yield response to fertilizers, typically estimated by the

primal. Polynomial functional forms of crop response model are often to blame

for recommending ine�cient use of inputs (Ackello-Ogutu et al., 1985).2

There are also environmental implications of ine�cient fertilizer use that

result from incorrectly speci�ed crop response models. Reduced application of

1The von Liebig hypothesis combines the dual notions of non-substitutability of inputs and
yield plateaus into production and crop response analysis and has been investigated rigorously
by Quirino Paris and colleagues, as well as others.

2There is evidence that farmers over-fertilize their crops, for example, over application of
nitrogen to corn crops seems to be common (Babcock, 1992).
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nitrogen, for example, will result in decreased environmental run-o� and nitro-

gen pollution, which are harmful to local ecosystems. These bene�ts can only be

realized through correct speci�cation of the primal production function. Any

mistakes made in economic theory to derive farm management recommenda-

tions, such as incorrect fertilizer applications based on a false functional form,

can be costly to the farmer and to the environment.

This paper addresses the problem of specifying a functional form for the

production function by using nonparametric kernel regression. The kernel ap-

proach avoids the reliance on any parametric form and o�ers a simple method

of estimation.3 Speci�cally, a nonparametric kernel regression based on a mul-

tivariate Gaussian kernel is used to estimate a production function for corn in

Illinois and Indiana. Nonparametric results are compared to common paramet-

ric speci�cations using the Nadaraya-Watson kernel regression estimator. The

parametric and nonparametric forms are also compared in terms of describing

the true technology of the �rm by obtaining measures of the elasticity of scale

and the marginal physical product through nonparametric estimation of the

gradient of the production surface. Finally, the elasticities of substitution are

compared between both parametric and nonparametric representations.

Section 2 section brie�y reviews the literature on crop response models and

the continuing debate regarding the appropriate functional form. Recent uses of

nonparametric methods to similar economic problems are also discussed. Sec-

tion 3 develops the nonparametric kernel regression estimator and emphasizes

nonparametric estimation of the derivatives, which is required for comparing

elasticities. Section 4 applies the nonparametric estimator, as well as common

parametric approaches, to data on corn production and obtains estimates of the

derivatives. Estimated results are compared between parametic and nonpara-

metric methods. The �nal section concludes and summarizes the result.

2 Crop Response Debate

There has been a concerted e�ort in the agricultural economics literature

in trying to obtain an appropriate functional form for production and crop

response estimation. The work by Heady and Dillon (1961) promulgated the

use of polynomial forms for agriculture production models for several decades.

It was not until Lanzer and Paris (1981) that a serious account of ecologic and

3The kernel approach is well documented in the economic literature. Hardle (1990) is a
classic reference. Kernel methods have been developed further by Pagan and Ullah (1999)
and most recently by Li and Racine (2007).
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agronomic principles were introduced into the production estimation problem

through the von Liebig hypothesis. Using a linear response and plateau (LRP)

function to model the �law of the minimum,� the authors found that yearly

fertilizer application rates could be reduced by 20 percent for the wheat-soybean

double cropping system in Southern Brazil.

Using non-nested hypothesis tests, Ackello-Ogutu, Paris, andWilliams (1985)

rejected the square root and quadratic forms in favor of the von Liebig. The

non-substitution hypothesis was later relaxed in Frank, Beattie, and Embleton

(1990) which tested the Mitscherlich-Baule (MB) form against the von Liebig

and quadratic. The MB allows for both factor substitution and plateau growth.

Overall, the authors recommend the use of the MB form based on pairwise

J-tests and P-tests.

Berck and Helfand (1990) show that di�erentiable production functions are

not mutually exclusive from von Liebig forms and reconcile the two via dynamic

calculus. The authors conclude that the quadratic form is still adequate for yield

prediction goals, however, neither forms appear to better apt than the other to

estimate yield changes resulting from input level changes. In response to Frank

et al. (1990), Paris (1992) estimates a non-linear von Liebig model against an

MB, quadratic, square-root, and linear von Liebig. Non-nested hypothesis tests

seem to favor the nonlinear von Liebig over other speci�cations, achieving the

highest level of revenue with the smallest amount of fertilizer.

Chambers and Lichtenberg (1996) point out the relatively low power of non-

nested hypothesis tests and utilize a nonparametric, mathematical programming

technique to determine the existence of yield plateaus and input substitutability.

This study was one of the earliest attempts to incorporate nonparametric tech-

niques to the crop response model debate. Using a dual cost function approach,

Chambers and Lichtenberg �nd evidence of yield plateaus but also �nd existence

of input substitutability, thus concluding the von Liebig-Paris approach is only

appropriate under certain circumstances and for particular crops.

Berck, Geoghegan, and Stohs (2000) use a nonparametric data-envelope-

analysis method to test the validity of the von Liebig production function and

�nd it to be a poor �t, citing little evidence for right-angle isoquants. Holloway

and Paris (2002) combine frontier methods with the von Liebig methodology us-

ing Bayesian techniques. The authors acknowledge recent nonparametric tests

rejecting the von Liebig model, but are unable to reconcile results from para-

metric and nonparametric methods leaving the �endeavor for future research,�

(Holloway and Paris, 2002). More recently, Moss and Schmitz (2006) develop
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a semi-parametric estimator using a univariate form of the Zellner production

function and represents the only study to date to incorporate nonparametric

kernel techniques to crop response analysis.

The use of kernel estimation methods is not new to the applied economics,

but has only recently been used to tackle the functional form problem. Moschini

(1990) uses a semi-parametric normal kernel to estimate U.S. meat demand. Ker

and Goodwin (2000) compare a normal nonparametric kernel estimator to the

Bayesian kernel to obtain accurate crop insurance rates. Cooper (2000) com-

pares nonparametric, semiparametric, and parametric estimators of recreational

demand analysis and �nds the choice of form largely depends on sample size.

Daniel Henderson and colleagues have recently applied nonparametric kernel

techniques to a host of economic issues, including random e�ects estimation

(Henderson and Ullah, 2005), public and private capital productivity (Hen-

derson and Kumbhakar, 2006), hedonic price function estimation (Henderson,

Kumbhakar, and Parmeter, forthcoming), pollution abatement and foreign di-

rect investment (Henderson and Millimet, 2007), and child health (Henderson,

Millimet and Parmeter, forthcoming).

3 Nonparametric Kernel Regression

The empirical model is a multivariate regression of a n× 1 scalar dependent

variable y on a n× q dimensional independent variable matrix x given by:

E[y|x] = m (x) + ε = m (x1, ..., xq) + ε (1)

where i = 1, ..., n indicates the number of observations, q indicates the number

of independent variables, and ε denotes an error term. A parametric regression

of Equation 1 would construct a relationship between the variables by specifying

a functional form for m (x), based on some set of parameters, say m (x, β). This
relationship could be either a linear or nonlinear function of a �nite number of

parameters, given by the q-dimensional vector β.

One common functional form include the Cobb-Douglas, y = αxβ1
1 · · ·x

βq
q ,

which is given in logarithmic regression form by:

ln y = α+ β1 lnx1 + ...+ βq lnxq + ε (2)

Another common functional forms is the Translog:
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ln y = α+
n∑
i=1

βi lnxi + 0.5
n∑
i=1

n∑
j=1

βijxixj + ε (3)

Once functional forms such as the Cobb-Douglas in Equation 2 and Translog

in Equation 3 are estimated, parameter estimates are used to test various eco-

nomic measures. For example, the Cobb-Douglas production function exhibits

constant returns to scale if
∑
βi = 1.

Nonparametric regression, on the other hand, constructs a relationship be-

tween y and x based on weighted averages, and thus avoids having to specify a

speci�c functional form. These weights are inversely proportional to the distance

between a given sample point, xi, and an approximation point, x. Following

Pagan and Ullah (1999), a general class of nonparametric regression estimators

of Equation 1 can be written as:

m̂ (x) =
n∑
i=1

w (xi, x) yi (4)

where w (xi, x) represents the weight assigned to the ith observation yi, with

the weight depending on the distance of the sample point, xi, from the point,

x. The point of approximation, x, is often taken to be a point in the sample,

say xp, in which case the summations should delete the pth observation. Such

estimators are often referred to as �leave one out� estimators.

A number of nonparametric estimators can be de�ned from Equation 4,

depending on how the weighting function, w (xi, x), is speci�ed. One particular
class of estimators is the Nadaraya-Watson (NW) kernel regression estimator,

which de�ned the weighting function as:

w (xi, x) =
K
(
xi−x
h

)∑n
i=1K

(
xi−x
h

) (5)

where K (·) is a multivariate kernel and h is a smoothness parameter called

the bandwidth that determines how many xi's around x are used in the kernel

function. De�ning ϕi =
(
xi−x
h

)
and plugging Equation 5 into Equation 4 the

NW kernel regression estimator is obtained:

m̂ (x) =
∑n
i=1 [K (ψi) yi]∑n
i=1K (ϕi)

(6)

The NW estimator takes the average of the observed yi values and then

weights the average by the chosen kernel K (·), which is then normalized by the
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sum of the weighted averages. There are various forms of the kernel to choose

from. However, choice of kernel is not a critical decision, with di�erent kernels

yielding similar results (Pagan and Ullah 1999). Rather, the kernel choice often

comes down to criteria of di�erentiability, continuity, and other characteristics.

This study employs the multivariate standard normal Gaussian kernel:

K (x, xi, h) =
(

1
h
√

2π

)−k
exp

[
−1

2
(xi − x)h−

1
2 (xi − x)

′
]

(7)

Several alternative forms of the kernel function are available, such as the uni-

form, Epanechnikov, and product Gaussian kernel.

A far more important decision than the kernel is the choice of bandwidth.

The bandwidth parameter, h, controls the rate at which the weight given to

points decline as xi departs from the point of approximation. In the limit as

δ → 0 the nonparametric regression simply becomes the average at each point.

As δ →∞, the nonparametric regression simply becomes a constant. While plug-

in methods have been devised and are often used, data driven methods, such

cross-validation techniques, remain the preferred way of selecting bandwidths.

In the multivariate case, a di�erent bandwidth is chosen for each independent

variable, or alternatively, the data can be normalized by the standard deviation

of each variable, in which case the same bandwidth can be used for each variable

and h is a scalar4.

The most common data-driven way to select bandwidths is by least-squares

cross-validation (LSCV), which involves estimating the optimal bandwidth h?

from the following optimization problem:

h? = min
h

[
n∑
i=1

(yi − m̂−1 (xi))

]2

(8)

where m̂−1 (xi) is the �leave one out� NW estimator of m (xi) obtained from the

kernel formula in Equation 6. The obtained h? from Equation 8 minimizes the

asymptotic integrated mean squared error (AIMSE) . Other method of obtain

the optimal bandwidth exist, such as likelihood cross-validation and the more

recently developed AICc approach based on the Akaike information criterion.

However, LSCV remains a relatively simple and common method and so is the

approach taken in this paper to obtain the optimal bandwidth.5

4This paper utilizes the single scalar approach by standardizing the inputs by their standard
deviation, which simpli�es the estimation

5The interested reader is referred to Ullah and Pagan (1999) and Li and Racine (2007)
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Often, interest is focused on the marginal e�ect of an independent variable,

x1, ..., xq has on the dependent variable y. In parametric regressions, this is

usually represented by the estimated parameters, β1, ..., βq. In nonparametric

regression, coe�cients are actually estimated, but rather the marginal e�ects are

obtained from nonparametric estimation of the gradient, and are often referred

to as response coe�cients. Pointwise derivatives can be obtained for any given

value of x using either analytical or numerical methods, with such derivatives

describing the local behavior or shape of the regression function.6

Numerical approximation of the �rst and second derivatives has been inves-

tigated by Ullah (1988a, 1988b), Rilstone and Ullah (1989), and Rilstone (1990)

using perturbation by �nite di�erences. While equivalent to the analytical ap-

proaches proposed by Gasser and Muller (1984) and used by others, numerical

methods are easier to implement are far more computationally tractable, es-

pecially for higher order derivatives.. Following the Rilstone and Ullah, the

estimated gradient is obtained from:

∇̂(1)
j (x) =

m̂ (x+ ejh)− m̂ (x)
h

(9)

where ej is a q × 1 vector with unity in the jth position and zeros elsewhere,

which implies that m̂ (x+ ejh) = m (x1, ..., xj + h, ..., xq). Equation 9 can be

equivalently written in terms of the individual response coe�cients as:

bj (x) =
m̂
(
x+ 1

2ejh
)
− m̂

(
x− 1

2ejh
)

h
(10)

The estimated Hessian is obtained similarly from:

∇̂(2)
jk (x) =

∇̂j (x+ ekh)− ∇̂j (x)
h

(11)

which is a q × q matrix of estimated second-order and cross-partial derivatives.

Using Equation 11 the partial derivatives can be seen to be equal to:

for a more detailed discussion of LSCV as well as other methods of obtaining the optimal
bandwidth.

6Another bene�t of nonparametric regression is the ability to obtain average derivatives,
which describe the global curvature of the function. Although average derivatives lack the
intuitive interpretation of pointwise derivatives, they o�er greater statistical consistency and
converge faster than pointwise derivatives. This paper focuses on pointwise derivative since
clear interpretation is better suited for elasticity computation. The interested reader is referred
to Pagan and Ullah (1999) and Rilstone (1991) for more information on average derivatives.
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bjk (x) =
m̂ (x+ (ej + ek)h)− m̂ (x+ ejh)− m̂ (x+ ekh) + m̂ (x)

h2
(12)

The estimation of the derivatives follows from the actual estimation of the regres-

sion function, and faces the same choices regarding kernel form and bandwidth

selection. Likewise, the choice of kernel is not a largely important matter, as

long as higher order derivatives of the kernel exist. Kernels with higher order

derivatives help to reduce any �nite sample bias in the estimated derivative. For

this reason, researchers who use a kernel in regression estimation that has a low

order of derivatives, such as the uniform, would select a di�erent kernel for the

estimation of the derivatives.

The bandwidth selection is again the more salient factor, which must be

chosen to minimize the mean square error. Following Pagan and Ullah (1999),

the optimal bandwidth for pointwise derivative estimation is:

h? ∝ n−
1

(q+4+2s) (13)

which is proportional to the optimal bandwidth for the kernel regression found

using the LSCV procedure in Equation 8 with q independent variables and a

sth order of derivative.

The �nite sample and asymptotic properties of the derivative estimators in

Equation 9 and Equation 11 have been investigated by Ullah (1988a, 1988b),

Rilstone (1990), and Pagan and Ullah (1999). Namely, the estimators are weakly

consistent and asymptotically Normally distributed as

(
nhq+2s

)1/2 (∇(s) −∇(s)
)
∼ N (0, ζ (x)) (14)

where s indicates the order of the derivative and the covariance matrix ζ (x) is
consistently estimated from:

σ̂2

f̂ (x)

∫
<q

[(
∂(s)K (ψ)
∂ψ(s)

)2

dψ

]
(15)

with the estimated variance given by:

σ̂2 =
1
n

(y − m̂ (x))
′
(y − m̂ (x)) (16)

and the estimated marginal density given by:
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f̂ (x) =
1
nhq

n∑
i=1

K

(
xi − x
h

)
(17)

Hence, the joint distribution of the response coe�cients are found to be normal

with zero mean vector and variance matrix, ζ (x), which can be consistently

estimated using Equation 15 through Equation 17, from which the standard

errors of the derivative estimates are obtained.7

A key bene�t to nonparametric estimation of derivatives is that the non-

parametric derivative estimators are a function of x. Thus, a �xed response

coe�cient could be de�ned at a particular point of x, such as the mean, to give

an estimate of bj (x̄), or could likewise be evaluated at the median. Alterna-

tively, one could evaluate the response coe�cients over every value of x, which

gives a great advantage over parametric estimation. Namely, a local in�ection

point of the function m (x) could occur anywhere in the sample and so evaluat-

ing the derivative at the mean ignores the possibility that the function may not

be well-behaved at that point or in a neighborhood around that point.

The estimates of the response coe�cients in the gradient gradient and the

second-derivatives in the Hessian can then be used to compute common mea-

sures of economic e�ciency and production technology, such as output elastici-

ties, marginal product of inputs, and elasticities of scale and substitution. The

output elasticities measures the percent change in output given a one percent

change in a given input and is given by:

εi =
∂ lnm (x)

∂xi
=
∂m (x) /∂xi
xi/m (xi)

(18)

where the elasticity of scale is simply the sum of the output elasticties (εi =∑
i εi) and measures the percent change in output given a one percent change

in all inputs. The elasticity of scale and the output elasticties tells us there is

a relationship between returns to scale and marginal productivity. Since the

marginal product is MPi = ∂m (x) /∂xi and the average product is APi =
xi/m (xi), the marginal product of each input can be obtained by multiplying

the scale elasticities by the computed average product.

Lastly, the Allen and Morishima elasticities of substitution can be derived

which are local measures of an isoquant. Substitution elasticities measure the

percent changes in the factor input ratio due to a percent change in the marginal

technical rate of substitution. That is the elasticity of substitution looks at how

7All computations were conducted using GAUSS 9.0 software.
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the ratio of factor inputs changes as the slope of the isoquant changes. If a small

(large) change in the slope of the isoquant results in a large (small) change in

the factor input ratio, the isoquant is relatively �at (steep), resulting in a large

(small) elasticity of substitution.

The Allen elasticity of substitution is de�ned as:

σajk =

∑Q
q=1mqxq

xjxk
· BHjk

|BH|
(19)

where xq is the qth input, mq is the qth partial derivative of the production

function and q = 1, ..., Q is the total number of inputs. The bordered Hessian

is given by:


0 m1 · · · mq

m1 m11 · · · m1Q

...
...

. . .
...

mq mQ1 · · · mQQ

 (20)

where the determinant of the bordered Hessian is denoted by |BH| and the co-

factor associated with mjk in BH is denoted by BHjk. The �rst-order, second-

order, and cross-partial derivatives of the production function are denoted by

mj , mjj , and mjk, respectively.

An alternative elasticity is the Morishima elasticity of substitution de�ned

as:

σmjk =
mk

xj
· BHjk

|BH|
− mk

xk
· BHjk

|BH|
=
mkxk
mjxj

·
(
σajk − σakk

)
(21)

which is clearly related to the Allen elasticity of substitution, but has the unique

property of being asymmetric. Also, the Morishima elasticity of substitution

may de�ne two inputs as substitutes while the Allen elasticity of substitution

may de�ne that as complements. However, inputs that are Allen substitutes are

always Morishima substitutes.

4 Estimation Results

The data used are from the Farming Practices Survey conducted by the

Economic Research Service of the United States Department of Agriculture in

1995. The survey examined the chemical usage of farmers including nitrogen,

phosphorous, and potash and the observed level of corn yield. In this study,
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analysis is restricted to those farmers using conventional tillage and includes 241

�eld level observations.8 Summary statistics on the data are provided in Table

1. Corn yields, as well as nitrogen (N) and phosphorous (P ), vary widely in the

sample, and so exhibit a large standard deviation compared with the respective

mean. Potash (K2O), on the other hand, exhibits far less �uctuation in values

than corn yields or nitrogen and phosphorous inputs.

Figure 1, depicts the densities of the standardized variables.9 As can be

seen from Figure 1, the densities are highly irregular, even in their standardized

form. The density for corn yield and phosphorous are especially skewed, as are

nitrogen and potash, though to a lesser extent. Also of note is the multimodal

nature of the densities, especially for yield, nitrogen, and phosphorous.

In order to examine the application of nonparametric regression techniques

to obtaining economic measures of production technology, we apply the non-

parametric kernel estimator described in Section 3 to corn production in Illinois

and Indiana. However, �rst the data is tested for known parametric forms using

the Jn statistic from the Hsiao et al. (2007) consistent model speci�cation test.

The null hypothesis is: Ho : E [y|x] = m (x, β), where m (x, β) is an assumed

linear or nonlinear parametric function of the independent variable matrix x

and the q-dimensional parameter vector β. Speci�cally, the Cobb-Douglas and

Translog forms in Equation 2 and Equation 3, respectively, are tested. The

null hypothesis is that the model is correctly speci�ed with rejection of the null

indicating that the model indicating is incorrectly speci�ed.

The computed test statistic for the Cobb-Douglas model was 1.698 with a

marginal signi�cance level of 0.01, while and the computed test statistic for the

Translog model was 3.348 with a marginal signi�cance level of 0.0004. There-

fore, the null hypothesis of correct parametric speci�cation for either the Cobb-

Douglas or Translog is rejected at any conventional level of signi�cance. Since

the parametric forms are rejected, the nonparametric estimation procedure out-

lined in Section 3 is conducted using the multivariate Gaussian standard normal

kernel with optimal bandwidths obtained using the LSCV method discussed

above (which was found to be 0.748 for the standardized data).

Table 2 presents several calculated statistics to compare the estimated �ts

8Additional data restrictions include omitting observations where either zero output or
zero input levels have been recorded.

9 The data are standardized by dividing by the standard deviation, and then the natural

log is applied.
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between the nonparametric model and the parametric counter-models. The R2

for the Cobb-Douglas regression is 0.090 and for the Translog regression is 0.129,

which is quite low compared to the nonparametric regression R2 of 0.904. Both

the mean absolute error and root mean square error for the parametric regres-

sions are over sixty percent larger than the nonparametric regression. Finally,

Theil's U∆ statistic is computed, which gives an indication of how well the model

tracks changes in the predicted observations, with lower values of the statistic

indicating better forecasting ability (Greene 2005). Again, the nonparametric

regression performs better than the parametric regressions, although modestly

for the U∆ statistic. In summary, the various goodness-of-�t measures com-

puted support the Hsiao et al. (2007) speci�cation test that the nonparametric

model is preferred over the either the Cobb-Douglas or Translog models.

Next, the response coe�cients, or marginal e�ects (i.e., the �rst derivatives)

are estimated using Equation 9 for the nonparametric regression. The paramet-

ric regression output consists of vectors of estimated parameters, from which

the estimated gradients are constructed by appropriate derivatives of the given

functional form. In the current context, the estimated gradients have the inter-

pretation of output elasticities, which measures the percent change in corn yield

given a one percent change in a given fertilizer.

The estimated elasticities of output are presented in Table 3. The output

elasticties vary widely between the models, though are generally all less than one

and statistically signi�cant. The Translog regression model has a negative out-

put elasticity for phosphorous, implying that an increase in phosphorous would

actually decline corn yields, however the estimate is not statistically signi�cant.

Still, the presence of a negative output elasticity in the Translog speci�cation

would seem to counter the notion of a concave production function.

Also of interest is the elasticity of scale, de�ned as the sum of the output

elasticities, which measures the percent change in corn yield given a one percent

change in all fertilizers. The production technology for Cobb-Douglas and non-

parametric models would appear to exhibit decreasing returns to scale since the

estimated scale elasticities are all less than one. The Translog model however

indicates increasing returns to scale, though the elasticity is not signi�cant. A

hypothesis of constant returns to scale is conducted on the scale elasticities in

Table 3, with the null hypothesis unable to be rejected in all of models. The

hypothesis of constant returns to scale is an important test as it implies that

input proportions are independent of the scale of production (Moschini 1990).

In other words, constant returns to scale implies that the production function
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is homogeneous of degree one.

As mentioned, a bene�t of nonparametric estimation is the ability to es-

timate values of the derivatives at every point in the sample. To shed more

light on the mean computed scale and output elasticties, the nonparametric

derivatives are estimated at 2.5% percent quantiles and the output and scale

elasticities calculated at the given quantile. Table 7 lists the elasticities at se-

lected quantiles to give a more global view of the agricultural technology. The

output elasticities for nitrogen and phosphorous start out as negative and then

increases to a positive number peaking at around the 0.50 percentile and then

begins to decline. The potash output elasticity starts out positive, but also

begins to increase, peaking at around the 0.55 percentile and then begins to

decline. The scale elasticity tells a similar story, increasing over early quantile

ranges, peaking at between 0.50 and 0.65, approaching unity, and then declining.

Table 4 reports the average and marginal product of each fertilizer for each

model. Each input is associated with diminishing marginal productivity, as the

average products are all generally greater than the marginal products, regard-

less of the regression model. This would seem to suggest that the corn farmers

observed in the data set have moved beyond the optimal production allocation

decision. The fact that the marginal products are less than the estimated av-

erage products would also suggest over-utilization of fertilizer input. This has

important implication for input demand and imply that the representative farm

could improve productivity and reduce input costs by using less fertilizer.

The marginal products are next computed using the quantile derivatives dis-

cussed above to give a more whole view of input productivity, and are plotted in

Figure 2. Clearly, the productivity of fertilizer peaks very early in the production

technology. Nitrogen rapidly displays rapidly increasing marginal productivity,

then displays a long �at surface, and then begins to decline. Phosphorous be-

haves similarly, but doesn't seem to exhibit as a pronounced increase in marginal

productivity as nitrogen, nor does it display a marked decline in marginal pro-

ductivity. Potash seems to be mostly �at, exhibiting a spike in marginal pro-

ductivity, but then quickly displays decreasing marginal productivity, remaining

�at for time, then increasing, and then �nally displaying decreasing marginal

productivity at �nal production range.

The calculation of the Allen and Morishima elasticities of substitution for

the Translog and nonparametric model �nd a clear problem in the Translog

speci�cation, namely that the Translog regression implies a non-concave pro-

duction function. The Allen elasticity matrix should be negative semi-de�nite
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if farmers are assumed to maximize output amongst a set of inputs. However,

the diagonal elements of the Translog Allen elasticity matrix however is not

uniformly negative, thus violating concavity. However the condition is satis�ed

by the nonparametric regression.

The positive own-price elasticity for nitrogen in the Translog Allen elasticity

matrix violates the curvature conditions necessary in order to satisfy theory.

Since the input requirement set must be convex in order for the production

function to exhibit quasi-concavity, a positive own substitution elasticity would

imply a non-convex input requirement set, again violating production theory.

The concavity problem for the Translog model is further brought to light when

looking at the Morishima elasticities which take on absurdly large values. Al-

though not reported, the hessian matrix for the Translog model is positive, pro-

viding further evidence of concavity violation, while the nonparametric hessian

has diagonal negative elements and a negative determinant.

5 Implications and Conclusions

Recent technological changes have refocused attention on the estimation of

primal production functions. Technologies such as precision agriculture and

biotechnology raise questions that cannot be addressed using dual cost or pro�t

functions. Given this resurgence in interest about the production function, the

possible use of nonparametric regressions for the depiction of the production

surface is examined. Using production data for corn from Illinois and Indiana,

a multivariate production surfaces is estimated using two common parametric

models, the Cobb-Douglas and Translog. The parametric speci�cations are then

compared against a nonparametric kernel regression based on a Gaussian kernel.

In terms of prediction and model �t, both the Cobb-Douglas and Translog

speci�cations are rejected in favor of the nonparametric form.

The paper demonstrates how production surface obtained from the non-

parametric kernel regression can be used to derive several measures of economic

technology. The representative farm is found to exhibit constant returns to scale,

a requisite for homogeneity of degree one of the production function. However,

the Translog production speci�cation is found to yield fragile results, violating

concavity of the production function. Speci�cally, the hessian matrix is not

negative semi-de�nite and positive own substitution elasticities are found. The

nonparametric results are however consistent with concavity and do not violate

theoretical conditions.

15



Generally, the results imply that the representative corn farm is operating at

constant returns to scale, but display diminishing marginal productivity. This

fact is re�ected not only in the fact that factor inputs have marginal products

less than one, but that the marginal products are all less than the average

product. Farmers seem to over use fertilizers, especially nitrogen, which display

diminishing marginal productivity along a wide range of production. Not only

is this costly to the farmer in terms of lower yields, but also in terms of fertilizer

cost. The results demonstrate that farmers could improve productivity and

corn yield by using less fertilizer. This result is of also of importance in terms

of environmental quality, as fertilizer run-o�, often a result of over fertilization,

causing ecological and environmental damage.

The nonparametric procedure has two key advantages over parametric spec-

i�cations. First, it yields a smooth distribution function that better represents

the true distribution from which corn yield is drawn, which is con�rmed by the

summary �t statistics discussed earlier, as well as the Hsiao-Li-Racine speci-

�cation test. Second, which follows from the �rst reason, the nonparametric

procedures o�ers a truer picture of the agricultural technology, which is con-

�rmed by the satisfaction of concavity, of which the Translog speci�cation fails.
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Table 1: Descriptive statistics

Max Mean Min Std. Dev.

Corn Yield (bu./acre) 347.90 144.26 6.00 64.04
Nitrogen (lbs./acre) 480.40 72.26 5.10 48.92

Phosphorous (lbs./acre) 360.00 110.15 4.40 51.66
Potash (lbs./acre) 224.80 121.28 41.00 25.86

Table 2: Summary of estimated �t

Cobb-Douglas Translog Nonparametric

R2 0.090 0.129 0.904
MAE 194.883 191.457 111.661
RMSE 15.288 14.886 9.983

Theil's U∆ 0.964 1.034 0.940

Table 3: Output elasticity estimates

Cobb-Douglas10 Translog Nonparametric

Nitrogen (ε1) 0.089 (0.075) 0.772 (0.389) 0.240 (0.068)
Phosphorous (ε2) 0.186 (0.070) -0.710 (0.248) 0.557 (0.068)

Potash (ε3) 0.366 (0.178) 1.041 (2.039) 0.102 (0.156)

Scale Elasticity (
∑
i εi) 0.641 (0.205) 1.104 (3.766) 0.899 (0.183)

t-Ratio (H0 :ε = 1) -1.751 0.028 -0.552

Table 4: Estimated average and marginal products

Cobb-Douglas11 Translog Nonparametric

AP MP AP MP AP MP
Nitrogen 0.779 0.069 (0.075) 0.798 0.616 (0.389) 0.424 0.102 (0.068)

Phosphorous 1.127 0.209 (0.70) 1.085 -0.770 (0.248) 1.058 0.589 (0.068)
Potash 2.374 0.869 (0.178) 2.287 2.381 (2.039) 2.250 0.230 (0.156)

Table 5: Estimated mean Allen elasticities of substitution

Translog Nonparametric

σai1 σai2 σai3 σai1 σai2 σai3
σa1i 6.101 -2.985 -0.499 -1.725 -0.502 0.035
σa2i -2.985 -0.488 0.848 -0.502 -0.176 -0.066
σa3i -0.499 0.848 -0.146 0.035 -0.066 -0.189
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Table 6: Estimated mean Morishima elasticities of substitution

Translog Nonparametric

σmi1 σmi2 σmi3 σmi1 σmi2 σmi3
σm1i 0 9.833 -9.456 0 -5.930 3.390
σm2i 22.890 0 -30.734 0.665 0 0.479
σm3i -11.826 -4.320 0 5.402 2.840 0

Table 7: Nonparametric output and scale elasticities at given quantiles

Quantile Nitrogen (ε1) Phosphorous (ε2) Potash (ε3) Scale Elasticity (
∑
i εi)

0.025 -0.286 -0.191 0.055 -0.422
0.050 -0.258 -0.121 0.106 -0.273
0.075 -0.134 0.113 0.161 0.141
0.100 0.042 0.396 0.117 0.555
0.475 0.232 0.481 0.089 0.802
0.500 0.234 0.485 0.097 0.816
0.525 0.235 0.487 0.103 0.825
0.550 0.236 0.488 0.105 0.829
0.900 0.185 0.305 0.088 0.578
0.925 0.185 0.302 0.086 0.572
0.950 0.179 0.286 0.077 0.542
0.975 0.157 0.244 0.052 0.453

Figure 1: Density Estimates for Corn Yield and Fertilizer Input
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Figure 2: Marginal products of fertilizer inputs at given quantiles
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