

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

WORKING PAPER
2009-03

REPA

Resource Economics
& Policy Analysis

Research Group

Department of Economics
University of Victoria

Linking Matlab and GAMS: A Supplement

 Linda Wong

June 2009

Copyright 2009 by L. Wong. All rights reserved. Readers may make verbatim copies of this
document for non-commercial purposes by any means, provided that this copyright notice
appears on all such copies.

REPA Working Papers:

2003-01 – Compensation for Wildlife Damage: Habitat Conversion, Species Preservation and Local
Welfare (Rondeau and Bulte)

2003-02 – Demand for Wildlife Hunting in British Columbia (Sun, van Kooten and Voss)
2003-03 – Does Inclusion of Landowners’ Non-Market Values Lower Costs of Creating Carbon

Forest Sinks? (Shaikh, Suchánek, Sun and van Kooten)
2003-04 – Smoke and Mirrors: The Kyoto Protocol and Beyond (van Kooten)
2003-05 – Creating Carbon Offsets in Agriculture through No-Till Cultivation: A Meta-Analysis of

Costs and Carbon Benefits (Manley, van Kooten, Moeltne, and Johnson)
2003-06 – Climate Change and Forest Ecosystem Sinks: Economic Analysis (van Kooten and Eagle)
2003-07 – Resolving Range Conflict in Nevada? The Potential for Compensation via Monetary

Payouts and Grazing Alternatives (Hobby and van Kooten)
2003-08 – Social Dilemmas and Public Range Management: Results from the Nevada Ranch Survey

(van Kooten, Thomsen, Hobby and Eagle)
2004-01 – How Costly are Carbon Offsets? A Meta-Analysis of Forest Carbon Sinks (van Kooten,

Eagle, Manley and Smolak)
2004-02 – Managing Forests for Multiple Tradeoffs: Compromising on Timber, Carbon and

Biodiversity Objectives (Krcmar, van Kooten and Vertinsky)
2004-03 – Tests of the EKC Hypothesis using CO2 Panel Data (Shi)
2004-04 – Are Log Markets Competitive? Empirical Evidence and Implications for Canada-U.S.

Trade in Softwood Lumber (Niquidet and van Kooten)
2004-05 – Conservation Payments under Risk: A Stochastic Dominance Approach (Benítez,

Kuosmanen, Olschewski and van Kooten)
2004-06 – Modeling Alternative Zoning Strategies in Forest Management (Krcmar, Vertinsky and

van Kooten)
2004-07 – Another Look at the Income Elasticity of Non-Point Source Air Pollutants: A

Semiparametric Approach (Roy and van Kooten)
2004-08 – Anthropogenic and Natural Determinants of the Population of a Sensitive Species: Sage

Grouse in Nevada (van Kooten, Eagle and Eiswerth)
2004-09 – Demand for Wildlife Hunting in British Columbia (Sun, van Kooten and Voss)
2004-10 – Viability of Carbon Offset Generating Projects in Boreal Ontario (Biggs and Laaksonen-

Craig)
2004-11 – Economics of Forest and Agricultural Carbon Sinks (van Kooten)
2004-12 – Economic Dynamics of Tree Planting for Carbon Uptake on Marginal Agricultural Lands

(van Kooten) (Copy of paper published in the Canadian Journal of Agricultural
Economics 48(March): 51-65.)

2004-13 – Decoupling Farm Payments: Experience in the US, Canada, and Europe (Ogg and van
Kooten)

2004–14– Afforestation Generated Kyoto Compliant Carbon Offsets: A Case Study in Northeastern
Ontario (Biggs)

2005–01– Utility-scale Wind Power: Impacts of Increased Penetration (Pitt, van Kooten, Love and
Djilali)

2005–02 –Integrating Wind Power in Electricity Grids: An Economic Analysis (Liu, van Kooten and
Pitt)

2005–03 –Resolving Canada-U.S. Trade Disputes in Agriculture and Forestry: Lessons from Lumber
(Biggs, Laaksonen-Craig, Niquidet and van Kooten)

2005–04–Can Forest Management Strategies Sustain the Development Needs of the Little Red River
Cree First Nation? (Krcmar, Nelson, van Kooten, Vertinsky and Webb)

2005–05–Economics of Forest and Agricultural Carbon Sinks (van Kooten)
2005–06– Divergence Between WTA & WTP Revisited: Livestock Grazing on Public Range (Sun,

van Kooten and Voss)
2005–07 –Dynamic Programming and Learning Models for Management of a Nonnative Species

(Eiswerth, van Kooten, Lines and Eagle)
2005–08 –Canada-US Softwood Lumber Trade Revisited: Examining the Role of Substitution Bias

in the Context of a Spatial Price Equilibrium Framework (Mogus, Stennes and van
Kooten)

2005–09 –Are Agricultural Values a Reliable Guide in Determining Landowners’ Decisions to
Create Carbon Forest Sinks?* (Shaikh, Sun and van Kooten) *Updated version of
Working Paper 2003-03

2005–10 –Carbon Sinks and Reservoirs: The Value of Permanence and Role of Discounting (Benitez
and van Kooten)

2005–11 –Fuzzy Logic and Preference Uncertainty in Non-Market Valuation (Sun and van Kooten)
2005–12 –Forest Management Zone Design with a Tabu Search Algorithm (Krcmar, Mitrovic-Minic,

van Kooten and Vertinsky)
2005–13 –Resolving Range Conflict in Nevada? Buyouts and Other Compensation Alternatives (van

Kooten, Thomsen and Hobby) *Updated version of Working Paper 2003-07
2005–14 –Conservation Payments Under Risk: A Stochastic Dominance Approach (Benítez,

Kuosmanen, Olschewski and van Kooten) *Updated version of Working Paper 2004-05
2005–15 –The Effect of Uncertainty on Contingent Valuation Estimates: A Comparison (Shaikh, Sun

and van Kooten)
2005–16 –Land Degradation in Ethiopia: What do Stoves Have to do with it? (Gebreegziabher, van

Kooten and.van Soest)
2005–17 –The Optimal Length of an Agricultural Carbon Contract (Gulati and Vercammen)
2006–01 –Economic Impacts of Yellow Starthistle on California (Eagle, Eiswerth, Johnson,

Schoenig and van Kooten)
2006–02 -The Economics of Wind Power with Energy Storage (Benitez, Dragulescu and van

Kooten)
2006–03 –A Dynamic Bioeconomic Model of Ivory Trade: Details and Extended Results (van

Kooten)
2006–04 –The Potential for Wind Energy Meeting Electricity Needs on Vancouver Island (Prescott,

van Kooten and Zhu)
2006–05 –Network Constrained Wind Integration: An Optimal Cost Approach (Maddaloni, Rowe

and van Kooten)
2006–06 –Deforestation (Folmer and van Kooten)
2007–01 –Linking Forests and Economic Well-being: A Four-Quadrant Approach (Wang,

DesRoches, Sun, Stennes, Wilson and van Kooten)
2007–02 –Economics of Forest Ecosystem Forest Sinks: A Review (van Kooten and Sohngen)
2007–03 –Costs of Creating Carbon Offset Credits via Forestry Activities: A Meta-Regression

Analysis (van Kooten, Laaksonen-Craig and Wang)
2007–04 –The Economics of Wind Power: Destabilizing an Electricity Grid with Renewable Power

(Prescott and van Kooten)
2007–05 –Wind Integration into Various Generation Mixtures (Maddaloni, Rowe and van Kooten)
2007–06 –Farmland Conservation in The Netherlands and British Columbia, Canada: A Comparative

Analysis Using GIS-based Hedonic Pricing Models (Cotteleer, Stobbe and van Kooten)

2007–07 –Bayesian Model Averaging in the Context of Spatial Hedonic Pricing: An Application to
Farmland Values (Cotteleer, Stobbe and van Kooten)

2007–08 –Challenges for Less Developed Countries: Agricultural Policies in the EU and the US
(Schure, van Kooten and Wang)

2008–01 –Hobby Farms and Protection of Farmland in British Columbia (Stobbe, Eagle and van
Kooten)

2008-01A-Hobby Farm’s and British Columbia’s Agricultural Land Reserve
(Stobbe, Eagle, Cotteleer and van Kooten)

2008–02 –An Economic Analysis of Mountain Pine Beetle Impacts in a Global Context (Abbott,
 Stennes and van Kooten)

2008–03 –Regional Log Market Integration in New Zealand (Niquidet and Manley)
2008–04 –Biological Carbon Sequestration and Carbon Trading Re-Visited (van Kooten)
2008–05 –On Optimal British Columbia Log Export Policy: An Application of Trade theory (Abbott)
2008–06 –Expert Opinion versus Transaction Evidence: Using the Reilly Index to Measure Open
 Space premiums in the Urban-Rural Fringe (Cotteleer, Stobbe and van Kooten)
2008–07 –Forest-mill Integration: a Transaction Costs Perspective (Niquidet and O’Kelly)
2008–08 –The Economics of Endangered Species Poaching (Abbott)
2008–09 –The Ghost of Extinction: Preservation Values and Minimum Viable Population in Wildlife

Models (van Kooten and Eiswerth)
2008–10 –Corruption, Development and the Curse of Natural Resources (Pendergast, Clarke and van

Kooten)
2008–11 –Bio-energy from Mountain Pine Beetle Timber and Forest Residuals: The Economics

Story (Niquidet, Stennes and van Kooten)
2008-12 –Biological Carbon Sinks: Transaction Costs and Governance (van Kooten)
2008-13 –Wind Power Development: Opportunities and Challenges (van Kooten and Timilsina)
2009-01 –Can Domestication of Wildlife Lead to Conservation? The Economics of Tiger Farming in

China (Abbott and van Kooten)
2009-02 – Implications of Expanding Bioenergy Production from Wood in British Columbia: An

Application of a Regional Wood Fibre Allocation Model (Stennes, Niquidet and van
Kooten)

2009-03 – Linking Matlab and GAMS: A Supplement (Wong)

For copies of this or other REPA working papers contact:
REPA Research Group

Department of Economics
University of Victoria PO Box 1700 STN CSC Victoria, BC V8W 2Y2 CANADA

Ph: 250.472.4415
Fax: 250.721.6214

www.vkooten.net/repa

This working paper is made available by the Resource Economics and Policy Analysis (REPA)
Research Group at the University of Victoria. REPA working papers have not been peer reviewed
and contain preliminary research findings. They shall not be cited without the expressed written
consent of the author(s).

Linking Matlab and GAMS: A Supplement

Linda Wong

May 25, 2009

http://web.uvic.ca/~kooten/REPA/GAMS2.zip

Contents

1. Introduction ... 1

1.1 Motivation ... 1

1.2 Basic Features and Limitations ... 2

Section I: Linking GAMS and Matlab .. 2

2. Installation (PC) .. 2

3. GDX, MEX, and GDXMRW: Basic Steps ... 3

3.1 GAMS Data Exchange (GDX) ... 3

execute_unload ‘filename.gdx’ [symbol1, symbol2, …]; .. 3

Supplemental Information .. 4

3.2 Matlab Executable (MEX) .. 4

(1) Retrieving Sets: [index1, …, indexN, UEL]=gams2(‘filename’, ‘getsets’, ‘set1’, …, ‘setN’); 4

(2) Modifying Values: gams2(‘filename’ [, ‘input1’, …, ‘inputN’, ‘UEL’]);..................................... 5

(3) Retrieving Results: [symbol1, …, symbolN]=gams2(‘file.gdx’, ‘symbol1’, …, ‘symbolN’); 6

Supplemental Information .. 6

3.3 GDX Matlab Read/Write (GDXMRW) .. 7

[x, UEL] = readgdx(‘filename.gdx’, ‘symbol’) .. 7

fullMatrix = sp2full(x, option, s) .. 7

sparseMatrix = full2sp(fullMatrix, option, mask) .. 8

Supplemental Information .. 9

3.4 Summary ... 11

Section II: Demonstrations – WindMix Model ... 12

4. Passing Values with Labels: WindMixDemo ... 12

GAMS .. 12

Matlab .. 13

5. Passing Values without Labels: WindMixDemo_f2sp ... 15

GAMS .. 15

Matlab .. 15

6. Troubleshooting .. 16

Acknowledgments ... 16

References ... 17

1

1. Introduction

1.1 Motivation

GAMS and Matlab are both valuable programs for solving optimization problems. The former
has powerful nonlinear optimization capability, but no visualization tools, whereas the latter has
imaging capabilities, but can sometimes be unsuitable for large-scale models (Ferris 2005).
Hence, linking the two can allow each program to compensate for the deficiencies in the other.
Currently, there are mechanisms for linking Matlab and GAMS, and the two methods developed
by Michael C. Ferris, GDXMRW and MATGAMS, serve as the main references for this
document and the corresponding interface.1 Thus, what is supplied here can be viewed as
supplementary to these existing tools.

As a brief overview, MATGAMS involves the use of either a dynamically linked library (DLL)
or a Matlab executable (MEX) procedure to allow Matlab users to call GAMS as if it were a
built-in function. Unfortunately, DLLs are no longer supported in new releases of Matlab, and
there are some compatibility issues with the supplied MEX-files. GDXMRW provides a set of
MEX procedures that read and write GAMS Data Exchange (GDX) files, which can be used to
pass results of a GAMS model to different programs, and vice versa. Oddly enough, there were
no compatibility issues with these MEX-files.

Here an additional MEX procedure has been created, henceforth referred to as gams2, which can
invoke GAMS in a manner similar to MATGAMS, but uses GDXMRW to transfer data between
the programs. As a result, there are many similarities between gams2 and MATGAMS;
therefore, credit is owed to M.C. Ferris (2005) for the concepts used in the design of this
procedure. Any users interested in linking Matlab and GAMS are encouraged to use the tools
available at

http://pages.cs.wisc.edu/~ferris/matlab.html

as a first resource. In terms of program execution time, gams2 offers no substantial advantage
over GDXMRW. As for program development, the use of gams2 may offer greater efficiency
relative to GDXMRW, but not to MATGAMS. The remainder of this document describes what
is contained in gams2 and provides examples of how it can be used. Also included are
explanations for how certain functionality can be replicated without using gams2. Although care
was taken to ensure accuracy, users are advised to refer to the original documentation by M.C.
Ferris for official information on the procedures described here.

1 Two methods are supplied by Michael Ferris at http://pages.cs.wisc.edu/~ferris/matlab.html

http://web.uvic.ca/~kooten/REPA/GAMS2.zip
http://pages.cs.wisc.edu/~ferris/matlab.html

2

1.2 Basic Features and Limitations

Features
gams2 is capable of allowing users to run a GAMS program using the values of variables passed
from the Matlab environment. Following GAMS notation, these variables include scalars, sets
and parameters.2 The ability to retrieve set elements prior to running the optimization is also
available. Like MATGAMS, certain aspects of the procedure’s default behavior may be
modified.

Limitations
Because gams2 relies on the GDXMRW procedure, writegdx, to convert Matlab variables into a
format that can be read by GAMS, a very specific representation is required of parameters in
particular. So, it is necessary to format input data matrices prior to invoking gams2 or using
writegdx. Additionally, there is no support for writing multi-dimensional sets and only arguments
of type string are accepted.

In light of these limitations, the source code is provided for interested parties to modify as they
wish. Further details on the features and limitations appear in the following sections. Section I is
relatively technical as it provides background material and explains what goes into linking
Matlab and GAMS. Section II is a demonstration with a wind energy model.3

Section I: Linking GAMS and Matlab

2. Installation (PC)

It is assumed that users are already familiar with the installation instructions for MATGAMS and
GDXMRW.4 The procedure for installing gams2 is virtually identical to MATGAMS. That is,
gams2 and the GDXMRW utilities should be copied into a directory on your Matlab path, and
the GAMS system directory should be added to your normal Windows path. The .m file that
invokes gams2 will need to be in the same directory as the .gms file. The accompanying MEX-
file is platform dependent, so users may need to compile the MEX-function source code instead.
To do this, the source code should be saved as gams2.c in a directory on your Matlab path and
compiled with a command similar to

>> mex gams2.c

Please refer to the Matlab documentation for further information on compiling MEX-functions.

2 For the remainder of this document, these terms will be used in the GAMS sense. That is, a one-dimensional
parameter is dependent on one set in GAMS, a two-dimensional parameter depends on two sets, etc.
3 By G. Cornelis van Kooten, University of Victoria
4 See Ferris (2005) and http://www.gams.com/~steve/gdxmrw.html.

3

3. GDX, MEX, and GDXMRW: Basic Steps

3.1 GAMS Data Exchange (GDX)

This is the means by which input and output are transferred between the programs. With gams2,
there is only one GDX procedure that the user needs to know. This procedure unloads GAMS
output.

execute_unload ‘filename.gdx’ [symbol1, symbol2, …];

In the GAMS program, this statement should be placed after the solve statement. It writes the
specified variables to filename.gdx. It should be noted that any existing content will be
overwritten. By default, all variable attributes will be written to the GDX file, if they have been
assigned values. It is straightforward to write a specific attribute only. For example, the
statements

execute_unload ‘file.gdx’ var1.l, var2.m;
execute_unload ‘file.gdx’ var1.l=symb1, var2.m=symb2;

will write var1’s primal values and var2’s dual values.5 However, domains may not be specified.
To write a subset, a new parameter consisting of elements over the desired domain will need to
be created. Alternatively, users may deal with this issue in Matlab once the results have been
retrieved, but this is an inefficient use of memory and may lead to “out of memory” problems,
especially when working with large data sets (MathWorks 2009).To write all identifiers,
variables, and equations:

 execute_unload ‘file.gdx’;

The above statements are execution time commands. It is not recommended to write data at
compile time; however, this may done using $Gdxout and $Unload (see McCarl 2007). Users
should note that the Matlab procedure used to read gdx files will only read sets and parameters.
Thus, variable or equation attributes will need to be converted into parameters or scalars before
they can be retrieved by Matlab.

To load input from Matlab, the statement

$if exist matdata.gms $include matdata.gms

should be inserted after all set and parameter declarations.6 By default, the data is loaded at
compile time, so any execution time commands may overwrite the Matlab input (Ferris 2005).

5 These are automatically classified as “parameters.” The second statement specifies the symbols by which the
variables are to be referenced with.
6 This is the technique employed by MATGAMS, and it is reproduced by gams2.

4

To load items at execution time, users may define gams_input=’exec’ in Matlab.7 Sets must be
loaded at compile time, however (McCarl 2007).

Supplemental Information

As mentioned in the introduction, it is not necessary to use gams2 to link GAMS and Matlab.
The same result can be achieved with a few more GDX procedures and essentially requires
loading the desired variables before they are used in the GAMS program. For example:

 $gdxin matdata.gdx open the file to be read
 $kill param1 reset identifier
 $load param1 read in identifier
 [$kill param2; …]
 $gdxin close file

By default, the above code is more or less what appears in the matdata.gms file created by
gams2.8 Note that items are loaded at compile time. The statement

execute_load ‘matdata.gdx’ param1 [, param2, …];

will load items at execution time. It is straightforward to reproduce matdata.gms using a Matlab
function/script each time the parameter to be loaded is changed.9 Section 3.3 provides
instructions on how to write a GDX file from Matlab.

3.2 Matlab Executable (MEX)

These utilities allow “custom C or Fortran subroutines to be called directly from Matlab as if
they were built-in functions” (MathWorks 2009). The following describes three types of uses for
gams2.

(1) Retrieving Sets: [index1, …, indexN, UEL]=gams2(‘filename’, ‘getsets’, ‘set1’, …, ‘setN’);

It is often useful to retrieve set elements from GAMS prior to formatting the input data matrices.
This can be done by calling gams2 with the string ‘getsets’ as the second argument. The .gms
extension for the filename is not required. The remaining string arguments need to match the set
names assigned during the GAMS declarations.

7 Same as MATGAMS.
8 This is also what appears in the matdata.gms file created by MATGAMS.
9 See source code for how this is programmed in C. It can easily be rewritten in Matlab code.

5

There are two types of output arguments when retrieving sets. UEL is the unique element list that
GAMS creates when sets are declared (and UEL is a GAMS term). It is a vector containing the
names of all set elements and is returned as the last output argument in the form of an (m×1) cell
array of strings. All other output arguments are numeric matrices containing the indices of UEL
that correspond to the elements of the specified sets. Note that the order of the output arguments
must match the order of the input arguments. If no left-hand output arguments are specified,
gams2 will assign default names to the retrieved entries, which are then put into the Matlab
environment. The default name for the UEL is UEL. For the indices, the default names will have
Indices appended to the set name. Thus, any existing variables in the Matlab environment with
these names will be overwritten if no left-hand output arguments are specified.

For gams2 to successfully retrieve sets, the statement

$if exist matdata.gms $include matdata.gms

will need to be inserted into the GAMS program per the instructions in section 3.1. It will then
unload all identifiers declared up to that point in the program. Note that right-hand arguments do
not necessarily have to be set names; parameters can be retrieved as well.

(2) Modifying Values: gams2(‘filename’ [, ‘input1’, …, ‘inputN’, ‘UEL’]);

This subroutine can be called after all the input data matrices have been assigned in Matlab.
Again, the names given to the input arguments must match the declarations in the GAMS
program. With the exception of scalars, gams2 treats an (m×1) Matlab variable as a set. Scalars
and all other (m×n) variables are treated as parameters. The reason is that writegdx requires
parameters to be at least (m×2) and GAMS requires that one-dimensional sets are (m×1).
According to the writegdx documentation, a parameter’s values should be listed in column n with
columns 1 through n-1 containing the indices of the n-1 sets associated with each of the data
points. For example, if we want to provide input in a given hour (h) for generating plant (p), then
the input is found in column 3 and h and p in columns 1 and 2. Note that GAMS has a limit of
twenty dependent sets (McCarl 2007), so the input data matrices should not exceed (m×21).

To format Matlab variables into multi-dimensional parameters, GDXMRW includes the function
full2sp. Examples will be provided in subsequent sections. When no UEL is specified, writegdx
uses {‘1’; ‘2’; ‘3’; … }. If this default UEL is not applicable in the user’s GAMS program, it is
recommended that the UEL and indices be retrieved using ‘getsets’ or readgdx rather than
generating them in Matlab. Otherwise, the numerical indices used in the writegdx input matrices
may be inconsistent with the GAMS-generated UEL, and, hence, inconsistent with the UEL and
indices of the output matrices returned by readgdx. This is something to be aware of, but will not
be much of an issue as long as users take care to pair the appropriate UEL with the indices. If the
default UEL is applicable, users have the option of letting gams2 format the input matrices by

6

defining f2sp=’yes’ in Matlab. This causes the procedure to call full2sp on the arguments prior to
passing them to writegdx.

gams2 does not return any values when used in this manner. Thus, readgdx or the next use for
gams2 is required in Matlab to retrieve GAMS results.

(3) Retrieving Results: [symbol1, …, symbolN]=gams2(‘file.gdx’, ‘symbol1’, …, ‘symbolN’);

When the first input argument has a .gdx extension, gams2 will read the specified entries from
the GDX file and apply sp2full to those results prior to returning them to Matlab. As explained in
a later section, it will, in most cases, be more efficient to use readgdx to retrieve results from
GAMS. Nevertheless, this feature is included for programs in which the default UEL is
applicable. However, because the minimum matrix size is not specified when calling sp2full, this
option will not function correctly if the last entry in any dimension is zero. In this case, users
may opt to prevent gams2 from calling sp2full by defining sp2f=’no’ in Matlab. The remaining
input arguments are the GDX symbols.

Output arguments do not need to be specified when using gams2 to retrieve results. The GDX
symbols will be used as the names for the retrieved entries in this case. When output arguments
are specified, the order of the output arguments must match the order of the input arguments.

Supplemental Information

Without gams2, users will need to create the GDX input file prior to executing a system call to
GAMS. The procedure writegdx is explained in section 3.3. Then GAMS can be invoked using a
statement like system(‘gams filename lo=0’). lo=0 causes GAMS to suppress the output log, and
this is the gams2 default. Defining logoption=’file’ or ‘stdout’ will change this option during
gams2 execution. These options correspond to lo=2 and lo=3 for the system call. The default is
lo=1, which outputs the log to the Windows console. It is important to note that only sets and
parameters can be written with writegdx. For scalar reassignments, users will need to classify the
scalar as a parameter. One way to retrieve the UEL and set indices prior to creating the GDX
input file is by placing the statements

 execute_unload ‘getsets.gdx’;
 $stop

after the set declarations. The GAMS program can then be run once to create the GDX file, and
readgdx can be used to retrieve the data. This is how ‘getsets’ functions in gams2.

7

3.3 GDX Matlab Read/Write (GDXMRW)

GDXMRW is a set of four Matlab files: readgdx.mex_, writegdx.mex_, sp2full.m and full2sp.m.
The last two files are utilities for manipulating the data so that they have the appropriate Matlab
matrix structure.10 These two utilities have only been partially incorporated into gams2, so, in
most situations, users will need to know how to use full2sp if multi-dimensional data matrices
are passed to GAMS and sp2full if results are anticipated to contain any zero entries. The syntax
for calling readgdx to retrieve GAMS output is also needed.

[x, UEL] = readgdx(‘filename.gdx’, ‘symbol’)

Only one GDX entry may be retrieved at a time. The quickest way to retrieve multiple entries is
to create a cell array containing the list of symbols and then place the readgdx call within a for
loop. Demonstrations are provided in Section II.

fullMatrix = sp2full(x, option, s)

x is a sparse matrix. option can either be ‘set’ or ‘parameter’. s is the minimum matrix size, in
every dimension, of fullMatrix. If the default UEL mentioned in the previous section is not
applicable to the user’s GAMS program, the indices in the sparse matrix returned by readgdx
may need modification prior to calling sp2full in order to improve efficiency. For example,
suppose these two GAMS programs are executed:

Ordering 1: Ordering 2:

For both orderings, readgdx returns a (1000×3) sparse matrix for paramAB. The UEL will be
(1002×1), but the numerical indices for set a in Ordering 1 will run from 1 to 2 whereas the
indices will run from 1001 to 1002 in Ordering 2. If sp2full is called at this point, the resulting
full matrix will be (2×1002) for Ordering 1 and (1002×1000) for Ordering 2. Then a further
Matlab statement like

>> paramAB = fullMatrix(aIndices, bIndices);

10 http://pages.cs.wisc.edu/~ferris/matlab.html

8

is needed for paramAB to be (2×1000). However, a statement similar to

>> spMatrix(:,2) = spMatrix(:,2) - max(aIndices);

prior to calling sp2full will result a (2×1000) full matrix for Ordering 1. For Ordering 2, the
appropriate statement would be

>> spMatrix(:,1) = spMatrix(:,1) - max(bIndices);

Adjustments to higher dimensions are conducted in a similar manner and depend on the order of
the set declarations. There are many ways to adjust the indices, but the object is to have each
dimension begin at index 1 prior to calling sp2full. Similar steps are required for full2sp.

sparseMatrix = full2sp(fullMatrix, option, mask)

Again, option is either ‘set’ or ‘parameter’ with ‘set’ being the default. mask is on optional
matrix of indices to extract. When option is ‘parameter,’ full2sp will, at minimum, return a
(m×3) matrix (2D parameter). When writing one-dimensional parameters, it is not necessary to
use full2sp. If the user opted to use the ‘getsets’ feature, the data matrix can be constructed as

>> fullMatrix = [aIndices data];

where aIndices is the set indices of a retrieved using ‘getsets’ and data is a column vector.
full2sp can always be used to format input matrices, but if the default UEL is not applicable to
the user’s GAMS program, the indices will need to be modified so that they correspond to the
UEL that is passed to gams2 or writegdx. Using the same GAMS programs from the previous
section, suppose dataAB is a (2×1000) full matrix, with no zero elements, that needs to be
formatted before being passed to GAMS as paramAB. The statement

>> paramAB = full2sp(dataAB,’param’);

will return a (2000×3) matrix in which each dimension begins at index 1. That is, paramAB will
have the form [1, 1, dataAB(1,1); 2, 1, dataAB(2,1); 1, 2, dataAB(1,2); 2, 2, dataAB(2,2); …].
Again, suppose the identifier definitions in the GAMS programs are:

Ordering 1: Ordering 2:

9

Assuming that the UEL has been retrieved from GAMS, the modification needed for paramAB
in Ordering 1 is

>> paramAB(:,2) = paramAB(:,2) + max(aIndices);

For Ordering 2, the modification is

>> paramAB(:,1) = paramAB(:,1) + max(bIndices);

These modifications to the indices can be avoided if the GAMS program is created so that all
sets begin at 1 and only contain elements with numerical counterparts. In this case, users have
the option having gams2 apply full2sp to the input matrices by defining f2sp=’yes’. However, if
this option is enabled, gams2 will only be able to differentiate between scalars and parameters;
therefore, sets cannot be passed to GAMS.

Supplemental Information

The syntax for calling writegdx is:

writegdx(‘file.gdx’, ‘datatype’, ‘symbol’, dataMatrix
 [,‘datatype2’, ‘symbol2’, dataMatrix2, …, UEL]);

This statement writes each dataMatrix to file.gdx. With the exception of dataMatrix, which must
be a numeric matrix, all arguments must be of type string. datatype may either be ‘set’ or
‘parameter’. symbol is the name dataMatrix is to be identified with. According to the writegdx
documentation, the procedure assumes that parameters have n-1 dimensions and cardinality m.
Thus, the value is in column n, and columns 1 to n-1 contain its indices. Because dataMatrix
must be numeric, optional labels can be passed to GAMS by specifying a unique element list, in
the form of a cell array, for the last argument. If UEL is specified, then those element names will
apply to each dataMatrix in the writegdx statement. Thus, if different sets of element names are
desired for the data matrices, the user must ensure that the different groups of parameters have
no overlapping numerical indices. To illustrate, consider a GAMS program which loads two
parameters from one file and outputs the same parameters to a second file:

10

From Matlab, writegdx is called as follows:

It is important to note that the UEL must contain at least as many elements as the value of the
largest numerical index. Suppose that the indices used for b were 99 and 100 instead of 4 and 5.
If a UEL is specified, writegdx will require one hundred element names.

11

3.4 Summary

On the GAMS side, the interface involves:

1. Inserting $if exist matdata.gms $include matdata.gms after the identifier declarations.
2. Inserting the desired execute_unload command(s) after the solve statements.

On the Matlab side, the interface involves:

1. Formatting the data matrices and invoking gams2.
2. Using readgdx and sp2full to retrieve and format GAMS output.

Modifications to the default behavior include:

1. Defining gams_input = ‘exec’ to load Matlab input at execution time rather than at
compile time.

2. Defining logoption = ‘file’ or ‘stdout’ to write the GAMS output log to a file or have it
displayed, respectively.

3. Defining gams_show = ‘normal’ to show the Windows console upon invoking GAMS.
4. Defining f2sp = ’yes’ to apply full2sp to the input data matrices. This option should only

be used if the default UEL is applicable to the user’s GAMS program.
5. Defining sp2f = ’no’ to prevent the application of sp2full to the output data matrices

when using gams2 to retrieve output.

12

Section II: Demonstrations – WindMix Model

4. Passing Values with Labels: WindMixDemo

GAMS

So that the GAMS program will load input passed from Matlab, the line

 $if exist matdata.gms $include matdata.gms

should be added after the items being modified have been initialized and assigned, but before
their first use. Once this line is inserted, it does not need to be removed even if subsequent uses
of the gams2 interface do not modify any values. This part of the GAMS program is as follows:

13

Again, GAMS variables will need to be formatted into scalars or parameters before they can be
retrieved by readgdx. For example, to write the model status and solver status, statements like

 Parameter returnStat;
 returnStat('modelstat') = grid.modelstat;
 returnStat('solvestat') = grid.solvestat;

should be placed directly after the solve statement for the model. In order to write the model
results to a gdx file, the execute_unload command can be placed after the values to be returned to
Matlab have been formatted. With the exception of the filename, the ordering of the items in the
execute_unload statement is unimportant. For the WindMix model, the model status, objective
value and total energy generation are returned to Matlab as follows:

When there is an assignment, as in returnTotal=total, in the execute_unload statement, the item
on the left-hand side of the equality is written to the GDX file with the item on the right-hand
side as its symbol. Thus, in Matlab, returnTotal would be referenced by the symbol total when
using readgdx.

Matlab

Before values are passed to GAMS, the input data matrices must be formatted so that the
appropriate indices are included. For this process, it useful to retrieve the set indices and UEL
from GAMS using

gams2('WindMixDemo', 'getsets', 'h', 'p')

which assigns those items the default names hIndices, pIndices and UEL when no left-hand
output arguments are specified. It is also possible to retrieve sets in this manner:

[hIndices pIndices UEL]=gams2('WindMixDemo', 'getsets', 'h', 'p')

14

Note that the set identifiers supplied as the right-hand input arguments must match the identifiers
used in the GAMS declarations. The order of the left-hand output arguments is important, and it
needs to match the order of the right-hand input arguments. The last left-hand output argument
must be the UEL. One-dimensional parameters may then be formatted as follows:

%Fixed O&M costs in $'000s per MW of installed capacity.
fixedcost = [492 800 220 105 84];
fixedcost = [pIndices fixedcost'];

No multi-dimensional parameters are passed to GAMS, but to illustrate how they would be
formatted, suppose there are two additional sets and parameters:

If the set indices are retrieved from GAMS, they will be 1-744, 745-749, 100-103 and 750-753
for hIndices, pIndices, qIndices and rIndices, respectively.11 full2sp returns an (m×4) matrix
when its input arguments are a 3D array and ‘parameter.’ If using the UEL retrieved from
GAMS, the modifications to the indices include:

newParam1(:,1) = newParam1(:,1) + min(pIndices) - 1;
newParam1(:,3) = newParam1(:,3) + min(qIndices) – 1;

newParam2(:,1) = newParam2(:,1) + min(qIndices) - 1;
newParam2(:,2) = newParam2(:,2) + min(pIndices) - 1;
newParam2(:,3) = newParam2(:,3) + min(rIndices) - 1;

However, retrieving sets from GAMS is not necessary as long as users are careful to pair the
correct UEL for the indices that are used when invoking gams2 or writegdx. The GAMS
optimization can be run using

 gams2('WindMixDemo', 'carbtax', 'demand', 'fuel', 'OMcost', 'emission', ...
 'plantcap', 'fixedcost', 'ramup', 'ramdown', 'UEL')

Then, the results may be retrieved as follows:

exitflag = readgdx('output.gdx', 'exitflag');
fval = readgdx('output.gdx', 'fval');

temp = readgdx('output.gdx', 'total');

11 GAMS stores elements in the UEL based on their order of appearance (McCarl 2007).

15

temp(:,1) = temp(:,1)-max(temp(:,2)); %modify indices before calling sp2full
total = sp2full(temp, 'param',[length(pIndices) length(hIndices)]);
clear temp;

To improve efficiency, the indices for the two-dimensional parameter, total, were modified prior
to calling sp2full. Again, for large data sets, there is a risk of encountering an “out of memory”
error if this is not done.

5. Passing Values without Labels: WindMixDemo_f2sp

GAMS

In this program, the sets are declared as

and all subsequent set references were changed accordingly.

Matlab

Because the default UEL will be used, the process for formatting the input data matrices can be
simplified. One-dimensional parameters are specified as column vectors as follows:

%Fixed O&M costs in $'000s per MW of installed capacity.
fixedcost = [492 800 220 105 84]';

Two-dimensional parameters are specified as two-dimensional matrices, and so on. No
additional formatting is required because gams2 can apply full2sp before creating the GDX file:

f2sp='y'; %allow gams2 to apply full2sp

%Run GAMS optimization
gams2('WindMixDemo_f2sp', 'carbtax', 'demand', 'fuel', 'OMcost', ...
 'emission', 'plantcap', 'fixedcost', 'ramup', 'ramdown')

Users also have the option of using gams2 to retrieve the results of the GAMS optimization:

%Since no left-hand output arguments are specified,
%the results will be named exitflag, fval and total
gams2('output.gdx', 'exitflag', 'fval', 'total')

When used in this manner, the items returned to Matlab are the output arguments of sp2full. To
obtain the readgdx output arguments instead, define sp2f=’no’ prior to invoking gams2.

16

6. Troubleshooting12

The GAMS exit codes that are identified include

case 0: Normal completion
case 2: Compilation error(s)
case 6: File not found or permission denied

All other exit codes are considered by gams2 to be execution errors. When the user encounters
an exit code of 2, the most likely reason are misnamed parameters or mismatched dimensions.

An error code of 3 normally indicates an arithmetic error arising from division by zero, improper
exponentiation, etc.

When an exit code of 6 is encountered, the user should ensure that the filename is specified
correctly and that both the Matlab and GAMS files are in the current working directory.
Otherwise, the user will need to ensure that he or she has the proper directory permissions.

In all cases, it is useful to review the LST and/or LOG file for further details.

Additionally, users may encounter a “Warning: File not found or permission denied” message
when using the ‘getsets’ option. This will happen if readgdx does not terminate properly. The
message is unimportant and can be disregarded. However, to correct the issue, users will need to
exit and reopen Matlab. Alternatively, users may opt to merely disable the warning using

 >> warning off MATLAB:DELETE:Permission

Acknowledgments

The author would like to thank Professor G. C. van Kooten for supplying the WindMix model
and contributing to the improvement of this document.

12 Most of this information can be found in McCarl (2007)

17

References

Ferris, Michael C. MATLAB and GAMS: Interfacing Optimization and Visualization Software.
Computer Sciences Department, University of Wisconsin-Madison, 2005.

MathWorks, Inc. MATLAB® Getting Started Guide. Natick, 2009.

McCarl, Bruce A. "McCarl Expanded GAMS User Guide Version 22.5." Texas A&M
University, 2007.

	Newest WORKING PAPER.pdf
	LinkingMatlab&GAMS
	1. Introduction
	1.1 Motivation
	1.2 Basic Features and Limitations

	Section I: Linking GAMS and Matlab
	2. Installation (PC)
	3. GDX, MEX, and GDXMRW: Basic Steps
	3.1 GAMS Data Exchange (GDX)
	execute_unload ‘filename.gdx’ [symbol1, symbol2, …];
	Supplemental Information

	3.2 Matlab Executable (MEX)
	(2) Modifying Values: gams2(‘filename’ [, ‘input1’, …, ‘inputN’, ‘UEL’]);
	(3) Retrieving Results: [symbol1, …, symbolN]=gams2(‘file.gdx’, ‘symbol1’, …, ‘symbolN’);
	Supplemental Information

	3.3 GDX Matlab Read/Write (GDXMRW)
	[x, UEL] = readgdx(‘filename.gdx’, ‘symbol’)
	fullMatrix = sp2full(x, option, s)
	sparseMatrix = full2sp(fullMatrix, option, mask)
	Supplemental Information

	3.4 Summary

	Section II: Demonstrations – WindMix Model
	4. Passing Values with Labels: WindMixDemo
	5. Passing Values without Labels: WindMixDemo_f2sp
	6. Troubleshooting
	Acknowledgments
	References

