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Abstract

We consider any network environment in which the “best shot
game” is played. This is the case where the possible actions are only
two for every node (0 and 1), and the best response for a node is 1
if and only if all her neighbors play 0. A natural application of the
model is one in which the action 1 is the purchase of a good, which
is locally a public good, in the sense that it will be available also
to neighbors. This game will typically exhibit a great multiplicity of
equilibria. Imagine a social planner whose scope is to find an optimal
equilibrium, i.e. one in which the number of nodes playing 1 is mini-
mal. To find such an equilibrium is a very hard task for any non–trivial
network architecture. We propose an implementable mechanism that,
in the limit of infinite time, reaches an optimal equilibrium, even if
this equilibrium and even the network structure is unknown to the
social planner.
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1 Introduction.

Take an exogenous network in which otherwise homogeneous players (nodes)
play a public good game, which is the one defined Best shot game in Galeotti
et alii (2008).1 The best shot game is a particular case, with restricted
strategy profiles, of the model in Bramoullé and Kranton (2007) and of the
second stage of the game in Galeotti and Goyal (2008), where the action of
each node i is an effort xi and her payoff will depend on the aggregate effort
of herself and that of her neighbors, minus some cost for her own effort.

In particular, we will restrict strategy profiles to the two specialized ac-
tions: xi ∈ {0, 1}.2 In this way ~x, a vector of specialized actions whose length
is given by the number of nodes, will characterize any possible configuration
of the system. We will consider the class of incentives such that, in Nash
equilibrium (NE), agent i will play action xi according to the following rule:

{
xi = 1 if xj = 0 for any neighbor j of node i;
xi = 0 otherwise.

(1)

We will study all the NE of the game; that is all those action profiles in which,
for any link, not both nodes of the link put in effort 1; but at the same time
for any node, if we consider the set including itself and its neighborhood,
at least one node in this set puts in effort 1. Mathematically, the subset
of nodes playing 1 in a NE will then be a maximal independent set of the
network, as it is called in graph theory.

The next example will give some insight on the maximal independent
sets, our NE, for simple networks.

Example 1 A network of 9 nodes.

Figure 1 shows four possible NE for the same network of 9 nodes. Red
nodes are those playing 1, while all the others are playing 0. The bottom–
right NE is the only one in which only three nodes play action 1. If we assume
action 1 to be a costly action, interpreting it as the purchase of a local public
good, then the bottom–right NE is socially optimal, at least regarding costs.
¤

1Example 2, page 13, of the July 2008 version of the working paper. The name Best
shot game comes from Hirschleifer (1983), where it is however described as a non–network
game.

2One result in Bramoullé and Kranton (2007) is actually that, even when the possible
actions of nodes are continuous, in equilibrium every agents would play either 0 or a fixed
value e∗ > 0 which can be normalized to 1.
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Figure 1: Four NE for a 9–nodes network.

By considering this last example, a first intuition is that when more con-
nected nodes play 1, then the number of 1–players in equilibrium is reduced.
The extremal case of this will happen on a star–shaped network, as shown
in the next example.

Example 2 The star.

It is easy to see that the star has only two maximal independent sets (see
Figure 2): one in which the center alone plays 1, and another one in which
the spokes do so. If we are looking for efficiency (defined as fewer 1s, which
are supposed to be costly) it is very easy to find that the first case is the best
one. Suppose that we are in the bad NE (spokes exerting the costly effort),
then a social planner could shift to the good equilibrium by incentivating a
contribution from the center. When the center is contributing, then, by best
response, all the spokes will stop doing so. This mechanism will be formalized
in the next section, but the idea is that of incentivating a contribution from
agents that were not doing so in a NE, thus the system will move to a new
NE, which may reduce the social cost of being in equilibrium. ¤

The problem of finding all the maximal independent set of a general
network is however not an easy one. This problem is actually NP–complete,3

3Consider a general problem whose object (input) is characterized by a certain size N
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Figure 2: The two NE of a star network.

as is the problem of finding those maximal independent sets with more or less
nodes playing 1 (even in Example 1 it is not immediately straightforward at
first sight.). In a companion paper, Dall’Asta, Pin and Ramezanpour (2009),
we discuss this in more detail for a particular class of random networks. The
next example may give a hint of this, for a case which is large but apparently
simple.

Example 3 Simulations on large regular graphs.

Consider a regular graph of degree K, i.e. a network in which every node has
exactly K links, even if the network has not the regularity of a lattice and the
connections are randomly drawn. In Dall’Asta, Pin and Ramezanpour (2009)
we consider such networks consisting of N = 10.000 nodes. These networks
have many possible maximal independent sets, of different density (that is:
the percentage of nodes playing 1). Call this density ρ and define s(ρ) as the
quantity for which the number of equilibria of a given ρ is equal to eNs(ρ) (s is
called “entropy”; it is just a probability distribution re–scaled logarithmically,
which gives a more intuitive graphical representation). Figure 3 shows the
cases for degree K = 3, 4, and 5.

In the other paper we use an analytic approximation in order to com-
pute probability distributions.4 Then we run some heuristic algorithms to

(as could be the number of nodes in our case). Here is given a non–rigorous definition:
The problem is called NP–complete if there is no algorithm that can find a solution to the
problem, for any possible input of size N , in a time that grows at most polynomially in
N . An NP–complete problem is one in which the time required to find a solution typically
grows exponentially in N . In practice this means that, even if a good computer can solve
the problem in a reasonable time for N = 1.000, the case N = 10.000 may take years to
be solved.

4López–Pintado (2008) identifies instead the mode of this distribution by adopting a
mean field analysis.

4



actually find all the real distributions of maximal independent sets, in order
to confirm the analytical predictions. The predictions are very accurate on
the internal part of the curves, but the algorithms are unable to find up-
per and lower extrema in finite time (it can be proven that this problem is
NP–complete). The colored dots represents the upper and lower limits that,
given the timing constraint we imposed, the algorithms were able to reach.
This is the starting point for the idea of implementing a mechanism inspired
by heuristic optimization algorithms. ¤
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Figure 3: Density versus entropy (probability distribution re–scaled loga-
rithmically) for all the maximal independent sets on regular graphs of 10.000
nodes. K is the degree. Colored dots are the limits of our algorithm with
respect to the analytical predictions.

From the point of view of economics, the rule specified in (1) is not behav-
ioral and could be justified by many modelling choices with rational agents.
Up to now we have defined (pure) Nash equilibria without explicitly defining
actions and payoffs; this however could easily be done. One possibility is
the following. Any agent attributes utility v to a homogeneous good, if she
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has access to it (independently of whether it is provided by herself or by
any of her neighbors), and her utility is satiated by one unit of it. Finally,
the cost of providing the good is a positive value c < v. Since utilities are
satiated, and in equilibrium every agent has local access to the good, then
considering efficiency from the point of view of minimal aggregated costs is
enough to achieve global efficiency (Bramoullé and Kranton (2007) consider
non–satiated utility functions and finds the typical public–good discrepancy
between efficient strategy profiles and equilibria). It may seem that we ex-
clude full rationality when we assume that agents respond to changes with
a best response rule that considers only the present configuration but is my-
opic and not strategic on possible future new changes. Consider, however,
that another explanation for agents not being interested in future expected
payoffs is a high rate δ of temporal discount.

The kind of situation we have in mind is that of every agent deciding
whether or not to exert a fixed costly effort that is beneficial to herself and
also to her neighbors, so that a typical situation of free riding incentives
arises. This could be the case with farmers or firms adopting new technolo-
gies, with an information network and a cost for possible failures.5 Another
application could be that of several municipalities in a given region; the pub-
lic good could be a library or a fire brigade, and two municipalities are linked
if the public good in one of them makes the same public good undesirable
in the other one because of geographical proximity. Finally, since the mech-
anism we will propose requires low costs of shifting between strategies and
repeated interaction, a good application could be that of a big firm encour-
aging people to share cars in order to minimize parking places. Action 1
would mean ‘take the car’ and an employee would play 0 if a friend gives her
a lift. Generally, in any of these applications there could be a planner whose
objective could reasonably be that of minimizing costs.

Suppose that the planner considers all the possible NE of the game (all
the maximal independent sets of the network) and wants to minimize among
them the number of nodes exerting effort 1 (i.e. find a maximal independent
set of minimal cardinality: MNE). She could impose the proper action on the
agents, and the resulting configuration, being a NE, would be stable with-
out imposing more incentives. Suppose, however, that the planner does not
know such an optimal distribution (remember that the theoretical problem
is typically a complex one) or that moreover she may not even know any-
thing about the network. Assuming that we also have a time dimension, our
question is: would it still be possible for the planner to build a mechanism

5This is the application proposed in Bramoullé and Kranton (2007).
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that would incentivate the agents to move towards an optimal MNE?6 Our
answer is only theoretical but positive: at the limit of infinite time such a
mechanism exists, and it will lead to a MNE with probability 1.

What we assume is that the social planner’s goal is to minimize the costs
of a NE, when she has the possibility of incentivating players’ actions out of
equilibrium, but she is not able to modify the structure of the network. It is
clear that if the planner had the possibility of changing the network structure,
directly or by incentives, at a reasonable cost (as is the case considered on
a different network game by Haag ad Lagunoff (2006)) then the problem
would look very different. It would be enough to approximate a star–like
configuration such as the one analyzed in Example 2, and the solution would
easily be found.

In the next section we show how we obtain our result. We show that our
setup is included in the hypothesis of a theorem first proved in Geman and
Geman (1984) and presented here in Appendix A. The proof of this equiva-
lence is based on three lemmas, whose proofs are in Appendix B. Section 3
concludes the paper.

2 Main result

The mechanism we study is the following in discrete time, t = 1, 2, 3, . . . Every
time step is characterized by a configuration ~xt of nodes’ actions satisfying (1)
for every node, and hence NE. Suppose then that at time 1 the system is in
a NE, so that xi,1 ∈ {0, 1} is a best response for every agent i, as specified in
(1). The planner does not know anything about the network, the only thing
she observes at any step t in time is the action of each player and hence the
aggregate number of agents playing 1; call it Mt =

∑
i xi,t. What she will

do is, at every time step, pick an agent it playing 0, at random with uniform
probabilities, and force her to flip her strategy to 1.7 In consequence of this
flip, all the other nodes in the network will change their strategy according
to a simple best response rule. When the system is stable again, i.e. again
in a new NE, the planner will observe a new configuration ~xnew

t and the new
aggregate quantity of 1’s, call it Mnew

t . The planner will accept the new

6We will use the term mechanism to differentiate it from algorithm. While the latter
is intended as a computational technique, the former is a plausible implementation of
any single step of such a technique into a real system, also allowing the interaction of
self–interested agents.

7This can easily be done through incentives. The reason why the planner is looking for
a minimum could be that she is financing all the agents exerting effort; in this case she
could raise her contribution to the agent up to the desired threshold level.
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configuration with probability

{
1 if Mnew

t < Mt ;
t−ε(Mnew

t −Mt) otherwise,
(2)

where ε > 0 is a constant. The second probability in (2) identifies the level
of rejection of non–improving changes.

We start by proving that ~xnew
t is always a NE for any t (see Lemma 1

below). If the planner accepts the new configuration, then ~xt+1 = ~xnew
t and

Mt+1 = Mnew
t , otherwise she will impose reverse incentives so that we return

to the original configuration,8 i.e. ~xt+1 = ~xt and Mt+1 = Mt.
In the limit t → ∞, the second probability in (2) goes to 0 and the

mechanism will converge to any member of a precise subset of NE. Call
the subset of such possible NE local minima.9 Every MNE is also a local
minimum. The question is whether the local minimum in which the process
ends is also a MNE. The aim of this paper is to show under which conditions
the answer is positive.

The structure of the proof is the following. We show that we meet the
conditions required for the application of a known theorem.

Lemma 1 if we start from a NE and invert the action of one node from 0
to 1, then the best response rule of all the other nodes in the network will
imply a new NE.

Lemma 2 if we start from a NE and invert the action of one node from 0
to 1, then the best response rule of all the other nodes in the network will be
limited to the neighborhood of order 2 of the original node (i.e. the change is
only local).

Lemma 3 it is possible to reach any NE from any other NE with a finite
number of the following procedures: flip the action of a single node from 0 to
1 and obtain, by best response of the nodes, a new NE.

Proposition 4 the probability π(ε) that the mechanism ends in a MNE, at
the limit t → ∞, is strictly positive for any ε > 0; it is decreasing in ε; and
finally, there exists an ε̄ > 0 such that, for any ε < ε̄, we have that π(ε) = 1
independently on the initial conditions.

8This can be done by reverting all incentives to the nodes who changed; they are, by
following Lemma 2, restricted to a local neighborhood.

9It is also possible that the mechanism, at the limit t → ∞, alternates between more
than one single NE, if all of them have the same number of 1’s. Without loss of generality,
such subsets of NE can simply be included among local minima.
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The lemmas are proven in Appendix B, by applying the discrete mathe-
matics of network theory. Lemmas 1 and 2 also guarantee that the proposed
mechanism is well defined.

The main proposition is obtained by including our setup in the general
hypothesis of the theory of simulated annealing, first proposed and formalized
in Kirkpatrick, Gelatt and Vecchi (1983). Simulated annealing is a heuristic
algorithm based essentially on the increasing rejection probability in a Monte
Carlo step, as the probability t−ε(Mnew

t −Mt) in (2), for our case. Simulated
annealing works exactly as described above, finding a global minimum of a
certain function, avoiding local minima. Theory tells us that, if the number
of possible configurations is finite, and it is possible to reach any configu-
ration from any other with basic steps, then a generalization of the above
proposition holds. A rigorous proof that applies to our model can be found in
Theorem B of Geman and Geman (1984), which we discuss in Appendix A.
The original proof takes various pages, its intuition is that we are analyzing a
Markov chain of finite possible configurations (all the NE of the game) which
is ergodic for any finite t.

In our case, we consider all the NE as the possible states of the system;
they are finite because the network is finite. Lemmas 1 and 2 define a stochas-
tic process between the states of the system, and this process is ergodic by
Lemma 3. We thus meet the conditions that apply in Appendix A.

3 Short considerations

The problem of finding a MNE among all the NE is in general not a trivial
one, and the difference between the aggregate number of nodes playing 1 in
NE could vary dramatically even in homogeneous networks, as examined in
the companion paper, Dall’Asta, Pin and Ramezanpour (2009). The star
structure (Example 2) is a trivial but dramatic example: there are two NE,
one in which the center alone plays 1, and another in which all the spokes
do so and the center free rides.

The main practical problem in the implementation of the mechanism we
propose is clearly the necessity of infinite time. This paper is only theoretical.
However, simulated annealing is used in practice in many optimization prob-
lems.10 Consider that for any ε > 0 the system will reach a local minimum,
which can be easily identified even in finite time (the higher the ε the faster
the convergence). Noting that the values ε < ε̄ are typically irrealistically
low, and that the algorithm therefor converges very slowly, the choice of a
proper heuristic ε > ε̄ could be appropriate. This choice would depend on a

10Crama and Schyns (2003) is a good example related to finance.

9



profit/costs comparison but also, in the case of finite time, on the structure
of the network (e.g. the star needs a single flip to move from the bad NE to
the MNE).

Finally, even if the planner does initially not know the real structure of
the network, she could infer it link by link as the steps of the mechanism
are played. In this way she could mix the mechanism with a theoretical
investigation, and could target nodes non–randomly in order to maximize the
likelihood of finding the desired MNE. The analysis of such a sophisticated
approach would be much more complicated. What we give here is an upper
bound that, we prove, works (even if at the limit). Any improvement on this
näıve mechanism will work as well, faster, but not in finite short time for
any possible network, because the original problem is NP–complete.

Appendices

A Theorem B in Geman and Geman (1984)

Geman and Geman (1984) is a pioneering theoretical paper on computer
graphics, studying the best achievable quality of images. Sections X to XII
are devoted to the general case of optimization among a finite number of
states. We find there a general theorem (Theorem B at page 731) proving
a conjecture on the Simulated Annealing heuristic algorithm proposed by
Kirkpatrick, Gelatt and Vecchi (1983). The arising popularity of Simulated
Annealing has attested the success of Geman and Geman (1984), which is
now cited (according to scholar.google.com in January 2009) by almost 8000
papers from all disciplines.

In this appendix we summarize what is necessary for us from this result,
with some of the original notation but avoiding most of the thermodynamics
jargon. Suppose that there is a finite set Ω of states, and a function U :
Ω → R+, so that, for any ω ∈ Ω, U(ω) is a positive number. Call U∗ ≡
maxω∈Ω U(ω) the maximal value of U , U∗ ≡ minω∈Ω U(ω) its minimal value,
and Ω0 ≡ arg minω∈Ω U(ω) those states whose value is U∗. Suppose moreover
that we have a fixed transition matrix X between all the elements of Ω and
that this stochastic matrix X is ergodic, i.e. there is a positive probability of
reaching any state ω′ ∈ Ω from any other state ω′′ ∈ Ω. Given any ω ∈ Ω, call
X(ω) all those states that can be reached from ω with positive probability,
through X, with a single step.

Consider now a discrete time flow with t = 1, 2, . . . and the following new
stochastic process. ω1 is any member of Ω. Imagine that, at time t, the
process is in the state ωt, then apply X from ωt, obtaining a state that we
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call ωnew
t . We now define ωt+1 as

ωt+1 ≡




ωnew
t with probability

{
1 if U(ωnew

t ) < U(ωt) ,
t−ε(U(ωnew

t )−U(ωt)) otherwise;
ωt otherwise.

(3)
The probability t−ε(U(ωnew

t )−U(ωt)) in (3) identifies the level of acceptance of
non–improving changes, which is declining in time at a rate that depends on
the constant ε > 0. Any such stochastic process will be identified by ω0 and
ε: call it Pω0,ε.

It is easy to prove that at the limit t → ∞ any realization of Pω0,ε will
end up in a set of local minima Ωε ⊆ Ω. Ωε is such that, for any ω′, ω′′ ∈ Ωε

and ωX ∈ X(ω′′), U(ω′) = U(ω′′) and U(ω′) ≤ U(ωX).

The theorem imposes a single condition on ε so that the local minima
obtained through Pω0,ε are also global minima.

Theorem B: call NΩ the cardinality of Ω and ∆ ≡ U∗−U∗. If ε < ε̄ ≡ 1
NΩ∆

,
then Ωε ⊆ Ω0 for any realization of Pω0,ε, independently of ω0.

The proof is by no means trivial, it takes various pages and it is heavily
based on the ergodicity of the system. In Geman and Geman’s notation, what
they call temperature is 1

ε log t
. They prove, moreover, that, in the presence

of more global minima, the probabilities of ending in any one of them are
uniform.

B Proof of Lemmas

Consider a finite network and call xi ∈ {0, 1} the action of node i, so that ~x
is the vector of the actions of all the nodes. Call N1

i the set of nodes which
are first neighbors of node i, and N2

i those which are second neighbors of
node i.

We also need the following definitions. A set of nodes in a network is
an independent set if, for every link of the network, not both its nodes are
in the set. A set C of nodes in a network is a covering if, for every node
i, C ∩ ({i} ∪N1

i ) 6= ∅ (i.e. if for any node i we consider the set made of i
itself and its first neighbors, then at least one of them is also a member of
C). A set of nodes in a network is a maximal independent set if it is both an
independent set and a covering. In our notation a maximal independent set
is characterized by those nodes playing 1 in a NE ~x.
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Proof of Lemmas 1 and 2: suppose that xi = 1, and we flip this action
so that xnew

i = 0. Consider now any node j in N1
i , it is clear that xj = 0

since xi = 1. For all those j ∈ N1
i such that xk = 0 for any k ∈ N1

j \{i}, we
will have xnew

j = 1. In the case that two such j’s that flipped from 0 to 1 will
be linked together, by best response only some of them will flip to 1 (this is
the only random part in the best response rule). If j is such that xj = 0 and
xnew

j = 1, it is surely the case that any k ∈ N1
j \{i} was playing xk = 0 and

remains at xnew
k = 0. The propagation of the best response is then limited

to N1
i .

Note: a best response from 0 to 1 applies only to nodes that are playing
0, are linked to a node which is shifting from 1 to 0, and that node is the only
neighbor they have who is originally playing 1.

Suppose now that xi = 0 and we flip this action so that xnew
i = 1. The

nodes j in N1
i who were playing xj = 0 will continue to do so. Any node

j in N1
i (at least one) who was playing xj = 1 will move to xnew

j = 0. By
the previous point this will create a propagation to some k ∈ N1

j , but not i.
This proves that the propagation of the best response is limited to N2

i (and
ends in a new NE). ¤

Proof of Lemma 3: we proceed by defining intermediate NE ~x1, ~x2. . .
between any two NE ~x and ~x′. ~xn+1 will be obtained from ~xn by flipping one
node from 0 to 1 and waiting for the best response.

If two NE ~x and ~x′ are different, it must be that there is at least one i1
such that xi1 = 0 and x′i1 = 1 (it is easy to check that any strict subset of
a maximal independent set is not a covering any more). Change the action
of that node so that x1

i1
= x′i1 = 1. By previous proof this will propagate

deterministically to N1
i1

and, for all j ∈ N1
i1
, we will have x1

j = x′j = 0.
Propagation may also affect N2

i1
but this is of no importance for our purposes.

If still ~x1 6= ~x′, then take another node i2 such that x1
i2

= 0 and x′i1 = 1
(i2 is clearly not a member of N1

i1
∪ {i1}). Pose x2

i2
= x′i2 = 1, this will

change some other nodes by best response, but not j ∈ N1
i1
∪ {i1}, because

any j ∈ N1
i1

can rely on x1
i1

= 1, and then also x2
i1

= x1
i1

= 1 is fixed.

We can go on as long as ~xn 6= ~x′, taking any node in+1 for which xn
in+1

= 0
and x′in+1

= 1. This process will converge to ~xn → ~x′ in a finite number of
steps because:

• when in+1 shifts from 0 to 1, the nodes j ∈ ⋃n
h=1

(
N1

ih
∪ {ih}

)
will not

change, since they are either 0–players with a 1–player beside already
(the 1–player is some ih, with h ≤ n), or a 1 (some ih) surrounded by
frozen 0’s;
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• by construction it is never the case that in+1 ∈ ⋃n
h=1

(
N1

ih
∪ {ih}

)
,

because for all j ∈ ⋃n
h=1

(
N1

ih
∪ {ih}

)
we have that xn

j = x′j;

• the network is finite. ¤

In the above proof, the shift from ~x to ~x′ is done by construction re–
defining the covering of any ~xn from the covering of ~x′. It is always certain
that, by best response, any ~xn is also an independent set.
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