Economics of Managing GHG In Agriculture

Dr. Cole Gustafson
North Dakota State Univ.
USDA Economists Group
May 27, 2009
Agriculture and Forestry Are Targets

(Global Anthropogenic GHG Emissions)

- Energy Supply: 26%
- Buildings: 8%
- Industry: 19%
- Agriculture: 14%
- Forestry: 17%
- Transport: 13%
- Waste: 3%

GHG - Economic Alternatives

- Regulation
- Laissez-Faire Market Approach
- Carbon Tax
- Cap and Trade
GHG - Economic Alternatives

• Regulation
 – Generally less favored by economists
 – High monitoring costs (upstream vs. downstream)
 – Unknown processes
 – Limits efficiency gains/creates rigidities
 – Accelerate response/capture economies

• Laissez-Faire Market Approach

• Carbon Tax

• Cap and Trade
Renewable Fuel Volume Requirements for RFS2 (billion gallons)

<table>
<thead>
<tr>
<th>Year</th>
<th>Cellulosic biofuel requirement</th>
<th>Biomass-based diesel requirement</th>
<th>Advanced biofuel requirement</th>
<th>Total renewable fuel requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>9.0</td>
</tr>
<tr>
<td>2009</td>
<td>n/a</td>
<td>0.5</td>
<td>0.6</td>
<td>11.1</td>
</tr>
<tr>
<td>2010</td>
<td>0.1</td>
<td>0.65</td>
<td>0.95</td>
<td>12.95</td>
</tr>
<tr>
<td>2011</td>
<td>0.25</td>
<td>0.80</td>
<td>1.35</td>
<td>13.95</td>
</tr>
<tr>
<td>2012</td>
<td>0.5</td>
<td>1.0</td>
<td>2.0</td>
<td>15.2</td>
</tr>
<tr>
<td>2013</td>
<td>1.0</td>
<td>a</td>
<td>2.75</td>
<td>16.55</td>
</tr>
<tr>
<td>2014</td>
<td>1.75</td>
<td>a</td>
<td>3.75</td>
<td>18.15</td>
</tr>
<tr>
<td>2015</td>
<td>3.0</td>
<td>a</td>
<td>5.5</td>
<td>20.5</td>
</tr>
<tr>
<td>2016</td>
<td>4.25</td>
<td>a</td>
<td>7.25</td>
<td>22.25</td>
</tr>
<tr>
<td>2017</td>
<td>5.5</td>
<td>a</td>
<td>9.0</td>
<td>24.0</td>
</tr>
<tr>
<td>2018</td>
<td>7.0</td>
<td>a</td>
<td>11.0</td>
<td>26.0</td>
</tr>
<tr>
<td>2019</td>
<td>8.5</td>
<td>a</td>
<td>13.0</td>
<td>28.0</td>
</tr>
<tr>
<td>2020</td>
<td>10.5</td>
<td>a</td>
<td>15.0</td>
<td>30.0</td>
</tr>
<tr>
<td>2021</td>
<td>13.5</td>
<td>a</td>
<td>18.0</td>
<td>33.0</td>
</tr>
<tr>
<td>2022</td>
<td>16.0</td>
<td>a</td>
<td>21.0</td>
<td>36.0</td>
</tr>
<tr>
<td>2023+</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>
Why GHG Is Complicated

• Global in origins and impacts
• Effects are long term
• Indicators are stochastic
• Stock and flow process
• Effects are large with many potentially irreversible
• Uncertainty in science

Stern, AER, May 2008
Economic Aspects

• Risk and uncertainty
• Present value (individual vs. social r)
• Ethics
 – Across generations
 – Humans vs. others in environment
 – Developed vs. less developed countries
 – Regional impacts
GHG - Economic Alternatives

• Regulation
• Laissez-Faire Market Approach
 – Variable adoption pace
• Carbon Tax
• Cap and Trade
GHG – Part of Farm Value Equation

- Crop/Lvstk Insurance
- Lenders
GHG - Economic Alternatives

- Regulation
- Laissez-Faire Market Approach
- Carbon Tax
 - Tax aversion
 - Price is known, Quantity is uncertain
 - Firms can develop optimal response
 - Deadweight losses
 - Revenue can aid adjustment/disadvantaged
- Cap and Trade
GHG - Economic Alternatives

• Regulation
• Laissez-Faire Market Approach
• Carbon Tax
• Cap and Trade
 – Quantity known, Price uncertainty
 – Low administrative cost
 – Risk aversion
 – Free credits (slow response, incumbent advantage, reduced public revenue)
Capital Market Constraints

• Credit market turmoil
• Low equity reserves
 – Low margins
 – Sweeps
• Lack of production benchmarks
Base Case Generation

![Chart showing electricity generation over time by different energy sources. The chart tracks various energy sources such as efficiency savings, distributed PV, storage, CSP, offshore wind, land-based wind, cofired biomass, run-of-river, geothermal, hydro, nuclear, gas-CC-CCS, gas-CC, gas-CT, oil-gas-steam, coal-CCS, coal-IGCC, coal-new, cofired coal, coal-old scrubbed, and coal-old unscrubbed. The chart also indicates total load.](chart_image)
Carbon Case Inputs/Assumptions

• Carbon cap: By 2050 reduce U.S. electric sector carbon emissions to 20% of 2005 emissions

• Technology cost/performance from 20% Wind Energy by 2030 study

• Annual Energy Outlook 2009 Reference Case fuel prices and electric demands

• Climate case projection of PV in buildings from UCS Climate Analysis

• Carbon allowances are assumed to be allocated through an auction system. No assumption is made with respect to the use of the auction revenues.
Ag Carbon Credit Opportunities

• Conservation Tillage
• Grassland
• Range
Agricultural Carbon Credit Markets

• North Dakota Farmers Union (more acres)
 – 42 states, 5.3 million acres
 – 1.7 million in ND
 – Rotational grazing fastest growing segment

• Iowa Farm Bureau (more tons)
 – No-till/forests
Questions?

cole.gustafson@ndsu.edu
(701) 231-7096