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Abstract

The paper shows that Perfect Bayesian equilibria need not be unique
in the strategic communication game of Crawford and Sobel (1982). First,
different equilibrium partitions of the state space can have equal cardinal-
ity, despite fixed prior beliefs. Hence, there can be different equilibrium
action profiles with the same size. Second, provided a Perfect Bayesian
equilibrium exists, different message rules and beliefs can hold in other
equilibria inducing the same action profile.
Keywords: sender-receiver games, strategic information transmission
JEL codes: D83

1 Introduction

Crawford and Sobel’s seminal paper (1982) concerning one-shot sender-receiver
games is an essential reference for most of the literature in strategic information
transmission. In particular, multi-stage games often rely on the uniqueness
of per-stage equilibrium solutions. However, Crawford and Sobel substantially
assume that equilibria are unique.
In particular, Crawford and Sobel (1982) consider the following one-shot

game of strategic communication. The payoff of two agents, N and E, depend
on action a and the true state of the world ω. Agent N has prior beliefs about
the state of the world, that are represented by a non-degenerate distribution
function. Instead, agent E can observe the true state perfectly. First, agent E
sends a message to agent N , then agent N chooses action a and the payoff are
realized. Crawford and Sobel show that Nash Bayesian equilibria are partitional:
agent E will introduce noise into his signal so that only one action will be
implemented for all the states that belong to the same element of the equilibrium

∗Address: Dipartimento di Statistica, Università di Milano-Bicocca, via Bicocca degli
Arcimboldi 8, 20126 Milano, Italy, email: irene.valsecchi@unimib.it, tel. +39-02-64485820,
fax +39-02-6473312
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partition. Moreover, equilibrium partitions will have finite cardinality, i.e. the
state space will be partitioned into a finite number of proper subsets.
Crawford and Sobel impose a particular monotonicity condition on the equi-

librium solutions. That condition implies that a unique equilibrium partition
with cardinality I can exist. Moreover, they consider only uniform message
rules, i.e. agent E will choose a message from the equilibrium subset Mi ran-
domly, according to a uniform distribution, if the true state lies in the equilib-
rium subset Ωi.
The paper shows that Perfect Bayesian equilibria need not be unique for the

game of Crawford and Sobel under two different respects. First, an equilibrium
partition with cardinality I need not be unique. In particular, provided an equi-
librium partition of the state space with I elements is unique under some prior
distribution function, that partition can be shown to belong to the non-singular
subset of equilibrium partitions with the same size under other distribution
functions. Consequently, there can be different equilibrium action profiles for
partitions with the same cardinality.
Second, Perfect Bayesian equilibria need not be unique because the equi-

librium message rule and, hence, the equilibrium beliefs are not unique. In
particular, provided a Perfect Bayesian equilibrium exists under some prior dis-
tribution function with a unique equilibrium profile of actions and a particular
equilibrium message rule, there will be other Perfect Bayesian equilibria under
the same distribution function with the same equilibrium profile of actions but
different message rules and equilibrium beliefs.

2 Set-up

Assumption 1 : the payoffs of the agents N and E depend on the action a
and the state of nature ω. Action a belongs to the action space A, that is an
interval of real numbers, while the state space Ω is the closed unit interval on
the real line. In particular, agent N has a twice continuously differentiable
von Neumann-Morgenstern utility function UN (a, ω); agent E has a twice con-
tinuously differentiable von Neumann-Morgenstern utility function UE (a, ω, b),
where b is a scalar parameter. The utility functions are such that:

given ω, ∃a ∈ A : U i
a (•) = 0, with i = N,E (1)

U i
aa (•) < 0 ∨ a ∈ A, with i = N,E (2)

U i
aω (•) > 0 with i = N,E (3)

From (1) − (2), given ω, U i (•) has a unique maximum in a for i = N,E.
Let:

aiω = argmax
a

U i (•) , i = N,E (4)

Parameter b in agent E’s utility function is a measure of the conflict of
interest between the agents. In particular:
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Assumption 2 : the scalar parameter b is such that in (4) the best action aEω
for a perfectly informed agent E is always lower than the best action aNω for a
perfectly informed agent N1. Only agent E observes the true state of nature.
Instead, agent N has prior beliefs about the state of nature that are represented
by the distribution function (d.f.) F (ω), with continuous probability density
function f (ω) such that f (ω) > 0 for every ω in (0, 1) 2 .

First, agent E observes ω, then he chooses and sends one messagem to agent
N. The cardinality of the set M of messages is not lower than the cardinality
of Ω. Agent N receives message m and, then, he chooses one action a in A.
Once the action is selected by agent N , the payoffs are realized.

All aspects of the game except ω are common knowledge.

Agent E chooses a message rule, i.e. a set of generalized probability density
functions, denoted {ϕ(m | ω)}, with cardinality |Ω|, such that

∫
M

ϕ(m | ω)dm =
1 for each state ω. Agent N chooses an action rule, i.e. a set of generalized
probability density functions, denoted {α (a | m)}, with cardinality |M |, such
that

∫
A
α(a | m)da = 1 for each message m. Let ρ (ω | m) denote agent N ’s

probability density function of ω conditional on having received message m. A
Perfect Bayesian equilibrium is a pair of message rule {ϕ∗(m | ω}) and action
rule {α∗(a | m)}, and a system of beliefs {ρ∗ (ω | m)} such that:
1) the equilibrium message rule maximizes agent E’s expected payoff for

every state ω given the equilibrium action rule;
2) the equilibrium action rule maximizes agent N ’s expected payoff for every

message m where the expectation satisfies the following condition:

Ω∗m = {ω | ϕ∗(m | ω) > 0} 	= ∅ → (5)

ρ∗ (ω | m) =
ϕ∗(m | ω)f(ω)∫

Ω∗
m

ϕ∗(m | ω)f(ω)dω
∨ ω ∈ Ω∗m; ρ

∗ (ω | m) = 0 ∨ ω /∈ Ω∗m

3 Results

Proposition 1 is Theorem 1 in Crawford and Sobel (1982, p.1437) adapted to
Perfect Bayesian Equilibria, instead of Bayesian Nash equilibria.

Proposition 1 :
1) every Perfect Bayesian Equilibrium is partitional, i.e.:
- there exists a partition of M into I∗ disjoint subsetsM∗

i , i = 1, ...I∗.
- There exists a partition of Ω into I∗ subsets denoted Ω∗i such that Ω

∗
i =

[ω∗i , ω
∗
i ] with ω∗i < ω∗i for (I

∗ − 1) elements of the partition at least; the equilib-
rium message rule is such that:

∫

M∗

i

ϕ∗(m | ω ∈ Ω∗i )dm = 1;

∫

M∗

i

ϕ∗(m | ω /∈ Ω∗i )dm = 0

1All the results hold for the analogous case in which aEω is always greater than a
N
ω .

2 If the density function f (ω) were nil for non-empty subsets of the state space, then there
could be different partitions of the state space substantially equivalent with respect to the
induced action profile, given the prior beliefs.
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- There exists a profile of I∗ actions denoted a∗i , is such that:

a∗i = argmax
a∈A

∫

Ω

UN(a, ω)ρ∗ (ω | m ∈M∗
i ) dω

given (5).
2) Every equilibrium partition has a finite number I∗of elements.
3) If there exists an equilibrium partition with cardinality I∗ > 1, then there

will be an equilibrium partition with cardinality (I∗ − 1).

Given a d.f. H(ω), let aH denote the unique action such that:

aH = argmax
a

∫

Ω

UN (•) dH(ω)dω (6)

Moreover, let P ∗H,I∗ denote the equilibrium partition of the state space with
cardinality I∗ under the d.f. H(ω).
Crawford and Sobel (1982, p.1444) assume that the following monotonicity

condition holds in equilibrium:

Condition 1 M: given P ∗F,I∗ = {Ω∗i } and P ∗
F,Ĩ∗

=
{
Ω̃∗i

}
, if ω∗1,I∗ > ω∗

1,Ĩ∗
, then

ω∗i,I∗ > ω∗
i,Ĩ∗

for all i ≥ 2.

Condition M implies that there will be a unique equilibrium partition for
each cardinality of the partitions: if P ∗F,I∗ and P ∗

F,Ĩ∗
exist, then I∗ will be lower

than Ĩ∗.
The paper shows that the one-to-one correspondence between cardinality

and equilibrium partition will not hold if Crawford and Sobel’s monotonicity
condition is dropped. The following Corollary and Lemma are useful in order to
prove that multiple equilibrium partitions with the same cardinality can exist.
In particular, Lemma 1 shows that identical action profiles will be induced under
prior distribution functions defined on the same support and having equal mean,
provided UN

aωω (•) is equal to zero
3 .

Corollary 1 :
[
UE (aF , 1, b)− UE

(
aN0 , 1, b

)]
> 0 is a necessary condition for

the existence of P ∗F,I∗ with I∗ > 1.

Lemma 1 : provided UN
aωω (•) = 0, then aH will be equal to aK if the d.f.

H (ω) and the d.f. K (ω) have the same mean.

Proposition 2 proves in the following way that Perfect Bayesian equilibria
need not be unique. Suppose that under the prior d.f. in the following way. there
exists a unique P ∗F,I∗ with the correspondingly unique equilibrium action profile
aF,I∗ . Consider another d.f. G (ω) that both satisfies the marginal likelihood
ratio property with respect to the prior d.f. F (ω), and induces a unique P ∗G,I∗

3The condition UNaωω (•) = 0 is satisfied by a class of commonly used utility functions.
Crawford and Sobel (1982, p. 1440)) assume that UN (a, ω) = − (a− ω)2 in an example.
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with unique equilibrium action profile aG,I∗ . First-order stochastic dominance
between the distribution functions and MLRP will imply a complete ordering
of the upper and lower bounds of all the subsets in P ∗F,I∗ and P ∗G,I∗ . Given that
ranking, there will exist another d.f. Y (ω), that is a mixture of distribution
functions, under which the set of equilibrium partitions with cardinality I∗

contains both P ∗F,I∗ and P ∗G,I∗ .

Proposition 2 : suppose that there exists a unique P ∗F,I∗ with I
∗ > 1. Provided

UNaωω (•) = 0, there exist other distribution functions Y (ω) such that the set of
P ∗Y,I∗ is non-singular and contains P

∗
F,I∗ .

Given Proposition 2 there can be different equilibrium action profiles notwith-
standing the same cardinality of the equilibrium partitions: under the d.f. Y (ω)
both aF,I∗ and aG,I∗ will be equilibrium action profiles.
Proposition 3 shows that an equilibrium message rule is not unique even in

correspondence to a unique P ∗F,I∗ . In particular, represent agent N ’s posterior
beliefs as distribution functions. If an equilibrium message rule supports a
posterior d.f. H (ω), then all the message rules inducing posterior distribution
functions with the same mean of H (ω) and rankable with respect to H (ω)
according to second-order stochastic dominance will be equilibrium message
rules.

Proposition 3 : suppose that there exists a unique P ∗F,I∗ . Provided UN
aωω (•) =

0, the equilibrium message rule and beliefs are not unique under the d.f. F (ω).

4 Conclusions

The paper shows that Perfect Bayesian equilibria need not be unique in the
strategic communication game of Crawford and Sobel (1982). Consequently,
there is not a correspondence which associates with each cardinality of the
equilibrium partitions one and only one equilibrium action profile for every
prior distribution function. Moreover, the equilibrium message rules and beliefs
are not unique for given prior beliefs.
Non-uniqueness of one-shot equilibria can be relevant for multi-stage games

of strategic communication.

5 Appendix

Proof. of Proposition 1

Step 1. From strict concavity in (2), there will be a unique action that
maximizes agent i’s expected payoff function for each d.f. F (ω). Hence, agent
N will never use mixed strategies, whatever his beliefs {ρ(ω | m)}. Agent N ’s
action rule will be a function ã(m) : M → AM where:

AM =

{
am |

∫

Ω

UN
a (am, ω) ρ(ω | m)dω = 0

}
(7)

5



Suppose that the d.f. H (ω) dominates the d.f. K(ω) in the sense of first
order stochastic dominance. Let aH and aK denote the action levels such that:

∫

Ω

U i
a(aH , •)dH(ω)dω =

∫

Ω

U ia(aK , •)dK(ω)dω = 0 (8)

From (3), (8) and (2) it follows that:
∫

Ω

U i
a(aH , •)dH(ω)dω >

∫

Ω

U i
a(aH , •)dK(ω)dω → aH > aK (9)

From (9) the best value of a for the fully informed agent i in (4) is a contin-
uous, strictly monotonic function of the true value of ω, i.e.:

aiω > aiω′ ←→ ω > ω′ with i = N,E (10)

Let Ai be the set of the aiω in (4). Given (1):

Ai =
[
ai0, a

i
1

]
⊆ A with i = N,E;

∣∣Ai
∣∣ = |Ω| with i = N,E (11)

From (7) and (11):
AM ⊆ AN (12)

Let:
I = |AM | (13)

Consequently, I ≤ min
{
|M | ,

∣∣AN
∣∣}.

Step 2. Rank all the elements in AM in the following way:

AM = {a1, ..., ai, ..., aI | ai−1 < ai < ai+1}

Let:
Mi = {m | ã(m) = ai} with i = 1, ..., I

Ωi =
{
ω | UE (ai, ω, b) ≥ UE (aj , ω, b) ∨ aj ∈ (AM \ ai)

}

with i = 1, ..., I

By construction,
⋃I
i=1Ωi = Ω. From (2):

ω ∈ Ωi ∩Ωj → ω /∈
⋃

p �=i,j

Ωp (14)

ai > aj and ω ∈ Ωi ∩Ωj → aj < aEω < ai

From (14), if ω ∈ Ωi ∩ Ωj and aj < ai−1, then either a
E
ω ∈ (aj, ai−1] and

ω /∈ Ωi, or aEω ∈ [ai−1, ai) and ω /∈ Ωj , that is contradictory. Hence:

ω ∈ Ωi → ω /∈ Ωj ∨ j < i− 1,∨j > i+ 1 (15)

From (3) the utility functions have increasing differences in (a, ω) (Milgrom-
Shannon (1994)), i.e.:

U i (a, ω, •)−U i (a′, ω, •) > U i (a, ω′, •)−U i (a′, ω′, •) ∨ a > a′, ω > ω′ (16)
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From (16):

Ωi ∩Ωj 	= ∅ → |Ωi ∩Ωj | = 1 (17)

ai > aj and ω ∈ Ωi and ω′ ∈ Ωj → ω > ω′ ∨ ω 	= ω′

Finally from (15) and (17):

ai > ap > aj and Ωi,Ωj 	= ∅ → Ωp 	= ∅ (18)

From (14)− (18):

Ωi 	= ∅ → Ωi = [ωi, ωi] with ωi ≤ ωi (19)

ω ∈ Ωi → ai−1 < aEω < ai+1

Ωi−1,Ωi 	= ∅ → ωi−1 ≤ ωi; Ωi,Ωi+1 	= ∅ → ωi ≤ ωi+1

ω ∈ (ωi, ωi)→ ω /∈
⋃

p �=i

Ωp

Ωi−1 ∩Ωi 	= 0→ ωi−1 = ωi; ai−1 < aEω
i

< ai (20)

Finally, given AM , let {ϕ̃(m | ω)} denote the message rule that maximizes
agent E’s payoff. From (19)− (20):

ω /∈ Ωi →

∫

Mi

ϕ̃(m | ω)dm = 0; ω /∈
⋃

p�=i

Ωp →

∫

Mi

ϕ̃(m | ω)dm = 1(21)

ω ∈ Ωi−1 ∩Ωi →

∫

Mi−1∪Mi

ϕ̃(m | ω)dm = 1

Step 3. Let:

Li = {m | m ∈Mi and ϕ̃ (m | ω) > 0 for some ω ∈ Ωi}

From (9) and (19)− (21) a Perfect Bayesian equilibrium must be such that:

|Ω∗i | > 1→ L∗i 	= ∅;

∫ ωi

ω
i

ρ∗ (ω | m ∈ L∗i ) dω = 1; a∗i ∈
(
aNω

i

, aNωi

)

Ω∗i = ω /∈
⋃

p �=i

Ω∗p → L∗i 	= ∅; ρ
∗ (ω | m ∈ L∗i ) = 1; a∗i = aNω (22)

Step 4. From Assumption (2), since aE0 < aN0 , given (12), 0 ∈ Ω∗1 in equilib-
rium.
Suppose that in equilibrium some Ω∗i is such that Ω

∗
i = ω̆ /∈

⋃
p�=iΩ

∗
p. From

(22), aEω̆ < a∗i = aNω̆ . If ω̆ < 1. given (19) and continuity, then Ω∗i+1 	= ∅ and
there will a ω′′ such that aEω̆ < aEω′′ ≤ a∗i < a∗i+1; but, from (10) and (19), if
aEω̆ < aEω′′ , then ω

′′ > ω̆ and ω′′ /∈ Ω∗j with j ≤ i, while, if aEω′′ ≤ a∗i < a∗i+1, then
ω′′ /∈ Ω∗j with j ≥ i+1, that is contradictory. Instead, if ω̆ = 1, given (16) and

continuity, then Ω∗i−1 	= ∅ and
[
UE (a∗i , ω̆, b)− UE

(
a∗i−1, ω̆, b

)]
will be strictly

positive, while
[
UE (a∗i , ωi−1, b)− UE

(
a∗i−1, ωi−1, b

)]
will be strictly negative:
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there will be a ω′ such that UE (a∗i , ω
′, b) = UE

(
a∗i−1, ω

′, b
)
and ω′ ∈ Ω∗i−1 ∩Ω∗i

so |Ω∗i | > 1 that is contradictory.
Now suppose that in equilibrium some Ω∗i is such that Ω

∗
i = ω̆ = Ω∗i+1. If

ω̆ < 1, from (20) and (18), then aEω̆ ∈
(
a∗i , a

∗
i+1

)
and Ω∗i+2 	= ∅. However, given

(10) and continuity, there will be a ω′′ such that aEω̆ < aEω′′ ≤ a∗i+1 < a∗i+2,
ω′′ > ω̆ and ω′′ /∈ Ω∗j with j ≥ i + 2, that is contradictory. Instead, if ω̆ = 1,

then aN1 ∈
{
a∗i , a

∗
i+1

}
. If a∗i+1 = aN1 , then aE1 ∈

(
a∗i , a

∗
i+1

)
and there will be a ω′

such that aEω′ ∈
[
a∗i , a

E
1

)
, ω′ < 1 and ω′ /∈ Ω∗j with j < i, that is contradictory.

If a∗i = aN1 , then Ω∗i+1 = ∅, that is contradictory.
Suppose that Ω∗i = ω̆ and Ω∗i+1 = [ω̆, ωi+1] with ω̆ < ωi+1. Since 0 ∈ Ω∗1,

then ω̆ 	= {0, 1}. Given (14), ω̆ /∈ Ω∗i−1, a
E
ω̆ ∈

(
a∗i , a

∗
i+1

)
and there will be a ω′

such that aEω′ ∈
[
a∗i , a

E
ω̆

)
, ω′ < ω̆ and ω′ /∈ Ω∗j with j < i, that is contradictory.

Hence, given (13), a Perfect Bayesian equilibrium must be such that:

∃Ω∗i : Ω∗i ⊇ 1 and i ∈ {I∗ − 1, I∗}
∣∣Ω∗j

∣∣ > 1 ∨ j ∈ {1, ..., I∗ − 1}

ω∗j−1 = ω∗j ∨ j ∈ {1, ..., I∗}

I∗ < ∞

Step 5. There always exists a Perfect Bayesian Equilibrium with a unique ac-
tion level played with probability one. Suppose that there exists an equilibrium
partition with cardinality I∗ greater than 1 and:

a∗i−1 and Ω∗i−1 = [ωi−2, ωi−1] ; a
∗
i and Ω∗i = [ωi−1, ωi]

a∗i+1 and Ω∗i+1 = [ωi, ωi+1] 2 ≤ i < I∗

Given (16), if ω ∈ (ωi−1, ωi), then:

UE (a∗i , ω, b)− UE
(
a∗i−1, ω, b

)
> UE (a∗i , ωi−1, b)− UE

(
a∗i−1, ωi−1, b

)
=

UE
(
a∗i+1, ωi, b

)
− UE (a∗i , ωi, b) = 0 > UE

(
a∗i+1, ω, b

)
− UE (a∗i , ω, b)

It follows that UE (a, ω, b) is first increasing and then decreasing from a∗i−1
to a∗i+1. Hence, there will be couples of actions, (âi−1, âi), such that âi−1 ∈(
a∗i−1, a

∗
i

)
, âi ∈

(
a∗i , a

∗
i+1

)
and

[
UE (âi, ω, b)− UE (âi−1, ω, b)

]
= 0 for ω ∈

(ωi−1, ωi). Since there exists an equilibrium partition with cardinality I
∗, then:

∃m′ ∈ L∗i−1 with ϕ∗ (m′ | ω) ; ∃m ∈ L∗i with ϕ∗ (m | ω)

∃m′′ ∈ L∗i+1 with ϕ∗ (m′′ | ω)

Consider all the partitions of the type:{
Ω′1 = [0, ω′1] , Ω′i = [ω′i, ω

′
i] , Ω

′
I∗−1 =

[
ω′(I∗−1), 1

]}

with cardinality (I∗ − 1), where ω1 < ω′1, ωi < ω′i < ωi < ω′i and ω′(I∗−1) <

8



ωI∗ . Suppose that:

∃m̂ ∈ L
′

i−1 : ϕ (m̂ | ω) = ϕ∗ (m′ | ω) ∨ ω ∈
[
ω′i−2, ωi−1

]

∃m̂ ∈ L
′

i−1 : ϕ (m̂ | ω) = ϕ∗ (m | ω) ∨ ω ∈
[
ωi−1, ω

′
i−1

]

∃m̌ ∈ L
′

i : ϕ (m̌ | ω) = ϕ∗ (m | ω) ∨ ω ∈
[
ω′i−1, ωi

]

∃m̌ ∈ L
′

i : ϕ (m̌ | ω) = ϕ∗ (m′′ | ω) ∨ ω ∈ [ωi, ω
′
i]

From (9), given âi = argmax
∫ ω′

i

ω′
i−1

UN(a, ω) ϕ(m̌|ω)f(ω)∫
ω
′

i

ω′
i−1

ϕ(m̌|t)f(t)dt
dω, then âi−1 <

a∗i−1 < âi < a∗i . Since âi is a monotonic function in
[
ω′i−1, ω

′
i

]
, there will exist

an equilibrium partition with cardinality (I∗ − 1).
Proof. of Corollary 1

From Proposition 1 point 3, if there exists a P ∗F,I∗ with I
∗ > 2, there will ex-

ists an equilibrium P ∗F,2. Consider an equilibrium P ∗F,2. The following condition
must hold:

UE (a∗2, ω, b) > UE (a∗1, ω, b) ∨ ω ∈ (ω∗1, 1] (23)

Let F1 (ω | q) be the d.f. F (ω) conditional on Ω1 = [0, q] and F2 (ω | q) be the
d.f. F (ω) conditional on Ω2 = [q, 1]. From (6), aF1(q) and aF2(q) will be unique
for every q. From (22), aN0 = aF1(0). Hence, a

N
0 < aF1(q) < aF < aF2(q) for

every q ∈ (0, 1). From strict concavity in (2),
[
UE (aF , 1, b)− UE (aF2(q), 1, b)

]

will be strictly positive if
[
UE (aF1(q), 1, b)− UE (aF , 1, b)

]
is nonnegative, while[

UE (aF1(q), 1, b)− UE (aF , 1, b)
]
will be strictly positive if

[
UE

(
aN0 , 1, b

)
− UE (aF , 1, b)

]

is nonnegative. Hence, if
[
UE

(
aN0 , 1, b

)
− UE (aF , 1, b)

]
is nonnegative, then

UE (aF1(q), 1, b) will be greater than U
E (aF , 1, b), that is greater than U

E (aF2(q), 1, b).
Given increasing differences in (16), UE (aF1(q), ω, b) will be greater than U

E (aF2(q), ω, b) for
every ω ∈ Ω, in contradiction with (23).

Proof. of Lemma 1

EH [ω] = EK [ω] (24)

→

∫

Ω

ω [dH (ω)− dK (ω)] = −

∫

Ω

[H (ω)−K (ω)] dω = 0

∫

Ω

UN
a (a, ω) [dH (ω)− dK (ω)] =

−

∫

Ω

UN
aω (a,ω) [H(ω)−K (ω)] dω = −UN

aω (a, ω)

∫

Ω

[H (ω)−K (ω)] dω +

+

∫

Ω

UNaωω (a, ω)

[∫ ω

ω

[H(t)−K (t)] dt

]
dω = 0

Proof. of Proposition 2

Suppose that under the d.f. F (ω) there exists a unique equilibrium with
equilibrium actions

(
a∗F1 , a

∗
F2

)
, and equilibrium P ∗F,2 = {[0, ω∗F ] , [ω

∗
F , 1]}. Given
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(6), from Corollary 1 it follows that UE (aF , 1, b) is greater than UE
(
aN0 , 1, b

)
.

Let F1(ω) denote the d.f. F (ω) conditional on ω in [0, ω∗F ], and F2(ω) de-
note the d.f. F (ω) conditional on ω in [ω∗F , 1]. Given strict concavity in (2),
a∗F1 ∈

(
aN0 , aF

)
and Corollary 1, it follows that UE

(
a∗F2 , 1, b

)
is greater than

UE
(
a∗F1 , 1, b

)
, that is greater than UE

(
aN0 , 1, b

)
.

Consider the set Ψ of distribution functions G (ω) with continuous den-
sity functions g (ω) such that (g/f) is decreasing on Ω (MLRP, (Karlin-Rubin
(1956)). Hence, each G (ω) is dominated by F (ω) in the sense of first order
stochastic dominance. Given MLRP:

∫ x
0 g (ω) dω
∫ k
0
g (ω) dω

≥

∫ x
0 f (ω) dω
∫ k
0
f (ω) dω

∨ x ≤ k, k ∈ Ω (25)

There will be some d.f. G̃ (ω) in Ψ such that the expected ω under G̃ (ω),
EG̃ [ω], is greater than the expected ω under F1 (ω), EF1 [ω]. Hence, aG̃ ∈(
a∗F1 , aF

)
. Given strict concavity in (2), under the d.f. G̃ the necessary condition

stated by Corollary 1 will be satisfied. Hence, under the d.f. G̃ there will exists a

unique equilibrium with equilibrium actions
(
a∗
G̃1

, a∗
G̃2

)
, and equilibrium P ∗

G̃,2
=

{[
0, ω∗

G̃

]
,
[
ω∗
G̃
, 1
]}
. Moreover, given (25), ω∗

G̃
will be lower than ω∗F . Hence:

EG̃1
[ω] < EF1 [ω] < EG̃2

[ω] < EF2 [ω]

Let:
Ω1 =

[
0, ω∗

G̃

]
Ω2 =

[
ω∗
G̃
, ω∗F

]
Ω3 = [ω∗F , 1]

and let H1 (ω) denote a d.f. on Ω1, H2 (ω) a d.f. on Ω2 and H3 (ω) a d.f. on Ω3
such that:

EH1
[ω] = EG̃1

[ω] ; EH2
[ω] = ω̃ with ω̃ ∈ Ω̃ ∩ Ω2; EH3

[ω] = EF2 [ω]

where Ω̃ =
(
EF1 [ω] , EG̃2

[ω]
)
. Consider the following d.f. Y (ω):

Y (ω) = α1H1 (ω) ∨ ω ∈ Ω1; Y (ω) = α1 + α2H2 (ω) ∨ ω ∈ Ω2

Y (ω) = α1 + α2 + α3H3 (ω) ∨ ω ∈ Ω3

where αi ≥ 0 and
∑
i αi = 1. The d.f. Y (ω) is a mixture of the d.f. Hi (ω).

Provided:

α1 =
{
EF2 [ω]−EG̃2

[ω]
}
{ω̃ −EF1 [ω]} /∆

α2 =
{
EF2 [ω]−EG̃2

[ω]
}{

EF1 [ω]−EG̃1
[ω]
}
/∆

α3 =
{
EF1 [ω]−EG̃1

[ω]
}{

EG̃2
[ω]− ω̃

}
/∆

∆ =
{
EF2 [ω]−EG̃2

[ω]
}
{ω̃ −EF1 [ω]}+

{
EF1 [ω]−EG̃1

[ω]
}
{EF2 [ω]− ω̃}

then:

EY [ω | ω ∈ Ω1] = EG̃1
[ω] ; EY [ω | ω ∈ Ω1 ∪Ω2] = EF1 [ω]

EY [ω | ω ∈ Ω2 ∪Ω3] = EG̃2
[ω] ; EY [ω | ω ∈ Ω3] = EF2 [ω]

10



Given Lemma 1, under the d.f. Y (ω) both P ∗F,2 and P ∗
G̃,2
will be equilibrium

partitions.
Proof. of Proposition 3

Under Assumption 2, let Fi (ω) be the d.f. F (ω) conditional on Ωi = [ωi, ωi]
with ωi < ωi, and fi (ω) be its density function, continuous at each point of Ωi.
Then, [ωfi (ω)] is integrable on Ωi, and fi (ω) is positive for every ω ∈ (ωi, ωi).
Let ω̃ = EFi [ω]. Choose a ω′ in (ωi, ω̃). Then

[∫ ω
ω′

tfi (t) dt/
∫ ω
ω′

fi (t) dt
]
is

continuous on [ω′, ωi] since both
∫ ω
ω′

tfi (t) dt and
∫ ω
ω′

fi (t) dt are continuous at

each point of Ωi. Choose a ω̌ in (ω′, ωi) such that
[∫ ω̌
ω′

tfi (t) dt/
∫ ω̌
ω′

fi (t) dt
]
is

lower than ω̃. Given:

ΩA = [ω, ωa] ΩB = [ω, ωb] with ωb > ωa > ω

ΩC = [ωc, ω] ΩD = [ωd, ω] with ω > ωd > ωc

let:

Hi (ω) = 0 ∨ ω < ω; Hi (ω) =

∫ ω
ω
fi (t) dt

∫
Ωi

fi (t) dt
∨ ω ∈ Ωi; Hi (ω) = 1 ∨ ω > ωi

i = A,B

Hi (ω) = 0 ∨ ω < ωi; Hi (ω) =

∫ ω
ω
i

fi (t) dt
∫
Ωi

fi (t) dt
∨ ω ∈ Ωi;Hi (ω) = 1 ∨ ω > ω

i = C,D

HB (ω) dominates HA (ω), and HD (ω) dominates HC (ω) in the sense of first
order stochastic dominance. Hence:

∫ ω̌
ω′

tfi (t) dt
∫ ω̌
ω′

fi (t) dt
< ω̃ <

∫ ω
ω′

tfi (t) dt
∫ ω
ω′

fi (t) dt

From the intermediate value theorem for continuous functions, there exists
a ω′′ in (ω̃, ωi) such that: ∫ ω′′

ω′
tfi (t) dt

∫ ω′′
ω′

fi (t) dt
= ω̃ (26)

Let:
ΩiI = [ωi, ω

′) , ΩII = [ω′, ω′′] , ΩIII = (ω′′, ωi]

from (26) it follows that:

∫

Ωi

tfi (t) dt =

∫
ΩiII

tfi (t) dt∫
ΩiII

fi (t) dt
→

∫
ΩiI∪ΩiIII

tfi (t) dt∫
ΩiI∪ΩiIII

fi (t) dt
=

∫
ΩiII

tfi (t) dt∫
ΩiII

fi (t) dt
(27)
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Consider the following probability density function f
′

i (ω):

f ii (ω) =
pfi (ω)

p
∫
ΩiI∪ΩiIII

fi (t) dt+ q
∫
Ωiii

fi (t) dt
∨ ω ∈ ΩiI ∪ΩiIII (28)

f ii (ω) =
qfi (ω)

p
∫
ΩiI∪ΩiIII

fi (t) dt+ q
∫
ΩiII

fi (t) dt
∨ ω ∈ ΩiII ; p > q

From (27): ∫

Ωi

tfi (t) dt =

∫

Ωi

tf ii (t) dt (29)

From (28), the d.f. F ′i (ω) will be greater than the d.f. F (ω) for every
ω ∈ ΩiI ; instead, the d.f. Fi (ω) will be greater than the d.f. F

′
i (ω) for every

ω ∈ ΩiIII . Moreover, there will be a ω̂ in (ω′, ω′′) such that the d.f. F ′i (ω) is
greater than Fi (ω) for every ω ∈ [ω′, ω̂), while the d.f. Fi (ω) is greater than the
d.f. F ′i (ω) for every ω ∈ (ω̂, ω′′]. From (29) and (24), given the single crossing
property between the distribution functions (Diamond-Stiglitz (1974)), Fi′ (ω)
will be a mean preserving spread of Fi (ω).
Suppose that under F (ω) there exists a Perfect Bayesian equilibrium such

that Ωi belongs to the equilibrium partition. From Proposition 1, given ω in Ωi,
a constant ϕ∗ (m | ω) for every m in Mi is an equilibrium message rule. Given
Lemma 1 and m,m′ in Mi, the message rule:
{ϕ́∗ (m | ω) = pϕ∗ (m | ω) , ϕ́∗ (m′ | ω) = (1− p)ϕ∗ (m | ω)} ∨ω ∈ (ΩiI ∪ΩiIII)
{ϕ́∗ (m | ω) = qϕ∗ (m | ω) , ϕ́∗ (m′ | ω) = (1− q)ϕ∗ (m | ω) } ∨ω ∈ ΩiII
will be an equilibrium message rule as well.
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