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Abstract

Starting from a system of factor demands, an empirical model that allows estimating
factor-augmenting technical change is derived. Factor-augmenting technical change is de-
fined as the improvement in factor productivities that can occur either exogenously or en-
dogenously, with changes in other macroeconomic variables. This paper provides additional
estimates for the substitution possibilities among inputs and it offers new empirical evidence
on the direction and sources of factor-augmenting technical change, an issue that has not yet
been explored by the empirical literature on growth determinants.

The empirical findings suggest that technical change is directed. Technical change tends
to be more energy-saving than capital- and labour-saving. Both R&D investments and
international trade are important determinants of growth in energy and capital productivity
whereas technical change for labour is positively related to education expenditure. Therefore,
the sources of factor-augmenting technical change go beyond R&D investments, as proposed
in the theory of directed technical change, and they differ across inputs. In other words, not
only is technical change directed, the sources of factor-augmenting technical change appear
to be input specific.

Keywords: Factor-augmenting technical change, Technology spillovers, Panel data;
JEL classifications: C3; O47; Q55; Q56;

1 Introduction

Technical change is an increasingly interesting issue for economists specialised in fields other
than economic growth or the microeconomic theory of innovation (Hicks, 1932), where the
process of technical change was first analyzed. Starting from the first models of economic
growth, technical change has always been considered as the key engine of long-run economic
growth (Solow, 1956). In the nineties, a group of environmental economists investigated the
relationships between growth and pollution, and discovered a negative relationship for some
pollutants (Grossman and Krueger, 1993; de Bruyn et al., 1997). This result suggested a
positive correlation between growth and environmental efficiency. Technical change also plays
a crucial role in climate economy models used to assist the analysis of climate policy. It is now
well established that the assumptions about technical change are among the most important
drivers of the macroeconomic costs of stabilizing the concentration of carbon emissions in the
atmosphere (Edenhofer et al., 2006). Increasing concerns about climate change call for more
empirical evidence on the dynamics and the sources of technical change.

The difficulties of dealing with technical change are mostly due to its non-observability.
A simple way of measuring technical change is to approximate it with a deterministic trend

∗Corresponding author, Fondazione ENI Enrico Mattei, Campo Santa Maria Formosa, Venice, Italy, E-mail:
enrica.decian@feem.it. Paper presented at: SURED 2008, June 4-9, Ascona, Switzerland. Comments and support
from Carlo Carraro, Reyer Gerlagh and Ignazio Musu are gratefully acknowledged.
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(Jorgenson and Wilcoxen, 1990). More sophisticated models infer technical change by observing
the dynamics of other economic variables. Slade (1989) and Bonne et al. (1992) developed a
model of factor demands in which the nature of technical change as a latent variable is preserved.
Technical change is broken down into an unobservable component, a time trend, and other
factors that endogenously influence technical change. In this way, technical change is modeled
as a stochastic trend. A similar methodology was used by Carraro and Galeotti (1996) who
inferred the dynamics of technical change from the time evolution of capital stock rather than
factor demand.

The economic approach to technical change typically treats it as a cost reducing process,
abstracting from elements such as productivity improvements and productivity sources. Build-
ing upon the analytical framework developed by the economic approach, this paper attempts to
quantify the dynamics and the sources of technical change, with consideration for input produc-
tivity changes (e.g. factor-augmenting technical change). The dynamics of the technical change
process are inferred from the dynamics of factor demands. Using a structural approach, the
growth rate of factor-augmenting technical change is estimated.

This paper strengthens the empirical foundation of three aspects of technological change:
the substitution possibilities between inputs; the direction and magnitude of factor-augmenting
technical change; and the sources of factor-augmenting technical change. Two definitions of
factor-augmenting technical change are used. First, factor-augmenting technical change is de-
fined as the change in input shares that is not due to variations in prices. In this first model
technical change is exogenous and its growth rate is a parameter to be estimated. In the sec-
ond definition technical change is specified as an endogenous function of other macroeconomic
variables, plus an exogenous component that captures its autonomous evolution over time.

The results of this paper have a stand-alone value as they add to the empirical literature on
substitution and technical change. At the same time, they provide empirical based specifications
of factor-augmenting technical change to be implemented in applied economic models. These
results might have an important role if applied in climate economy models and models for
international trade policies. Those models are affected by uncertainty in the choice of parameter
values. The empirical results on the structure of technical change described in this paper can
help to reduce both the parameter and structural uncertainty that characterise most climate
economy models.

The rest of the paper is structured as followed. Section 2 introduces the theoretical back-
ground upon which the empirical model is based and deals with the estimation of productivity
growth rates in the case of exogenous technical change. Section 3 estimates different specifica-
tions of endogenous factor-augmenting technical change. Section 4 concludes.

2 Theoretical set up

This section describes the theoretical background to the the empirical model used to estimate
different components of technical change. As noted in the introduction, technical change cannot
be observed and therefore it must be inferred from related observable entities. This paper infers
the dynamics of factor-augmenting technical change from observable changes in factor demands.
Different components of technical change can be identified if the demand of different inputs is
considered jointly. A representative firm is assumed to produce the aggregate output of the
economy using energy, labour and capital. Optimality conditions determine the demand of the
three inputs, which are interdependent. The amount of labour to use is related to how much
energy and capital can be used and to the way these three inputs can be substituted with each
other. Prices and substitution play a key role as the firm will minimise its costs and therefore
it will substitute expensive inputs with cheap inputs. Once this effect is accounted for, the
other way in which the input mix can vary is through changes in factor productivities, namely
in factor-augmenting technical change. The availability of a machine that uses less labour can
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be classified as labour-saving technical change. Such technological change could be deduced by
observing a reduction in the labour cost share given constant prices. This is the idea behind the
econometric approach used in this paper to quantify factor-augmenting technical change. In the
next section we translate this concept into more formal language.

2.1 Modeling factor augmenting technical change

Technical change can affect all inputs equally (neutral technical change) or it can affect the
proportion with which inputs are combined. The latter type of technical change is also called
factor-augmenting or input-saving technical change1 and it can be represented as a change in
input efficiency or productivity (David and van Der Klundert, 1965). The direction of technical
change describes whether technical change reduces or increases input cost share. Technological
change is input-saving if the input share decreases at constant factor prices. It is input-using
if the input share increases. The final effect of technical change on the production structure
and input combination depends also on the substitution possibility among inputs, which is
represented by the elasticity of substitution, henceforth denoted with σ. It describes the relative
percentage change in input quantities induced by a one percent change in relative input prices,
maintaining constant output quantity and price. A sufficiently flexible production function that
can accommodate for different degrees of substitution and for different types of technical change
is the Constant Elasticity of Substitution production function (CES). The final aggregate output
of the economy, X, is produced using this constant return to scale production technology and
combine labour, energy and capital:

X(t) = H(t)[(AK(t)K(t))ρ + (AL(t)L(t))ρ + (AE(t)E(t))ρ]
1
ρ (1)

The elasticity of substitution σ is related to the parameter ρ according to the standard defini-
tion, ρ = σ−1

σ . Given the wide uncertainty about input substitution,2 we assume the simplest
structure with an empirical foundation. The elasticity of substitution between any pair of these
three inputs, σ, is the same, according to the empirical results found in van der Werf (2007).
That paper estimates different input nesting structures and finds that a production model using
equal substitution elasticity fits the data well. This type of CES is also called non-nested, since
all inputs can be substituted with each other in the same way. The linkage between energy
use and carbon emissions makes it possible to draw some conclusions about the environmental
implications of technical change. From this perspective, the important questions are whether
technical change is energy-saving or energy-using and whether inputs are gross substitutes or
gross complements.

The coefficients that premultiply each input (Ai) describe the productivity of the correspond-
ing input3. The higher the productivity coefficient, the lower the quantity of input required to
produce the same level of output. Technical change is input i-augmenting if an increase in this
coefficient leads to higher outputs, keeping everything else constant, ∂X

∂Ai
> 0. The coefficient

1Technical change is input-augmenting, or following Binswanger and Ruttan (1978) input-saving, if the input
cost share decreases at constant factor prices.

2For an exhaustive review on the empirical literature on substitution elasticity see, among others, Markandya
et al. 2007.

3This formulation of the CES production function is the variant introduced by David and van Der Klundert
(1965). There are several variants of CES and the major difference is the interpretation given to the parameters
that premultiply inputs. The most popular form is that introduced by Arrow (1962), where each input is premul-
tiplied by a distributive parameter, the sum of which must be one. His formulation was considered unsatisfactory
for a representation of technical change, which was assumed to be neutral. Instead, in the formulation of David
and van Der Klundert (1965), technical change can be input specific. A particular feature of this production
function is that inputs are expressed in efficiency units and that augmentation coefficients can be differentiated
among inputs. For a discussion on this point see Klump et al. (2000)
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standing in front of all inputs (H) represents neutral technical change in the sense of Hicks’
neutral technical change, meaning that a change in H does not affect the rate of input marginal
productivity (Barro et al. 2004).

Different assumptions can be made about the time evolution of augmentation coefficients.
To start with, we fix the rates of input augmentation over time and so they are treated as
parameters. In this case factor-augmenting technical change is exogenous. This assumption is
relaxed in the second part of the paper in which technical change is specified as an endogenous
function of other variables.

Cost minimization under the constraint of unit production function yields the standard unit
cost function:4

C(1;PK , PL, PE) =
1
H

[
PK

AK

σ−1

+
PL

AL

σ−1

+
PE

AE

σ−1

]
1

σ−1 (2)

By differentiating the unit cost function with respect to input prices, the respective conditional
input demands are obtained. By replacing the assumption of zero profit condition in the output
market, C(1, PK , PL, PE) = P , unit input demands can be expressed as follow:

K
X = Hσ−1 P

PK

σ
Aσ−1

K
L
X = Hσ−1 P

PL

σ
Aσ−1

L
E
X = Hσ−1 P

PE

σ
Aσ−1

E (3)

These equations can be linearised so as to obtain a linear relationship between percentage
changes or log changes of the variables. We denote the percentage changes with small letters
x = dX/X = dlnX:

k = x− σ(pK − p) + (σ − 1)(h + aK)
l = x− σ(pL − p) + (σ − 1)(h + aL)
e = x− σ(pE − p) + (σ − 1)(h + aE)

(4)

The transformation of the system from level into percentage changes makes the interpretation
of comparative static exercises more straightforward. We can immediately tell how a change
in the right hand side variables affects input demand growth rates. The growth rates of input
demands (k, l,e) depend on the growth rate of output (x) and of relative input prices (pi−p). In
addition, the way technical change varies over time also affects input demand. Technical change
relative to each input has been broken down into two components:

• Neutral technical change, h, which is the part of technical change affecting all inputs
equally. This term appears in all three equations;

• Input-specific or factor-augmenting technical change, ai, which is specific to each input i;

The total impact of technical change on input demand is determined by the sum of these two
components, henceforth referred to as net technical change, h + ai. The direction of technical
change depends on the elasticity of substitution, σ. Positive net technical change, h + ai > 0,
reduces input demand only if the substitutability among inputs is sufficiently low, σ < 1.

What can be observed in these three equations are prices and quantities. However, when a
change in input demand is observed, at constant prices, the three equations do not tell whether
such change comes from h or ai. In other words the two forms of technical change cannot
be identified. To address this issue, this paper assumes that all technical change is factor-
augmenting and thus total factor productivity can be broken down into factor productivity

4For the sake of clarity time indexes are omitted, but all variables remain time-varying.
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growth rates5:

tfp = (aKθK + aLθL + aEθE) (5)

This assumption is also shared by the theory of directed technical change (Acemoglu, 2002), in
which all technical change is factor-augmenting technical change. Therefore, this setup makes it
possible to assess that theoretical model. Using this assumption, system (4) simplifies as follows:

k − x = −σ(pK − p) + (σ − 1)aK

l − x = −σ(pL − p) + (σ − 1)aL

e− x = −σ(pE − p) + (σ − 1)aE

(6)

The empirical model that will allow estimating the parameters of interest is obtained after some
algebraic manipulations of system (6). Adding (pi−p) to each side of each equation, the system
can be written in terms of cost share percentage changes, denoted with θ̃i = (i − x) + (pi − p)
for all i = E,L,K:

θ̃K = γK0 + γK1(pK − p)]
θ̃L = γL0 + γL1(pL − p)]
θ̃E = γE0 + γE1(pE − p)]

(7)

Factor-augmenting technical change is identified by the three constant terms. More precisely,
the γi0 and γi1 coefficients are associated with the parameters to be estimated according to the
following constraints:

γE0 = (σ − 1)aE

γL0 = (σ − 1)aL

γK0 = (σ − 1)aK

(8)

The elasticity of substitution is identified by the coefficient associated with relative prices (γi1).
Since input demands are derived from the same production function, the elasticity of substitution
is constrained to be equal across the three equations:

γE1 = γL1 = γK1 = (1− σ) (9)

The next section describes the construction of the dataset used to estimate the technology
parameters highlighted in system (8) and (9).

2.2 Data description

The estimation of system (7) requires data on prices and quantities of output, labour, capital and
energy. The estimation is carried out using aggregate data, although an extension to sectoral
data is left for future research6.

5It can be shown (De Cian, 2008) that neutral and factor-augmenting technical change are related through
the following equation, which can be derived from the zero profit condition:

h = tfp− (aKθK + aLθL + aEθE)

In this model, assuming that all technical change is factor-augmenting implies that neutral technical change does
not change over time, h 6= 0.

6On March 15, 2007 a new dataset, EUKLEMS became available. It contains this type of data for 60 industries
in European countries. More information can be found in the website www.euklems.net.
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Aggregate data have been collected from the OECD STAN Industry Database 20057, and the
International Energy Agency 2005 (IEA) databases Energy Prices and Taxes - Energy End Use
Prices and Extended Energy Balance8. To compute values for the variables of interest we used
Pindyck’s methodology(1979). The share of labour was computed using labour compensation.
The compensation to capital was computed as the difference between value added and labour
compensation. Using data on the labour force from either the OECD STAN Industry Database
2005 or the Penn World Table (Feenstra et al. (2005)) depending on data availability, the price
of labour was obtained implicitly, dividing labour compensation, PL ∗ L, by the labour force.
An attempt to use hours worked was made, but there were too many missing data. The price
of capital was computed as the indirect price from the ratio PK∗K

K
9.

The price of energy was measured using the real index of industry price from IEA Energy
Prices and Taxes. It was converted to constant US$ (base year 2000) per tonne of oil equivalent.
The price in the base year was normalised to 1. Energy quantities are from IEA Extended
Energy Balance and they are expressed in thousand tonnes of oil equivalent. Total output has
been defined as value added plus the value of energy quantities. All values, in national currency,
have been converted into current US$ using the Purchasing Power Parity Conversion Factor
from the World Development Indicators 2006. Using the US implicit deflator of GDP, current
prices were converted into constant prices at 2000 US$. The implicit deflator was computed
using the GDP expressed in current and constant US$. All units are therefore expressed in
millions of US$ relative to the base year 2000. Finally, prices were expressed as indices, with
base year 2000. TFP was computed using the unit cost function measure10.

The final sample consists of time series from 1978 to 2001 for 15 countries. Table 9 in
Appendix A reports descriptive statistics for the main variables used in the estimation. Table
10 reports the variable values for the first and the last year of the series. While variation
between countries accounts for most of the variation in the cost factor shares, factor prices and
total factor productivity growth (tfp) vary more over time than across countries. Cost factor
shares are in fact quite stable for each country.

The pattern of the data show some heterogeneity across countries and not all of them are
characterised by trends that were recognised as stylised facts for the US economy during the
postwar period (Jones, 2002). The four stylised facts recalled in Smulders et al. (2003) are
improving energy efficiency, increases in per capita energy use, the decline of the share of energy
costs over GDP and the decline of energy prices per unit of labour costs. Whereas increases in
energy efficiency and in per capita energy use are common to most industrialised countries, the
trend of energy cost over GDP and of energy price over labour cost is different across countries.
Most countries show a downward trend for the energy-labour price ratio with the exception of
New Zealand, the Netherlands, Luxembourg, Italy and Denmark.

2.3 Empirical specification and estimation method

The major econometric issues to be considered in the estimation of system (7) are the correlation
among equations and the role of country and time effects. Given the theoretical background
from which the empirical model has been derived, the three equations can be expected to be
correlated with each other. The representative firm chooses the optimal demand of all three

7Data available from http://www.sourceoecd.org/database/stan
8Data available from http://www.sourceoecd.org
9This price was compared with the user cost of capital computed as lending interest rate (World Development

Indicators 2006 Data available from http://devdata.worldbank.org/wdi2006/contents) plus depreciation (6%)
minus capital gain (World Development Indicators 2006). Capital gains were computed as the ratio between
gross fixed capital formation in constant and current local currency. The two measures of capital price, however,
compare well only in the case of US. However, the method described in the main text was preferred as yielding
more reasonable time series.

10TFP was also computed as a Solow residual using quantity data which yielded very similar results to the unit
cost function methodology.
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inputs at the same time. Therefore, the system error terms has a variance covariance matrix
that does not satisfy the assumptions of zero covariance and constant variance. In order to
explicitly account for the correlation across equations, the model is estimated with a Feasible
Generalised Least Square Estimator (FGLS). The estimation of the three equations as a system
yields more efficient estimates than estimating each single equation individually. The model to
be estimated explains the variation in input cost shares with the variation in relative input prices
and a constant, which in this setting identifies the growth rate of factor-augmenting technical
change.

Country and time effects are captured using country dummies and a logarithmic time trend.
The hidden assumption behind pooled estimation is that all countries have similar production
functions (Nordhaus, 1977) and that different values for the right hand side variables lead to
different changes in the dependent variable, in this case the input cost shares. In the model
with autonomous technical change the differences in prices account for the variation in cost
shares, but the effect of an equal price change is assumed to be the same across countries. In
fact, only one coefficient, common to all countries, will capture the effect of prices. However,
what can be differentiated is the role of technical change, which is associated with the constant.
Country dummies can be used to estimate a different constant for each country and therefore
to differentiate technical change among countries. The time effect can also be made country
specific by interacting the country dummies with the time trend. Although all these types of
specifications were estimated, the model with a common time trend was preferred because it is
more parsimonious. The system was originally derived in continuous time, but what is actually
estimated is a discrete approximation of it:

∆θKit = γK0 + γK1∆(PKit − Pit) +
∑14

i=1 γK2iDi + γK3Lnt + uKit

∆θLit = γL0 + γL1∆(PLit − Pit) +
∑14

i=1 γL2iDi + γL3Lnt + uLit

∆θEit = γE0 + γE1∆(PEit − Pit) +
∑14

i=1 γE2iDi + γE3Lnt + uEit

(10)

where : ∆θjit =
θjit − θjit−1

θjit−1
and ∆(Pjit−Pit) =

(Pjit − Pit)− (Pjit−1 − Pit−1)
Pjit−1 − Pit−1

for j = K, L, E;

Factor-augmenting technical change is identified by the three constants, which can be made
country specifici:

γE0 + γE2i + γE3 = (σ − 1)aEi

γL0 + γL2i + γL3 = (σ − 1)aLi

γK0 + γK2i + γK3 = (σ − 1)aKi

(11)

As mention above, the introduction of country and time dummies allows differentiating the
constant term across countries and over time. Although there are economic reasons that justify
the inclusion of dummies, their relevance is also assessed statistically. To this end, the three
equations are estimated independently and the hypotheses of an equal constant term across
countries and over time is tested with an F − test. Country dummies are significant for the
capital and energy equations.

2.4 Estimation results

Table 1 reports the estimation results relative to system (10). The estimator used was a feasible
generalised least square estimator where the estimated variance-covariance matrix accounts for
the correlation across equations. The reported results refer to the estimation under the constraint
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of equal elasticity across the three equations11. At first, all country dummies were included. In
following estimations, only the country dummies that appeared significantly different from zero
were kept in the estimated model, leading to more efficient estimates.

In table 1, the time trend is significant only in the equation explaining capital share growth
rate, whereas it is not significant in the other two. However, its inclusion increases the signifi-
cance of the constant term. By explicitly including a time component common to all countries,
the identification of input-augmenting technical change is more precise because the effect of
other time components is taken away.

The estimated coefficient of the regressor (pi−p) is associated with the value of the elasticity
of substitution. This parameter is always significant and positive. An increase in the relative
input price increases the corresponding cost share. This result may appear counterintuitive at
first, since the substitution effect should reduce the demand of inputs whose prices increase.
However, the cost shares measure the value of input and therefore if the quantity reduction is
lower than the price increase, the overall value of input goes up. This is the case when the
elasticity of substitution is lower than one because a 1% increase in prices reduces input demand
by σ%. When constrained to be equal among inputs, the estimated elasticity of substitution is
quite low, around 0.3912.

What is left after the price effect has been taken into account is defined here as technical
change. Technical change in this specification consists of a country specific component, which
is captured by the country dummies, and another term common to all countries, which is rep-
resented by the constant and time effect. The negative sign of the constant suggests that at
constant prices input-augmenting technical reduces input cost shares. When inputs become
more productive, a lower quantity yields the same output, if everything else is kept constant.
These results are consistent with the definition of input-biased technical change given by Bin-
swanger and Ruttan (1978). They define technical change as input-saving if it reduces the input
cost shares at constant prices.

The benchmark country associated with the constant is the United States. Other country
dummies are to be interpreted relative to the benchmark. The significance of the country dum-
mies varies with the input considered. It tells whether that country’s input technical change
is significantly different from the benchmark country’s. In the case of capital, more than half
countries in the sample13 are characterised by their own capital-augmenting technical change,
which reflects other country specific factors. labour-augmenting technical change is rarely sig-
nificant. Moreover, on average the magnitude is very close to zero. Finally, energy-augmenting
technical change is common to most countries except for Spain, Finland, Luxembourg and New
Zealand.

The average value of factor-augmenting technical change, computed using the constraints
(11), has been reported in the bottom part of table 1. Energy technical change is the largest
in size, followed by capital and then labour technical change. Technical change therefore does
appear to be input specific. Energy technical change is particularly high and on average it
increases by 5% a year, with a growth rate that is almost twice that of capital and labour. Figure
1 highlights the presence of some heterogeneity in the patterns of input-augmenting technical
change across countries. Most of them behave similarly to the US, except for Spain, Finland,

11The system was first estimated including only country effects. A log time trend, aimed at isolating the time
effects common to all countries, was then introduced. A specification with a country specific time component was
experimented, but the large number of parameters to be estimated led to very inefficient results. Country specific
time effects were rarely significant and the specification with only one common time component was preferred.
This result is not surprising considering that the sample of countries is relatively homogeneous, as they are all
OECD countries. Only the results relative to best specification are reported here.

12It should be mentioned that when the system was estimated without constraints, the three equations yielded
very different substitution elasticities and the hypothesis of equal elasticity was always rejected. The labour
equation yields an elasticity very close to one whereas the elasticity obtained from the energy equation is much
lower than 0.38. The results from the capital equation were in between.

13Belgium, Canada, Finland, France, Italy, Japan, New Zealand, the Netherlands and UK.

8



France, Italy, Japan, Luxembourg, New Zealand and the United Kingdom which differ from the
US in the growth rate of at least one input productivity. In at least one equation, the dummy
variable relative to these countries was significant, meaning that the intercept for that country
was significantly different from the US’s. Compared to the US, energy technical change is very
low in New Zealand and nearly zero in Spain and Finland. It is extremely high in Luxembourg.
Capital technical change is very small in Belgium, France and UK. labour technical change is
always positive, particularly so in Spain and Finland, which in fact are the only countries with
a significant value for the corresponding dummy. The explanation behind these results can be
partly found in the pattern of relative input prices (table 11, Appendix A). In Spain and Finland,
the price of labour has been increasing substantially over time. Countries characterised by low
capital technical change are those where capital price, relative to the other input prices, has been
decreasing (Belgium and UK). Since input prices reflect marginal input productivity, increasing
prices can be associated with increasing productivity. Significant productivity improvements are
then explained with big changes in technical change and thus productivity parameters. Table 2
reports the values of factor-augmenting technical change for countries other than the US 14.

Table 1 about here

Figure 1 about here

Table 2 about here

Another interesting result is that the elasticity of substitution is reduced when a time trend
is included in the model. When the time effects are explicitly accounted for, the role of input
substitution in explaining the change in input cost shares is lower and part of the effect that was
attributed to factor substitution is captured by technical change. Technical change and input
substitution are difficult to distinguish because they both show up as a change in input cost
shares. It is difficult to know whether the new combination of input is adopted because a new
technology has become available (technical change) or because the change in input prices has
made an existing technology more attractive (substitution). When the elasticity of substitution
is low, it is more unlikely that substitution occur and therefore most of the change in input
shares is due to technical change15.

2.5 Comparison with existing results

To date, there are no empirical works that quantify input augmenting technical change in a
systematic way, but the work of van der Werf (2007). The author estimated and compared
substitution and technical change for different countries. Different CES production structures
with factor augmenting technical change are estimated using industry data for a panel of OECD
countries. The specification that fits best the data assumes that the elasticity between labour
and capital differs from the one between the capital labour nest and energy. The structure
with equal elasticity among the three inputs also fits well the data. The estimates of input
augmenting technical change are negative for capital and positive for labour and energy. Energy
technical change ranges between 1% and 4% whereas labour technical change goes from 2% to
4%. The elasticity of substitution varies between 0.1 and 0.8. These results are in line with
those obtained here, except for capital technical change which in this paper is found to be on
average positive.

Other existing studies dealing with input-augmenting technical change are mostly country
studies - very often about specific industrial sectors - that look at only one of the possible com-
ponents of technical change. Starting with the work of Jorgenson and Fraumeni (1992) several

14Those not reported in the table have the same values as the US.
15An extensive discussion on this issue can be found in Sue Wing, 2006.

9



studies have assessed the role of energy technical change in explaining the decline in US energy
intensity. Jorgenson and Fraumeni found that technical progress was energy-using and this was
at odds with the stylised fact of a declining trend in energy intensity. The historical decline in
energy intensity coupled with increasing economic growth suggest that, at the aggregate level,
technical progress was energy saving. Sue Wing (2007), using more recent data for the US econ-
omy, revisited the work of Jorgenson and Fraumeni. Of particular interest is the methodology
used in that work which disentangles the contribution of several factors to explain the pattern
of energy intensity at the aggregate level. Technical change was found to be an important ex-
planatory factor for the decline in aggregate energy intensity after 1980. Moreover, most of this
improvement was autonomous and not driven by energy prices. The most important component
was the change in the sectoral composition of the economy whereas energy prices play only a
minor role.

Changes in sectoral composition are not explicitly considered in this paper, but they could
explain some results such as the reduction in energy technical change in New Zealand. In 1983
the share of capital used in New Zealand took over the share of labour, so one explanation
for the peculiarity of technical change in this country might be a restructuring of the sectoral
composition of the economy toward more energy intensive sectors.

Most existing works on labour and capital productivity have measured the productivity of
these two inputs as a ratio of output to labour and capital. Kendrick (1956) analyzed and
compared trends in capital and labour productivity for 33 industries in the US from 1899 to
1953. Despite the across-industry heterogeneities, in the long run technical change is labour-
and capital-saving. However, within shorter time periods technical change has been input-using,
especially capital-using. The magnitude of capital and labour technical change ranges between
1% and 3 %. labour technical change tends to increase faster than capital technical change. The
estimation results for the US in this paper compare relatively well with those findings. The rate
of labour technical change is almost 2% and it is higher than capital technical change, which is
about 0.18%16.

Much larger is the number of empirical works on substitution elasticities (Markandya, 2007).
Most of them are country or sector specific studies (Berndt and Wood, 1975; Hudson and
Jorgenson, 1974). Fewer are empirical works with international or multi-country coverage, whose
results are more comparable to those obtained in this paper. In particular, Griffin and Gregory
(1976), using manufacturing data in ten countries estimated elasticity ranges between labour
and capital of 0.39-0.52, between capital and energy of 0.36-1.48 and between labour and energy
of 0.72-0.87. More recently, van der Werf (2007) found values between 0.22 and 0.59 for the
elasticity between capital and labour and between 0.15 and 0.61 for the elasticity between the
capital labour nest and energy. To conclude, the results found for exogenous factor-augmenting
technical change compare well with the existing literature.

3 Technology spillovers and endogenous factor productivity

So far, technical change has been defined as the change in input cost share that could not
be explained by factor substitution, accounting for other countries and time effects. However,
technical change is a process that responds to incentives and that is likely to depend on other
economic activities.

The role of R&D as an engine of productivity growth has been acknowledged since the very
first models of endogenous growth (Romer, 1986; 1990). However, empirical literature limits
attention to the relationship between R&D and total factor productivity growth, tfp. Important
contributions are the works of Griliches (1980) and Nadiri (1980). They both found evidence for
a positive relationship between these two variables. Mansfield (1979; 1980) estimated the effect

16A similar pattern for labour and capital technical change characterises Belgium, Spain, Finland, France and
New Zealand.
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on productivity growth of R&D flow over GDP, finding an elasticity between 0.20 and 0.50. Coe
and Helpman (1995) found empirical evidence of international technology spillovers. R&D has
an effect not only on the productivity of the innovating country, but also on the productivity of
trading partners, the greater this effect, the more open to trade a country is (Cameron, 2005;
Coe et al., 1997).

Countries can also import new technologies from abroad, through imports. When innova-
tions are incorporated in products that are available on the world market, all buyers of those
products can enjoy them and thus international trade is one important channel for the diffusion
of technology and innovation. Grossman and Helpman (2001) in their seminal book identified
four major mechanisms by which trade can have an impact on domestic productivity. A wider
transmission of knowledge increases the stock of global knowledge. Trade increases the market
size and competition. More contacts and deeper communication can eliminate the duplication
of research. Countries can benefit from accessing a global pool of knowledge. If countries are
integrated through trade, participation in the world economy gives access to a larger variety of
inputs, machineries and capital equipment.

Engelbrecht (1997) extended the analysis of Coe and Helpman (1995) to include the role
of a more general measure of innovation, that is human capital measured in terms of school
attainment, suggesting that education and R&D are both important determinants of productiv-
ity growth. Empirical studies found a positive relationship between aggregate productivity and
different measures of education, such as education attainment (Barro et al., 2004) and education
expenditure (Caselli, 2004).

Another measure used to approximate innovation or the stock of knowledge available is the
stock of machinery. This notion dates back to Arrow (1962), who introduced the view of capital
stock as a picture of the knowledge incorporated in those goods. Rosenberg (1983) stressed
how the technical improvements are often tied to capital goods such as machinery and equip-
ment and therefore the purchase of these goods is fundamental for the translation of technical
change into productivity growth. Capital goods, or machinery, have some characteristics that
make them an important vehicle of technology transmission. Historically, capital goods have
only been manufactured in a small number of countries because it requires a mature stage of
industrialization, technical competency and high skill levels. Moreover, the capital goods in-
dustry is highly specialised and requires a large market. For this reason capital production has
been concentrated in OECD countries, especially in the United States, the United Kingdom
and Germany. These countries are also among the most R&D intensive. It follows that the
machinery produced in these countries can be expected to be particularly knowledge-intensive
and therefore have a higher potential for the transfer of technology. Finally, since machinery is
energy-using, high quality machinery in terms of energy requirements can be expected to reduce
aggregate energy use. Machinery has been considered to be an important source for economic
growth (DeLong and Summers, 1991) and technological progress.

On the theoretical side, a model for directed technical change that relates input productivity
and R&D investments was developed by Acemoglu (2002). R&D can be allocated to improve
the productivity of different inputs, depending on profit considerations. Profit maximizing
firms direct invention efforts toward those factors that are more profitable, either because they
command a higher price or because they have bigger market potential.

In light of these theoretical and empirical studies, it can be expected that trade, capital
goods, R&D, and education all relate to factor-augmenting technical change, an issue still to
be explored by empirical literature on growth determinants. The remaining part of this paper
contributes to filling that gap by describing a model in which factor-augmenting technical change
is endogenously linked to R&D and education expenditure, imports and imports in capital goods
(machinery). The sources of factor productivity growth can be made input specific, identifying
the sources of economic growth in a more precise way.
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3.1 Modeling endogenous factor-augmenting technical change

This model is derived by the same input demand system (7). Input-augmenting technical change
is no longer treated as a parameter to be estimated, instead it has a functional form that describes
its relationship with other economic variables, generally denoted by X. The rate of change in
factor productivity, ai, now consists of two components. The first component is constant over
time and it is denoted by δ0

i . The second component depends on the growth rate of other
variables, x, in proportion to the coefficient δi:

ai = δ0
i + δix, for all i = E,L,K (12)

This definition of technical change corresponds to an innovation function that includes an ex-
ponential component, which captures autonomous technical change, and an endogenous compo-
nent, which captures the endogenous effect of X17 :

Ai = eδ0
i tXδi for each i = E, L, K (13)

If the elasticity with respect to X is zero, the previous model with constant, exogenous, technical
change is obtained (ai = δ0

i ). This formulation makes it possible to assess the role of different
variables as productivity sources for different factors.

Substituting the definition of technical change given in equation (10) into the input demand
system (7), the system to be estimated is obtained. As in the case of constant technical change,
after some algebraic manipulations the dependent variable can be expressed as the growth rate
in the input cost shares. The explanatory variable is the rate of change in relative prices (pi−p)
a constant term that captures the effect of autonomous technical change (γi0) and the variable
x:

θ̃K = γK0 + γK1(pK − p)] + γK2x

θ̃L = γL0 + γL1(pL − p)] + γL2x

θ̃E = γE0 + γE1(pE − p)] + γE2x

(14)

From the estimated coefficients, γij for i = E,L,K and j = 0, 1, 2, the structural parameters of
the model can be recovered using the following constraints:

γE0 = (σ − 1)δ0
E

γL0 = (σ − 1)δ0
L

γK0 = (σ − 1)δ0
K

γE2 = (σ − 1)δE

γL2 = (σ − 1)δL

γK2 = (σ − 1)δK

γE1 = γL1 = γK1 = (1− σ)

(15)

As in the model considered in the previous section, the elasticity of substitution is common to
all three equations. Therefore, a constraint is imposed across equations.

3.2 Data description

Three different sources of technical change are evaluated: R&D expenditure, aggregate imports
and imports of machinery and equipment. A specification in which labour productivity depends
on education expenditure is also estimated.

17This functional form was introduced by Mansfield (1956) and then used by most studies aimed at estimating
the elasticity of productivity with respect to R&D. Important contributions are those by Griliches (1973, 1980).
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The most recent available data on R&D expenditure18 is limited to a small number of coun-
tries. Therefore, the sample used in the estimation of this specification is slightly different from
the one used in the previous section: only 13 countries are included19, from 1987 to 2002. The
stock of R&D has been computed using the perpetual inventory method with a depreciation rate
of 5%, although the choice of different values does not affect the results significantly. The initial
value of the stock was set equal to the level of investments in the first available year, divided by
the average annual growth rate over the observation period, plus the rate of depreciation.

Imports data are from the Feenstra trade database (Feenstra et al., 2005). They are aggregate
imports from the world. Data on machinery and equipment imports are from the OECD STAN
Industry Database 200620. Data are available for 13 countries21 over 13 years (1989-2001). The
OECD STAN Industry Database provides data on bilateral trade flows and makes it possible
to distinguish imports from different trading partners. In the case of machinery, only imports
from the OECD countries have been selected. The focus on imports from the OECD is justified
by the high concentration of R&D world expenditure in OECD countries, which channel most
of their R&D activity into just a few sectors, among which machinery. As a consequence, the
machinery produced and exported from these countries is regarded as particularly knowledge
intensive. Machinery and equipment imports are classified as a two-digit industry according to
the International Standard Industrial Classification22 (ISIC classification number 29).
Education is measured as current and capital expenditure on all types of education, from both
private and public sources. Data are from the OECD23. The sample was chosen to be compatible
with the R&D database and so 13 countries are considered over the period 1987-2001. As in
the case of R&D, the variable that enters into the system is the growth rate of the education
expenditure stock. The stock was computed using the perpetual inventory method, with a
depreciation rate of 2% (Jorgenson and Fraumeni, 1992)24. Table 3 summarises the major
statistics for the variables used to model endogenous technical change. The remaining data
(price and quantities of output, labour, capital and energy) were described in section 2.2.

Table 3 about here

3.3 Estimation results

Table 4 reports the estimation results when factor-augmenting technical change is endogenously
related to the stock of R&D expenditure. The country dummies that were not statistically
different from zero have been excluded so as to obtain more efficient estimates. It emerges
that R&D is significantly related to all inputs. Compared to capital and energy, the impact
on labour technical change is less significant. An increase in aggregate R&D saves all inputs.
The effect is greater on capital productivity, followed by energy and labour productivity. These
results support the theory of directed technical change according to which R&D affects inputs
differently, depending on the market and the price effect.

Comparing the results in table 4 with those obtained from the model of autonomous technical
change (table 1) two major observations can be made. First of all, when there are no additional
variables, all technical change is accounted for by autonomous technical change, captured by the
constant term, and the elasticity of substitution, which tends to be larger. The introduction of

18ANBERD - R&D Expenditure in Industry 2006 available from http://www.sourceoecd.org/
19For Luxembourg and New Zealand the OECD Database does not provide R&D data and therefore they were

excluded from the sample.
20Data available from http://www.sourceoecd.org/
21Austria and Luxembourg were excluded because of too many missing values.
22http://unstats.un.org/unsd/cr/registry/
23Education Expenditures by Country, Nature, Resource Category, and Level of Education Vol 2006 issue 01.

The database distinguishes education expenditure by nature, source and type of education. However, the data
have many missing values and so the choice of expenditure type depends also on data availability.

24A higher depreciation rate was also experimented, yielding very similar results.
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R&D reduces the elasticity of substitution, approximately from 0.39 to 0.36. Moreover, in the
first model autonomous technical change was significant in all three equation and, on average,
it was positive, meaning that it was input-saving. The introduction of R&D reduces the role of
autonomous technical change, which in some cases can even be negative. In particular, it can be
noted that negative technical change occurs only when the endogenous component is significant
and sufficiently big (e.g. for capital and energy). In the case of labour, where the effect of
R&D is small, the autonomous component remains positive. The overall growth rate of factor-
augmenting technical change, consisting of both the autonomous and endogenous component, is
positive, as it can be seen from the values reported in the second column of table 825. Energy
technical change tends to be the bigger one, followed by labour and capital technical change.

Another variable that can be expected to explain the growth rate of labour productivity
is education. Education attainment, measured as years of schooling, or education expenditure
have been considered as a possible determinant of aggregate productivity growth by the empirical
literature on growth determinants. Barro et al. (2004) found that public education spending
has an effect on the growth rate of real GDP of 0.009 whereas Cullison (1993) found that an
increase in the growth rate of government spending on education has an effect on output growth
rate equal to 0.269. Caselli (2004) also found that the elasticity of human capital with respect
to education spending is 0.2.

Table 5 reports the estimation results when R&D increases energy and capital productivity
and education augments labour productivity. As expected, education expenditure increases
labour productivity. The magnitude of the effect is lower than the effect R&D has on both
capital and energy productivity and it is within the rages found by previous studies. It can be
noted that when education is specified as source of labour productivity, the effect of R&D on the
other two inputs is reversed. R&D increases energy productivity more than capital productivity.
When both education and R&D are included as possible sources of labour productivity, only
education remains a significant explanatory variable. This result seems to suggest that education
expenditure is more important in sustaining labour productivity26.

Table 4 about here

Table 5 about here

The next model looks at the relationship between factor productivity and international trade.
First aggregate imports are experimented, extending the work of Coe et al. (1997) on neutral
technical change to factor-augmenting technical change. Secondly, the effect of machinery im-
ports is considered. As discussed at the beginning of this section, capital goods are an important
vehicle of technology diffusion because they incorporate the knowledge available in the economy,
at a given point in time.

Table 6 and 7 report the estimation results when technical change is assumed to have an au-
tonomous component and an endogenous part related respectively to machinery and aggregate
imports. A first comparison of the R2 shows the model has a higher explanatory power when
machinery imports are included than when aggregate imports are included. Machinery imports
have a positive effect on both energy and capital productivity, whereas aggregate imports pos-
itively impact capital productivity only, with a coefficient that has a little less than half the
effect of machinery.

Machinery imports have a stronger effect related to energy probably because they are a
specific type of goods, whereas aggregate imports are a more generic aggregate, and include many
different goods. Machinery and equipment are energy-using goods since they include engines,
motors, and appliances. Moreover, they absorb a significant fraction of R&D expenditure. As

25These values have been computed using the mean change in the endogenous variable, x, which in this case is
R&D.

26These results have not been reported here but they are available upon request.
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for the growth in labour productivity, imports are not the appropriate explanatory variable
under this specification

As in the model with R&D, the total effect of technical change, δi+δ0
i x, depends on the values

of x. Results for the mean values of x are summarised in table 8. When the source of technical
change is machinery imports, energy technical change has the highest growth rate. Capital
technical change grows more than labour technical change only in the model with aggregate
imports and exogenous technical change.

To summarise, both intertemporal (R&D and education) and international (imports) tech-
nology spillovers are important sources of factor-augmenting technical change. If these sources
are not specified in the model, the process of technical change is explained mostly by input
substitution and autonomous technical change. It can be noted that in all different specifica-
tions of endogenous technical change, the introduction of further explanatory variables for the
input cost shares reduces the elasticity of substitution. In other words, when other factors are
accounted for, less is due to substitution. This result was discussed in Carraro and Siniscalco
(1994) who observed that if endogenous technical change is omitted, the effect of prices on cost
shares is upward biased. To distinguish between technical change and substitution is not an
easy task, because they have the same effect, they both affect input cost shares. On this point,
the estimated elasticity of substitution is very stable across different specifications. Moreover,
the use of panel data helps to identify the effect of technical change, which is a long-run process,
whereas substitution can also occur in the short run.

Table 6 about here

Table 7 about here

Table 8 about here
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4 Conclusions

This paper considers a new way of modeling endogenous technical change. Not only neutral
technical change is endogenous, as extensively found by the existing literature on growth de-
terminants, factor productivities can also be endogenous. Moreover, the relationship between
factor-augmenting technical change and different sources of technical change is input specific.

This paper has developed a simple analytical framework that makes it possible to estimate
factor productivity growth and identify its determinants. Two definitions of factor-augmenting
technical change were used. First, all input technical change was assumed to be autonomous or
exogenous. Secondly, technical change was broken down into two components, one autonomous
and one endogenous. Several sources of endogenous technical change were considered, namely
R&D and education investments, aggregate imports and machinery imports.

The different specifications of technical change estimated in the paper led to consistent and
similar results. Technical change is input-specific and, on average, it is input-saving. The
growth rate of energy technical change tends to be the greatest, followed by labour and capital
technical change, which grow at similar rates. Energy productivity increases with R&D and
machinery imports, whereas capital productivity increases with R&D, aggregate and machinery
imports. Education expenditure rather than R&D expenditure appears to better explain labour
productivity.

It can be concluded that a model of production that represents technical change only with one
parameter, e.g. tfp, would be unsatisfactory because it does not make it possible to differentiate
the effect of technical change on each input and the sources of factor productivity improvements.
The crucial assumption that makes it possible to identify the different components of technical
change is that all technical change is factor-augmenting, leaving no role for neutral technical
change. Ongoing research is dealing with a more comprehensive model of technical change,
where factor-augmenting and neutral technical change are considered simultaneously.

The results obtained in this paper may be valuable in other economic fields, such as in applied
economic literature. In fact, these results provide an empirical basis for different specifications of
endogenous technical change that can be implemented in applied models used for policy relevant
analysis. Two important applications are in the context of climate and trade policy. Climate
economy models are extensively used to assist the analysis of climate policies. Technical change
is a key feature of those models, especially because of the long term horizon and global dimension
of climate issues.
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5 Appendix A

Table 9 about here

Table 10 about here

Table 11 about here
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Figure 1: Average yearly growth rate of input augmenting technical change
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Table 1: Constrained system regression with fewer country dummies and a log temporal trend

θit−θit−1

θit−1
CAPITAL LABOR ENERGY

(pi − p) [γi1] 0.610***(0.000) 0.610***(0.000) 0.610***(0.000)
Dbe 0.009*(0.076)
Des -0.012**(0.016) -0.022***(0.000) 0.019*(0.082)
Dfi -0.008**(0.038) 0.019*(0.085)
Dfr 0.008*(0.086)
Dit -0.039* (0.000)
Djp 0.007* (0.080)
Dlu -0.020***(0.000) -0.041***(0.000)
Dnz 0.042***(0.000)
Duk 0.007(0.171)
lnT 0.005**(0.004) 0.002 (0.284) 0.005 (0.196)
Dus(cons.) -0.017*** (0.001) -0.012*(0.004) -0.032*(0.002)
R2 0.427 0.011 0.623
N 15 15 15
T 23 23 23
σ 0.390 0.390 0.390
Average aK 0.024*
Average aL 0.022*
Average aE 0.048*
P-value in brackets
* Significant at 10%
** Significant at 5%
*** Significant at 1%
Average ai have been computed as the value of the constant
plus the significant dummies and the temporal trend, when significant.
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Table 2: Autonomous technical change by country

θit−θit−1

θit−1
CAPITAL LABOR ENERGY

Dbe 0.004 0.019 0.052
Des 0.039 0.055 0.021
Dfi 0.018 0.033 0.021
Dfr 0.005 0.019 0.052
Dit 0.083 0.019 0.052
Djp 0.018 0.008 0.052
Dlu 0.051 0.019 0.119
Dnz 0.018 0.019 -0.017
Duk 0.008 0.019 0.052
Dus 0.018 0.019 0.052

Table 3: R&D and imports data summary

Variable (growth rates) Mean Std. Dev. Min Max T N Obs
R&Dstock 0.069 0.031 0.014 0.140 14 13 182
Aggregate Imports from World 0.071 0.124 -0.201 0.448 15 23 345
Machinery and equipment imports from OECD 0.0564 0.162 -0.379 0.860 13 13 169
Education expenditure stock 0.068 0.035 0.011 0.1631 14 13 182
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Table 4: Constrained system regression: Aggregate R&D

θit−θit−1

θit−1
CAPITAL LABOR ENERGY

(pi − p) [γi1] 0.639***(0.000) 0.639***(0.000) 0.639***(0.000)
AGG. R&D -0.522***(0.000) -0.106***(0.000) -0.248***(0.000)
Dat 0.047***(0.000) 0.025**(0.046)
Dbe 0.036***(0.000) 0.024**(0.028)
Dca 0.047 ***(0.000)
Dit -0.019***(0.000)
Dde 0.020 ***(0.003) -0.024**(0.023)
Ddk 0.055*** (0.000) 0.027**(0.033)
Des 0.033*** (0.004) -0.010**(0.032) 0.025**(0.034)
Dfi 0.059***(0.000) -0.006 (0.193) 0.022*(0.079)
Dfr 0.031***(0.000)
Djp 0.042***(0.000)
Dnl 0.013*(0.056)
Duk 0.020***(0.002)
Dus(cons) 0.017**(0.033) -0.020*(0.052)
R2 0.566 0.090 0.652
T 14 14 14
N 13 13 13
σ 0.361*** 0.361*** 0.361***
δ0
K -0.048*

δ0
L 0.002*

δ0
E -0.010*

δK 0.817***
δL 0.165***
δE 0.389***
P-value in brackets
* Significant at 10%
** Significant at 5%
*** Significant at 1%
Average δ0

i have been computed as the value of the constant
plus the significant dummies and the temporal trend, when significant.
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Table 5: Different sources of productivity growth: aggregate R&D and education

θit−θit−1

θit−1
CAPITAL LABOR(EDU) ENERGY

(pi − p) [γi1] 0.642***(0.000) 0.642***(0.000) 0.642***(0.000)
AGG. R&D (EDU) -0.188***(0.000) -0.082***(0.000) -0.256***(0.000)
Dat 0.012 *(0.068) 0.026** (0.044)
Dbe 0.013** (0.018) 0.024** (0.031)
Dca 0.018 ***(0.003)
Dit -0.026*** (0.000)
Dde -0.024** (0.024)
Ddk 0.018*** (0.005) -0.010** (0.020) 0.028 **(0.025)
Des -0.017*** (0.000) 0.026** (0.031)
Dfi 0.022 ***(0.001) -0.012*** (0.006) 0.023 *(0.070)
Dfr 0.012** (0.033)
Djp 0.019*** (0.001)
Duk -0.018*(0.087)
R2 0.521 0.102 0.653
T 14 14 14
N 13 13 13
σ 0.358*** 0.358*** 0.358***
δ0
K -0.011*

δ0
L 0.005*

δ0
E -0.010*

δK 0.293***
δL 0.128***
δE 0.398***
P-value in brackets
* Significant at 10%
** Significant at 5%
*** Significant at 1%
Average δ0

i have been computed as the value of the constant
plus the significant dummies and the temporal trend, when significant.
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Table 6: Constrained regression with country and time trend: Machinery Imports

θit−θit−1

θit−1
CAPITAL LABOR ENERGY

(pi − p) [γi1] 0.619***(0.000) 0.619***(0.000) 0.619***(0.000))
MACH -0.017*(0.059) -0.006 (0.480) -0.057***(0.003)
lnt -0.003 (0.118) -0.002 (0.201) 0.005 (0.206)
Dbe 0.022**(0.043)
Ddk -0.012**(0.011)
Des -0.008*(0.073) 0.018 (0.113)
Dfi -0.011**(0.021)
Dit -0.027***(0.000)
Djp 0.010*(0.057)
Dnz 0.020*(0.066)
Dus(cons) 0.004(0.334) -0.002(0.535) -0.019**(0.022)
R2 0.550 0.119 0.638
T 13 13 13
N 13 13 13
σ 0.381*** 0.381*** 0.381***
δ0
K 0.025*

δ0
L 0.071 *

δ0
E -0.017*

δK 0.027*
δL 0.009
δE 0.093***
P-value in brackets
* Significant at 10%
** Significant at 5%
*** Significant at 1%
Average δ0

i have been computed as the value of the constant
plus the significant dummies and the temporal trend, when significant.
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Table 7: Constrained system regression with country and time trend: Aggregate Imports

θit−θit−1

θit−1
CAPITAL LABOR ENERGY

(pi − p) [γi1] 0.600***(0.000) 0.600***(0.000) 0.600***(0.000)
IMPORTS -0.027***(0.006) 0.008 (0.367) -0.010(0.669)
lnT 0.004**(0.020) 0.002 (0.162)
Dbe 0.014 ***(0.004)
Dca 0.012 ***(0.009)
Des -0.020***(0.000) 0.024**(0.037)
Dfi 0.010***(0.044) -0.007*(0.095) 0.023**(0.042)
Dfr 0.013***(0.005)
Dit -0.033***(0.000)
Djp 0.006(0.200)
Dnz 0.013***(0.005) 0.047 ***(0.000
Dnl 0.007 (0.518)
Duk 0.012**(0.012)
Dus(cons) -0.017***(0.000) -0.007*(0.095) -0.023***(0.000)
R2 0.477 0.010 0.603
T 22 22 22
N 15 15 15
σ 0.400*** 0.400*** 0.400***
δ0
K 0.044*

δ0
L 0.045*

δ0
E -0.042*

δK 0.016***
δL -0.018
δE 0.400
P-value in brackets
* Significant at 10%
** Significant at 5%
*** Significant at 1%
Average δ0

i have been computed as the value of the constant
plus the significant dummies and the temporal trend, when significant.

Table 8: Factor augmenting technical change and substitution elasticity

Exogenous R&D R&D(EDU) MACH IMP.
aK 0.024 0.008 0.009 0.002 0.024
aL 0.022 0.013 0.014 0.003 0.022
aE 0.048 0.017 0.017 0.005 0.056
σ 0.39 0.361 0.358 0.38 0.378
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Table 9: Descriptive statistics of the major variables

Variable Obs Mean Std. Dev. Min Max
PK 360 0.889 0.187 0.161 1.334
PL 360 0.883 0.121 0.346 1.177
PE 360 0.974 0.191 0.528 1.587
θL 360 0.530 0.046 0.405 0.631
θK 360 0.416 0.047 0.322 0.548
θE 360 0.054 0.025 0.014 0.155
pK 345 0.018 0.055 -0.154 0.444
pL 345 0.014 0.022 -0.079 0.132
pE 345 0.010 0.081 -0.321 0.331
tfp 345 0.016 0.026 -0.045 0.228
θ̃L 345 -0.001 0.020 -0.083 0.131
θ̃K 345 0.004 0.026 -0.112 0.129
θ̃E 345 -0.011 0.087 -0.323 0.347
tfp− pE 345 0.006 0.081 -0.281 0.341
tfp− pK 345 -0.002 0.034 -0.216 0.124
tfp− pL 345 0.002 0.025 -0.066 0.144
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Table 10: Data summary: first and last value for major variables

PK PL PE SL SK SE tfp
1 Austria 1978 0.473 0.783 0.997 0.613 0.340 0.047

Austria 2002 1.019 0.995 0.948 0.547 0.423 0.029 -0.001
2 Belgium 1978 0.991 0.742 0.900 0.550 0.375 0.075

Belgium 2002 0.972 1.077 0.950 0.542 0.404 0.055 0.001
3 Canada 1978 0.971 0.855 1.016 0.547 0.350 0.104

Canada 2001 0.980 1.018 1.049 0.536 0.389 0.075 0.015
4 Denmark 1978 0.903 0.701 0.677 0.593 0.379 0.028

Denmark 2002 0.954 1.033 0.977 0.597 0.382 0.021 -0.009
5 Finland 1978 0.836 0.672 1.038 0.542 0.365 0.093

Finland 2002 0.971 1.044 1.034 0.503 0.406 0.091 0.024
6 France 1978 1.009 0.760 0.787 0.572 0.385 0.042

France 2002 0.996 1.034 0.926 0.554 0.418 0.028 0.010
7 Germany 1978 0.686 0.905 1.098 0.548 0.367 0.085

Germany 2002 1.019 1.016 1.059 0.555 0.408 0.038 0.018
8 Italy 1978 0.161 0.847 0.655 0.506 0.464 0.031

Italy 2002 0.968 0.986 1.049 0.428 0.540 0.032 0.005
9 Japan 1978 1.256 0.733 1.089 0.425 0.507 0.068

Japan 2002 0.946 1.016 1.005 0.521 0.439 0.040 0.007
10 Luxembourg 1978 0.374 0.629 0.640 0.451 0.395 0.155

Luxembourg 2002 0.916 1.043 0.936 0.531 0.431 0.038 0.045
11 Netherlands 1978 0.606 0.982 0.598 0.583 0.367 0.050

Netherlands 2002 1.035 1.066 0.976 0.545 0.412 0.043 0.008
12 New Zealand 1978 0.899 1.154 0.916 0.518 0.443 0.039

New Zealand 2000 1.000 1.000 1.000 0.405 0.522 0.0736 0.043
13 Spain 1978 0.594 0.346 0.669 0.516 0.453 0.031

Spain 2002 1.090 1.085 0.981 0.518 0.446 0.036 0.055
14 United Kingdom 1978 1.009 0.662 1.190 0.576 0.358 0.066

United Kingdom 2002 1.040 1.088 0.963 0.591 0.385 0.024 0.060
15 United States 1978 0.618 0.744 0.982 0.538 0.387 0.075

United States 2002 1.028 1.022 0.944 0.561 0.404 0.036 0.009
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Table 11: Trend of the ratio of price growth rates: pi = ṗi

pi

pK − pL pE − pK pE − pL

AT + + -
BE - - -
CA - - -
DE + - -
DK - + +
ES - - -
FI - - -
FR - + -
IT + - +
JP - + -
LU + - +
NL + + +
NZ + - +
UK - - -
USA + - -
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