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Calibration of an Agricultural Sector Model 

for the Region Khorezm (Uzbekistan) Based on Survey Data 

Marc Müller, Nodir Djanibekov 

 

 

Abstract 

The paper describes the approach used for the calibration of a price-endogenous programming 

model, developed for the agricultural sector of the region Khorezm in Uzbekistan. Extensive 

datasets from farm surveys were used to parameterize the model, which nevertheless tended 

to over-specialization and failed in general to replicate the observed levels of primal model 

variables. Calibration of the model with “Positive Mathematical Programming” approaches 

was not satisfying as the additional cost terms introduced to replicate the observed situation 

were in many cases not plausible and deviated substantially from any available information 

on cost structure of the agricultural production activities in the study region. After revising the 

survey data it became obvious that the variances of technical parameters of the model, namely 

the input coefficients, were significantly larger than any other used set of information. 

Consequently, instead of introducing additional cost terms, we decided to estimate the 

technology parameters, such that the observed situation was replicated and the Kuhn-Tucker 

conditions for an optimum in this point were fulfilled. The estimation was based on a cross 

entropy approach. The needed support points and prior distributions of the technology 

coefficients and dual values were drawn from survey data and additional sources of 

information, such as expert interviews. The result is a calibrated agricultural sector model 

with a technology representation that was derived by systematical exploitation of relevant 

data sources for the study region.  

 

Keywords: supply model calibration, positive mathematical programming, technology 

coefficient estimation 
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1 Background 

The Khorezm region is located in the northwest of Uzbekistan, in the lower reaches of the 

Amu Darya River. Agriculture remains the most important sector of Khorezm’s economy: in 

2003, it accounted for 67% of the regional GDP and employed 40% of regional labor. 

In the agricultural sector of Uzbekistan several reforms have been taken as part of a transition 

to a market-based economy. However, since agriculture is the main source of the country’s 

export, state involvement in this sector remains substantial via a state procurement system. 

It was argued by many authors that the implicit taxation of the agricultural sector, via the state 

procurement system, deprived the agricultural producers of profits (Guadagni et al 2005). 

Therefore, further reforms in the agricultural sector are geared toward an increase in producer 

incentives by abolishing the state procurement system. However, while such policy may have 

a positive impact on agricultural output, it is unclear how it will affect regional production. 

The problem, therefore, requires a tool for systematic policy analysis. An agricultural sector 

model is one such tool which can deal with the quantitative problems, while taking into 

account the specific settings of regional agriculture. Application of such model may provide a 

better understanding on how a sector functions and information valuable for evaluating policy 

effects. 

 

2 Main Model Characteristics 

The model developed for the agricultural sector of Khorezm (KhoRASM) is a static price-

endogenous partial equilibrium model as presented in Hazel and Norton (1986). KhoRASM is 

applied to answer the question how production patterns will react to changes in policy 

conditions, such as abolishment of state procurement tasks. 

The model consists of eight cropping and three animal producing activities specified for three 

producer aggregates in five production districts. The reference year is 2003. 
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For the sake of computational simplicity, the commodity prices and balances are defined in a 

single regional commodity market. KhoRASM does not incorporate cross-price and income 

effects, exporting and importing activities. 

The model’s objective function maximizes regional producer and consumer surplus: 

max u cZ = (q) - (q)
q

          (1) 

Where u and c denote the consumer and producer surplus associated with the production and 

consumption of commodities q. The consumer surplus in its most general form can be 

expressed according to Hazell and Norton (1986): 

k
1 0

u φ | 0, 1
kqK

k k i k
k

q q all i to K k dq+
=

= = = −∑∫(q) ( )      (2) 

Author 2 specified u(q)  via Normalized Quadratic-Quadratic Expenditure System (NQQES). 

However, this paper focuses on the calibration of the supply side of KhoRASM and we 

restrict ourselves to more simplistic version of a system of linear demand curves, which 

results in a quadratic objective function: 

u = 1
2(q) (α - q'β)q           (3) 

The producer surplus c(q)  is expressed as the product of variable inputs purchased from 

outside the agricultural sector times the respective input-price g: 

c(q) = v(q)'g           (4) 

Levels of agricultural activities, the corresponding demand for variable and fixed inputs (like 

water, land, but also production targets), and the resulting commodity outputs are linked as 

depicted in Table 1. KhoRASM distinguishes between inputs produced and traded within the 

agricultural sector (namely fodder crops) and inputs purchased from outside the agricultural 

sector (fertilizer and diesel). This distinction was necessary to account for the fact that prices 

for fodder inputs were not available in the same manner as for other inputs, market prices of 

which were observable. Table 2 provides an overview on different model components and 

their dimensions. 
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Table 1 Structure of KhoRASM 

  Activity level l in 

district d in 

farm type f 

Marketing of 

output k from 

activity n 

Purchase of 

fodder crops 

Purchase of 

variable input v 

of nth activity 

RHS Dual 

values 

 Dimension n=l×d×f k vf vp 1 1 

 1 X' q' f' v'   

Balance of 

market 

commodity k 

k -Ym I   ≤0 ππππ    

Fodder supply fs -Yf  I  ≤0 φφφφ1111    
Fodder 

demand 
fd B f  -I  ≤0 φφφφ2222    

Input balance v Bp   -I ≤0 ψψψψ    

Resource 

balance 
r A    ≤b λλλλ    

Objective 

function 
1  u(q)  g' Maximize!  

 

Table 2 Model Parameters and Variables 

Model parameters Description Dimension 

A Demand for fixed factor or resource (including production targets) 

per level unit of activity n 

r×n 

b Vector of resource constraints (including production targets) r×1 

Bf, Bp  Demand for variable input produced within the agricultural sector 

(fd) and variable input purchased from outside the agricultural 

sector (v) per level unit of activity n 

fd×n,v×n 

Ym, Yf Yields of market commodity k and fodder commodity fs from 

activity n 

k×n,fs×n 

g Price for variable input v vp×1 

   

Model variables   

x Level of activity l in district d and farm type f n×1 

q Output of marketed commodity k k×1 

f Purchase of inputs produced in agriculture (fodder) vf×1 

v Purchase of other inputs vp×1 

Dual values   

ππππ    Shadow price of market balance constraint (commodity price) k×1 

φφφφ1111, φ, φ, φ, φ2222, φ, φ, φ, φ    Shadow price of fodder constraint fs×1,fd×1 

ψψψψ    Shadow price of input constraint (input price) v×1 

λλλλ    Shadow price of resource constraints r×1 
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The model´s Lagrangian takes the following form: 

( ) ( ) ( ) ( ) ( ) ( )L u= − + − + − + − + − +m 1 f 2 f pq g'v π' Y x q φ ' Y x f φ ' f B x ψ' v B x λ' b - Ax  (5) 

This model was parameterized based on survey data and official statistics. The different data 

sources are discussed in the next section. 

 

3 Parameterization with Survey Data 

The sources used for parameterization of the model are presented in Table 3. For KhoRASM 

we used data of several categories compiled from values for 2003: regional prices, production 

patterns, input-output coefficients, and resource endowments. 

Table 3 Sources for Model Parameters 

Parameters Description Main 

source 

How 

derived 

Alternative 

source 

How derived 

A  Demand for fixed factor 

or resource l per level 

unit of activity n 

Own 

survey 

Average Norm values, 

expert interviews 

Average or 

most plausible 

value 

B Demand for variable 

input v per level unit of 

activity n 

Own 

survey 

Average Norm values, 

expert interviews 

Average or 

most plausible 

value 

Y Yields of commodity k 

from activity n 

Own 

survey 

Average Official statistics, 

norm values, 

expert interviews 

Average or 

most plausible 

value 

G Price for variable input v Own 

survey 

Average Official statistics, 

norm values, 

expert interviews 

Average or 

most plausible 

value 

 

The model consists of three agricultural producer aggregates. While there is an official record 

on state-owned agricultural enterprises, the data on households and farms is poor. Therefore, 

such information was obtained via conducting farm and household surveys. 

The aggregated data were obtained from official agencies. Annual reports of Regional 

Department of Statistics provided the main source of data on cropping area and animal stock, 

input and resource endowments and policy constraints in 2003. Due to complications in 
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covering the crop-water use in the surveys, the norm values of crop-water requirements were 

obtained from Regional Department of Agriculture. To supplement the information about 

production technologies collected via the surveys, experts on crop and livestock production 

were interviewed. 

The base-run solution of KhoRASM using the expected values for all parameters did not 

reproduce the observed situation for 2003. Figure 1 demonstrates the deviations between the 

production activities levels in the model’s base-run solution and their actual observed values. 

Figure 1 Deviation of Production Activities from Observed Values 
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Source: Base run of the uncalibrated KhoRASM 
 

4 Calibration of the supply module 

The calibration of the supply module of KhoRASM should modify the parameters such that 

its base run exactly replicates the observed activity levels without limiting the model’s 

flexibility: This can be achieved via a calibration procedure which incorporates the 

information on the observed activity levels for the base year to derive certain model 

parameters and keeps the number of the model constraints unchanged (Howitt 2002). An 

elegant approach to exactly calibrate the programming model solution to observed quantities 

without restraining its flexibility is the ‘Positive Mathematical Programming’ (PMP) 

(Heckelei 2002). 
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4.1 Standard PMP Calibration 

The PMP calibration process is based on two main assumptions: First, that the observed 

situation is in fact the optimal solution for the modeled system in the base year. Second, that 

there are hidden costs associated with each production activity unobservable directly by a 

modeler, but relevant to the producers. Based on these assumptions, a PMP calibration 

introduces the concept of decreasing marginal returns. This is done by incorporating nonlinear 

cost terms into the model’s objective function (Heckelei 2002). 

The standard PMP approach consists of two consecutive stages. In the first stage, additional 

constraints are imposed which bound the model activities to their observed levels. The dual 

values of the binding observation constraints are considered as the difference between price 

and marginal cost for preferable activities and are interpreted as values that capture the 

model’s false specification, data errors, aggregation bias, risk behavior and price expectations 

(Paris and Howitt 1998). 

In the second stage, nonlinear cost terms are introduced using the dual values of the 

calibration constraints. The introduction of such nonlinear cost terms will force the optimal 

solution to exactly replicate the observed situation without additional unrealistic and 

empirically unjustified constraints (Howitt 2005). 

Doing this, the PMP calibration solves overspecialization problem, maintains the model’s 

flexibility, and produces the exact fitness of the activities in the base-run solution to their 

observed values requiring less data than standard approaches of calibrating linear 

programming models. 

In KhoRASM, the additional cost terms were in some cases so large that they could not be 

supported by any information provided either in the surveys or by experts. Consequently, we 

re-examined the available information and methods. 
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4.2 Model Calibration Approach Alternative to PMP 

Normally, a sector model is validated by comparing its base-run activity levels with their 

observed values, which are available from the statistical offices. Lacking additional sources 

for the regional production data, it is assumed that these values are accurate. 

In contrast, the technology coefficients of the sector model are derived from micro-level 

studies such as farm and household surveys. Modelers often use average values of the 

technology coefficients obtained from surveys. The use of the first argument of the samples 

disregards information on standard deviation and skewness, which are also relevant for 

calibrating the sector model. 

Additionally, micro-level data relies on subjective responses. In surveys, respondents, i.e. 

farmers, may give unreliable answers regarding input use as they may simply not measure or 

recall such information over multiple seasons. As a result, the coefficients obtained from 

surveys may have a stretched distribution which is presented in Figure 2: here the micro-level 

dataset has a high standard deviation and a wide range of observed application rates. 

Figure 2 Nitrogen Fertilizer Application for Wheat by Households 
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Source: Household survey in Khorezm, 2004 

Note: MEAN–Sample mean; STDEV–Standard deviation of the sample; N–Number of respondents 
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Therefore, we treat the micro-level data as least reliable which may cause deviations in the 

model’s base-run solution. The main assumption of this calibration approach is that the 

observed values of production activities, input and output prices, input endowments, and 

quantitative policy constraints are correctly specified, while the micro-level data obtained 

from the farm and household surveys, such as fertilizer, labor and diesel use rates, and 

irrigation requirements, are of the least reliability. 

The differences between PMP and the proposed approach are visually presented in Figure 3: a 

model maximizes a non-linear objective function (Z) via production activities (Xj) over 

activity gross-margins (ηj) and technology coefficients (aij). The model in its base run solves 

at point A, while the actual observation in the reference year is in point Ao. 

Figure 3 Comparison of PMP and Proposed Calibration Approach 

Case 2Case 1

X2

X1

 a X bij j i
j

≤∑

Ao

 ( |
1 2
2

, )Z z X aj j i X
j

j j jη ρ−= ∑ X2

X1

Ao

 ( | , )Z z X aj j ijη=

 X bj
c
ij ij

a ≤∑

A A

Case 2Case 1

X2

X1

 a X bij j i
j

≤∑

Ao

 ( |
1 2
2

, )Z z X aj j i X
j

j j jη ρ−= ∑ X2

X1

Ao

 ( | , )Z z X aj j ijη=

 X bj
c
ij ij

a ≤∑

A A

 
Source: Own compilation 
 

Case 1 shows the model calibration via PMP where the model is calibrated without altering 

the shape of the feasible solution space, but affecting the specification of the objective 

function by incorporating the increasing production cost term (ρj). 

Case 2 demonstrates the proposed approach which calibrates via modifications in the 

technology coefficients. Since the information on technology coefficients (aij) is included 

explicitly both in the feasible solution space and the objective function, their modification will 

alter both feasible solution shape and objective function location. However, contrary to PMP, 

the original specification of the objective function is maintained. 
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The proposed approach has several similarities with a PMP when solving the 

overspecialization problem and calibrating exactly. First, it maintains the model’s structure 

and does not restrict its flexibility to the exogenous changes. Secondly, this approach uses the 

information on the observed activity levels assuming equilibrium in the reference year. 

However, the proposed approach has an advantage over the standard PMP. While the 

proposed approach calibrates exactly without changing the specification of objective function, 

the standard PMP approach changes it via incorporating the nonlinear cost terms values of 

which may be complicated to explain. Nevertheless, the proposed approach has shortcomings 

similar to those of the standard PMP calibration. First of all, since the original model and 

calibration process are static, as they use information on production activity levels for one 

reference year, the model can be applied only under the base year conditions and inconsistent 

for observations in other periods. Second, technology coefficients are modified within a range 

derived from the information available where they may assume any value. Therefore, the 

calibration outcome is sensitive to the choice of support points. Finally, the calibration 

approach is ad hoc, as it has been tested only for the specific case of a quadratic objective 

function. In case of a linear objective function the proposed approach would create a 

degenerate base solution. 

 

4.2.1 Stage 1: Exploitation of Survey Data 

Originally, only the first arguments of survey data and official statistics are used to 

parameterize the model causing substantial deviations of the base-run solution from the 

observed situation. To calibrate now the model to the observed values of activities, we use a 

Cross-Entropy (CE) procedure which requires the definition of support points S for each 

model parameter in question, and the specification of prior weights which reflects the 

distribution of the sample data. 
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Within the CE framework, the final values of the parameters in question (E) can be expressed 

as function of prior information on the possible outcomes and associated weights: 

s s
s

E S w=∑ , 1s
s

w =∑          (6) 

where: 

Ε: Final model parameter value (the unknown elements of Table 1) 

S: Support points for Ε 

w: Weights for support points. 

Since the outcome of the CE estimation depends on the chosen values for S, we have to 

specify them in such a way that the sample information is reflected in the most efficient 

manner. Here, we use only 2 support points because this choice allows for a simple and 

efficient utilization of the sample information to determine prior weights and support points: 

( )1 1 2 11E S w S w= + −           (7) 

Visual examination of the sample data (e.g. the frequencies of nitrogen fertilizer usage for 

wheat by households, Figure 4) indicated that the sample distribution has a positive skew and 

resembles a log-normal rather than a normal distribution (see the fitted log-normal 

distribution in Figure 4). In this case, the sample mode would be the more appropriate choice 

for the model parameterization. Furthermore, we assume that the final value of the parameter 

in question lies within a 95% confidence interval of the sample distribution. Under the 

assumption that the sample data are log-normal distributed, the following desired properties 

of the final model parameters can be derived: 

Highest probability (mode):   ( )2[ ] expm E µ σ= −  

Lower bound of 95% confidence interval: ( )1 exp 2S µ σ= −  

Upper bound of 95% confidence interval: ( )2 exp 2S µ σ= +  

where µ and σ are mean and standard deviation of the natural logarithms of the sample data. 

Equation (7) can now be re-phrased into: 
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( ) 2
1 1 2 1 1

1 2

[ ]
[ ] 1

m E S
m E S w S w w

S S

−= + − ⇔ =
−

       (8) 

The resulting shape of the CE function is depicted in Figure 4 (note that the CE function was 

linearly transformed for illustrative purposes). The parameterized CE function is defined over 

the 95% confidence interval and has its optimum at the same point as the sample frequencies. 

Figure 4 Sample Frequency, CE Function, and Fitted Log-Normal Distribution of 

Fertilizer Use and Yields 
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Source: Household survey in Khorezm, 2004 

Note: The CE functions depicted here was linearly transformed for illustrative purposes (CE=0.345-0.2*CE) 
 

Although sample data for the majority of model parameters in question were available, many 

crucial parameters could not be evaluated via the surveys. A typical example is the application 

of irrigation water. Interviewed farmers could at most indicate the number of irrigation events 

during the last vegetation period, but they usually did not record the volume as would be 

needed for the model parameterization. For these situations, we used norm values 

recommended by research institutes and the support points were defined as their ± 50% 

deviations. 
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Furthermore, the presented calibration requires a set of dual values from the original model 

constraints; e.g. of resource and policy constraints and commodity market balances. The 

expected values of the shadow prices for some production inputs such as land, diesel, 

fertilizer, and labor were inferred by the authors from the farm and household surveys, such 

as unofficial land rents, black-market prices for diesel and fertilizers, and total value of 

agricultural wages which includes also the value of payments in kind. 

 

4.2.2 Stage 2: Modification of Technology Coefficients 

In the second stage, the observed activity values and the derived support points are used to 

modify the technology parameters of KhoRASM. When the observed activity levels represent 

an optimum of the model as in equation (5), the Kuhn-Tucker conditions have to hold. 

These conditions require that the shadow prices of the commodity balances (π ) are equal to 

the observed prices of corresponding commodities (oP ). The same applies to inputs 

purchased outside of agriculture (, o
ψ g ). Therefore, according to the first assumption, where 

the equilibrium was achieved under the observed values of production activities, the marginal 

commodity value and marginal opportunity cost constraints of the dual model are set to the 

following equalities: 

,= =o o o oπ P ψ g           (9) 

+ = + +m o f 1 f 2 p oY 'π Y 'φ B 'φ B 'ψ A' λ        (10) 

The next set of equations within the Kuhn-Tucker conditions are complementary slackness 

equalities which stipulate that binding resources at the optimum solution will have shadow 

price values greater than zero: 

( )ob-Ax  λ = 0�           (11) 

( )m o o oY x -q  π = 0�           (12) 

( )f o f oY x - B x φ = 0�           (13) 
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( )o p o ov - B x ψ = 0�           (14) 

Where “� ” denotes the Hadamard (element-wise) product of two matrices. 

To solve the ill-posed problem of calibrating KhoRASM, the CE estimation allows taking into 

account additional information about the range of parameter modification, i.e. support space 

specified by a priori information. For the purpose of model readability, we summarize all 

technology coefficients and dual values to be estimated in one matrix E  which is basically 

the first and last column of Table 1: 

 
 
 
 
 
 
 
 

m

f

f

p

Y

Y
E = φB

ψB

A

           (15)
 

In principle, it is possible to include also commodity prices and input prices in the second 

column of E , depending on the assumed reliability of the observed prices. E  is expressed as 

product of support points S and weights w: 

0 0

0
vec

0

0 0

   
   
   
   
   
    

'
11

'
21

'
MM

ws
ws

(E) = Sw =

ws

⋯

⋱ ⋮

⋮⋮ ⋱ ⋱

⋯

       (16)
 

Where vec is the operator that transforms the matrix E with dimensions [i,j] into a column 

vector with dimensions [ij,1], with ij=M. The sub-vectors of S are the support points for each 

model parameter as it was derived from the sample data in section 4.2.1: 

[ ]1 2,m ms s='
ms

 

The CE objective function for the described estimation problem is now implemented as: 

( )minCE = wln w w           (17) 

The CE problem is constrained by the following requirements, presented by Golan et al. 

(1996), and Kuhn-Tucker conditions related to the assumption on the optimum solution in the 

observed situation: 
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1) Normalization-additivity requirements: 

1=mι'w  

where ι  is a M×1 summation vector that ensures that the weights add up to one. 

2) For ensuring the fulfillment of the optimal solution at the observed activity values, 

equalities of the Kuhn-Tucker conditions must hold (equation 10); 

3) Additionally, the complementary slackness equalities imposed by the Kuhn-Tucker 

conditions must hold for every constraint and shadow prices (equations 11 to 14); 

4) The original model’s constraints are imposed to ensure that parameters are calibrated 

under the model’s original structure: 

0≥o ob - Ax  

5) Non-negativity constraints: 

0≥E  

 

5 Calibration Results 

The CE calibration of KhoRASM was programmed in GAMS and solved as non-linear 

problem via CONOPT3 solver. After calibration, KhoRASM is solved with the modified 

technology coefficients and commodity yields, producing an optimal solution that exactly 

replicates the reference year situation. 

To validate the calibration results, the percentage deviation of adjusted values of technology 

coefficients was calculated such as absolute difference between the adjusted and observed 

values divided by the observed value. The largest share of deviation in modified yield 

coefficients from their observed values is between ±10% (Figure 4). 

While the support space for modification of fertilizer, diesel and labor coefficients was a 

range defined by their standard deviations based on the information obtained from the 

surveys, the largest deviation from their observed values was mostly in the range of ±10%. 

The same pattern is observed for the modified values of crop-water use parameters (Figure 5). 
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Figure 5 Deviation of Technology Coefficients from Observed Values 
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To motivate the calibration results, the modified technology coefficients should be compared 

with their original values. If their new values are inconsistent with empirical observations, the 

model can be recalibrated imposing different support space until it produces plausible results. 

 

6 Conclusion 

The calibration of KhoRASM is based on two assumptions. First, the actual observed 

information on production activities, obtained from the official statistical bulletin, are 

assumed as equilibrium in the agricultural sector of Khorezm in the reference year. According 

to the second assumption, the information on the micro-level data on technology coefficients 

used in the aggregated sector model is the least reliable for the modeler. 

Consequently, to reproduce the actual observed activity levels without altering the original 

model’s structure, the model is calibrated via modifications in technology and commodity 

yield values using the CE estimation subject to the Kuhn-Tucker conditions. The main 

advantage of this calibration approach is that similar to PMP, it avoids overspecialization, 
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retains the model’s flexibility, and calibrates exactly. Moreover, this calibration approach 

allows the modeler to incorporate more properties of information on technologies obtained via 

surveys. 

In general, as a starting point, the selected calibration approach allows the modeler to use 

minimum number of data for policy analysis of changes in agricultural and food systems. 

However, the simple specification of the calibration model can generate unreasonable 

responses to the policy simulations (Heckelei 2002). Therefore, in next studies additional 

information on the system behavior should be incorporated into the calibration process. 

At the optimum solution of the CE model, where probabilities of modified parameters are 

maximized satisfying the Kuhn-Tucker conditions, the technology and commodity yield 

parameters are modified at new levels such as they steer the original model’s optimal solution 

to reproduce the observed activity values. Nevertheless, although the unique solution for the 

ill-posed problem of the technology coefficient modification has been found, the problem of 

arbitrary simulation behavior of the calibrated model remains unsolved, since the ME 

estimation is heavily dominated by support points (Heckelei and Britz 2000). 

The main limitation of the proposed approach is that it is ad hoc, meaning that it works only 

for this specific case, i.e. price-endogenous quadratic programming model. Since the 

applicability of this approach for other models has not been tested yet, the author does not 

claim that this approach can be used as general method for calibrating the programming 

models. This can be a subject of further studies to check the applicability of this calibration 

approach for other models. 
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