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Calibration of an Agricultural Sector Model

for the Region Khorezm (Uzbekistan) Based on Survepata

Marc Mdiller, Nodir Djanibekov

Abstract

The paper describes the approach used for thea#dib of a price-endogenous programming
model, developed for the agricultural sector of tbgion Khorezm in Uzbekistan. Extensive
datasets from farm surveys were used to paramettdrez model, which nevertheless tended
to over-specialization and failed in general tolicape the observed levels of primal model
variables. Calibration of the model with “Positiathematical Programming” approaches
was not satisfying as the additional cost termsothiced to replicate the observed situation
were in many cases not plausible and deviated sty from any available information
on cost structure of the agricultural productiotivéites in the study region. After revising the
survey data it became obvious that the variancéscbhical parameters of the model, namely
the input coefficients, were significantly largdrah any other used set of information.
Consequently, instead of introducing additionaltctesms, we decided to estimate the
technology parameters, such that the observedtisuaas replicated and the Kuhn-Tucker
conditions for an optimum in this point were fuldl. The estimation was based on a cross
entropy approach. The needed support points amat plistributions of the technology
coefficients and dual values were drawn from surgaga and additional sources of
information, such as expert interviews. The resula calibrated agricultural sector model
with a technology representation that was derivgdsystematical exploitation of relevant
data sources for the study region.

Keywords: supply model calibration, positive mathematicalgreanming, technology

coefficient estimation



1 Background

The Khorezm region is located in the northwest abékistan, in the lower reaches of the
Amu Darya River. Agriculture remains the most intpat sector of Khorezm’s economy: in
2003, it accounted for 67% of the regional GDP emghloyed 40% of regional labor.

In the agricultural sector of Uzbekistan severébnmas have been taken as part of a transition
to a market-based economy. However, since agrieuitithe main source of the country’s
export, state involvement in this sector remairisstantial via a state procurement system.

It was argued by many authors that the impliciatapn of the agricultural sector, via the state
procurement system, deprived the agricultural pcedu of profits (Guadagni et al 2005).
Therefore, further reforms in the agricultural se@re geared toward an increase in producer
incentives by abolishing the state procurementesystHowever, while such policy may have
a positive impact on agricultural output, it is lear how it will affect regional production.
The problem, therefore, requires a tool for systeamaolicy analysis. An agricultural sector
model is one such tool which can deal with the tjtative problems, while taking into
account the specific settings of regional agrigeltipplication of such model may provide a
better understanding on how a sector functionsigfiedmation valuable for evaluating policy

effects.

2 Main Model Characteristics

The model developed for the agricultural sectoKbbrezm (KhoRASM) is a static price-
endogenous partial equilibrium model as presemtddbizel and Norton (1986). KhoRASM is
applied to answer the question how production padtewill react to changes in policy
conditions, such as abolishment of state procurétasks.

The model consists of eight cropping and three ahproducing activities specified for three

producer aggregates in five production districtse Teference year is 2003.



For the sake of computational simplicity, the condityoprices and balances are defined in a
single regional commodity market. KhoRASM does mabrporate cross-price and income
effects, exporting and importing activities.

The model’s objective function maximizes regionalducer and consumer surplus:

mfaxZ = uq)- €q) )

Where u and c denote the consumer and producduswagsociated with the production and
consumption of commoditieg. The consumer surplus in its most general form ban
expressed according to Hazell and Norton (1986):

K
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Author 2 specifiedu(q) via Normalized Quadratic-Quadratic Expendituret&ys(NQQES).
However, this paper focuses on the calibrationhaf supply side of KhoRASM and we
restrict ourselves to more simplistic version ofystem of linear demand curves, which
results in a quadratic objective function:

u(@) =(«-39'B)q ®3)

The producer surplug(q) is expressed as the product of variable inputehased from
outside the agricultural sector times the respedtiput-priceg:

c(@) = v(a)g (4)

Levels of agricultural activities, the corresporgliolemand for variable and fixed inputs (like
water, land, but also production targets), andréseilting commodity outputs are linked as
depicted in Table 1. KhoRASM distinguishes betwegruts produced and traded within the
agricultural sector (namely fodder crops) and isguirchased from outside the agricultural
sector (fertilizer and diesel). This distinctionsuvaecessary to account for the fact that prices
for fodder inputs were not available in the samexmea as for other inputs, market prices of
which were observable. Table 2 provides an ovendewdifferent model components and

their dimensions.



Table1  Structure of KhoRASM
Activity level | in Marketing of | Purchase of Purchase of RHS Dual
districtd in output k from | fodder crops | variable input v values
farm type f activity n of n" activity
Dimension n=Ixdxf k vf vp 1 1
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Balance of
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Table2 Model Parameters and Variables
Model parameters | Description Dimension
A Demand for fixed factor or resource (including protion targets) | rxn
per level unit of activity n
b Vector of resource constraints (including produttiargets) rx1
B, B Demand for variable input produced within the agjtieral sector | fdxn,vxn
(fd) and variable input purchased from outsideagecultural
sector (v) per level unit of activity n
Y™yt Yields of market commodity k and fodder commodgyfriom kxn,fsxn
activity n
g Price for variable input v vpx1l
Model variables
X Level of activity | in district d and farm type f nx1
q Output of marketed commodity k kx1
f Purchase of inputs produced in agriculture (fodder) vix1
v Purchase of other inputs vpx1l
Dual values
n Shadow price of market balance constraint (commqatice) kx1
o. ¢ 0 Shadow price of fodder constraint fsx1,fdx1
1} Shadow price of input constraint (input price) vx1
A Shadow price of resource constraints rx1




The model’s Lagrangian takes the following form:
L :u(q)—g'v+n'(Y”5< —q)+<p1'(fo —f )+(|)2'(f —fo)+\|1'(v —Bpx)HJ(b-Ax) (5)
This model was parameterized based on survey dat@fficial statistics. The different data

sources are discussed in the next section.

3 Parameterization with Survey Data

The sources used for parameterization of the madepresented in Table 3. For KhoRASM
we used data of several categories compiled frdoegeor 2003: regional prices, production
patterns, input-output coefficients, and resourwog/ments.

Table 3  Sources for Model Parameters

Parameters Description Main How Alternative How derived
source derived | source
A Demand for fixed factor | Own Average | Norm values, Average or
or resource | per level survey expert interviews | most plausible
unit of activity n value
B Demand for variable Own Average | Norm values, Average or
input v per level unit of survey expert interviews | most plausible
activity n value
Y Yields of commaodity k Own Average | Official statistics,| Average or
from activity n survey norm values, most plausible
expert interviews | value
G Price for variable inputv | Own Average | Official statistics,| Average or
survey norm values, most plausible
expert interviews | value

The model consists of three agricultural produggregates. While there is an official record
on state-owned agricultural enterprises, the dathauseholds and farms is poor. Therefore,
such information was obtained via conducting fand Bousehold surveys.

The aggregated data were obtained from officialnegs. Annual reports of Regional
Department of Statistics provided the main soufogata on cropping area and animal stock,

input and resource endowments and policy conssrdmt2003. Due to complications in



covering the crop-water use in the surveys, thennaalues of crop-water requirements were
obtained from Regional Department of Agriculturea Supplement the information about
production technologies collected via the surveygqerts on crop and livestock production
were interviewed.

The base-run solution of KhoRASM using the expeatallies for all parameters did not
reproduce the observed situation for 2003. Figuderhonstrates the deviations between the
production activities levels in the model’s base-solution and their actual observed values.
Figure 1 Deviation of Production Activities from Observed Vdues
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Source:Base run of the uncalibrated KhoRASM

4  Calibration of the supply module

The calibration of the supply module of KhoRASM slibmodify the parameters such that
its base run exactly replicates the observed agti@vels without limiting the model’s

flexibility: This can be achieved via a calibratigorocedure which incorporates the
information on the observed activity levels for tbase year to derive certain model
parameters and keeps the number of the model eomstrunchanged (Howitt 2002). An
elegant approach to exactly calibrate the progrargmodel solution to observed quantities
without restraining its flexibility is the ‘Positev Mathematical Programming’ (PMP)

(Heckelei 2002).



4.1 Standard PMP Calibration

The PMP calibration process is based on two masuraptions: First, that the observed
situation is in fact the optimal solution for theddeled system in the base year. Second, that
there are hidden costs associated with each prioduattivity unobservable directly by a
modeler, but relevant to the producers. Based @sethassumptions, a PMP calibration
introduces the concept of decreasing marginal meturhis is done by incorporating nonlinear
cost terms into the model’s objective function (ksei 2002).

The standard PMP approach consists of two consecstages. In the first stage, additional
constraints are imposed which bound the model iiesvto their observed levels. The dual
values of the binding observation constraints amesitlered as the difference between price
and marginal cost for preferable activities and aterpreted as values that capture the
model’s false specification, data errors, aggregalias, risk behavior and price expectations
(Paris and Howitt 1998).

In the second stage, nonlinear cost terms aredated using the dual values of the
calibration constraints. The introduction of suamlnear cost terms will force the optimal
solution to exactly replicate the observed situatwithout additional unrealistic and
empirically unjustified constraints (Howitt 2005).

Doing this, the PMP calibration solves overspez#lon problem, maintains the model’'s
flexibility, and produces the exact fitness of thetivities in the base-run solution to their
observed values requiring less data than standg@proaches of calibrating linear
programming models.

In KhoRASM, the additional cost terms were in sotases so large that they could not be
supported by any information provided either in slieveys or by experts. Consequently, we

re-examined the available information and methods.



4.2 Model Calibration Approach Alternative to PMP

Normally, a sector model is validated by comparitsgbase-run activity levels with their
observed values, which are available from the stedil offices. Lacking additional sources
for the regional production data, it is assumed tthese values are accurate.

In contrast, the technology coefficients of thetseanodel are derived from micro-level
studies such as farm and household surveys. Madeiffen use average values of the
technology coefficients obtained from surveys. TiBe of the first argument of the samples
disregards information on standard deviation anewsless, which are also relevant for
calibrating the sector model.

Additionally, micro-level data relies on subjectivesponses. In surveys, respondents, i.e.
farmers, may give unreliable answers regardingtingge as they may simply not measure or
recall such information over multiple seasons. Asesult, the coefficients obtained from
surveys may have a stretched distribution whigbrésented in Figure 2: here the micro-level
dataset has a high standard deviation and a widgraf observed application rates.

Figure 2 Nitrogen Fertilizer Application for Wheat by Households
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Therefore, we treat the micro-level data as lealsable which may cause deviations in the
model’'s base-run solution. The main assumptionhe$ talibration approach is that the
observed values of production activities, input andput prices, input endowments, and
quantitative policy constraints are correctly sfiedi while the micro-level data obtained
from the farm and household surveys, such as ifatjl labor and diesel use rates, and
irrigation requirements, are of the least reliaili

The differences between PMP and the proposed agipare visually presented in Figure 3: a
model maximizes a non-linear objective functiaf) {ia production activities X)) over
activity gross-marginsy() and technology coefficientsy). The model in its base run solves
at point A, while the actual observation in theerehce year is in point°A

Figure 3 Comparison of PMP and Proposed Calibration Approach
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Source:Own compilation

Case 1 shows the model calibration via PMP whegentbdel is calibrated without altering
the shape of the feasible solution space, but t@ffipahe specification of the objective
function by incorporating the increasing productomst term ;).

Case 2 demonstrates the proposed approach whidbrates via modifications in the
technology coefficients. Since the information @thnology coefficientsaf) is included
explicitly both in the feasible solution space &nel objective function, their modification will
alter both feasible solution shape and objectivetion location. However, contrary to PMP,

the original specification of the objective functis maintained.
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The proposed approach has several similarities wathPMP when solving the
overspecialization problem and calibrating exadfyst, it maintains the model’s structure
and does not restrict its flexibility to the exoges changes. Secondly, this approach uses the
information on the observed activity levels assugrequilibrium in the reference year.
However, the proposed approach has an advantage teestandard PMP. While the
proposed approach calibrates exactly without chmantiie specification of objective function,
the standard PMP approach changes it via incolipgréihe nonlinear cost terms values of
which may be complicated to explain. Nevertheldss,proposed approach has shortcomings
similar to those of the standard PMP calibratiomstFof all, since the original model and
calibration process are static, as they use infoomaon production activity levels for one
reference year, the model can be applied only utidebase year conditions and inconsistent
for observations in other periods. Second, techyyotmefficients are modified within a range
derived from the information available where thegymassume any value. Therefore, the
calibration outcome is sensitive to the choice opport points. Finally, the calibration
approach isad hog as it has been tested only for the specific cds# quadratic objective
function. In case of a linear objective functiore tiproposed approach would create a

degenerate base solution.

4.2.1 Stage 1: Exploitation of Survey Data

Originally, only the first arguments of survey datad official statistics are used to
parameterize the model causing substantial dewsitmf the base-run solution from the
observed situation. To calibrate now the modehwdbserved values of activities, we use a
Cross-Entropy (CE) procedure which requires thendefn of support points S for each
model parameter in question, and the specificabbrprior weights which reflects the

distribution of the sample data.
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Within the CE framework, the final values of thegaeters in question (E) can be expressed

as function of prior information on the possiblécmmes and associated weights:

E=Y 8w, Y, =1 ©)
where:

E: Final model parameter value (the unknown elemehiable 1)

S: Support points fdE

w: Weights for support points.
Since the outcome of the CE estimation dependshenchosen values for S, we have to
specify them in such a way that the sample infoionais reflected in the most efficient
manner. Here, we use only 2 support points becthisechoice allows for a simple and
efficient utilization of the sample information determine prior weights and support points:
E=Sw+ S(1- w) ()
Visual examination of the sample data (e.g. thgueacies of nitrogen fertilizer usage for
wheat by households, Figure 4) indicated that #mepde distribution has a positive skew and
resembles a log-normal rather than a normal digioh (see the fitted log-normal
distribution in Figure 4). In this case, the sammlede would be the more appropriate choice
for the model parameterization. Furthermore, weiassthat the final value of the parameter
in question lies within a 95% confidence intervdltbe sample distribution. Under the
assumption that the sample data are log-normaiilwlised, the following desired properties

of the final model parameters can be derived:

Highest probability (mode): m g :exp(/,l—az)
Lower bound of 95% confidence intervalS =exp(x - 27)
Upper bound of 95% confidence intervalS, = exp(u+ 20)

wherep ando are mean and standard deviation of the naturakiitgns of the sample data.
Equation (7) can now be re-phrased into:

12



mE = §yr Si-Y - e 2 ®)
S-S

The resulting shape of the CE function is depiateBigure 4 (note that the CE function was

linearly transformed for illustrative purposes).eTparameterized CE function is defined over

the 95% confidence interval and has its optimuth@isame point as the sample frequencies.

Figure 4 Sample Frequency, CE Function, and Fitted Log-NorméDistribution of

Fertilizer Use and Yields
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Note: The CE functions depicted here was linearly tramséal for illustrative purposes (CE=0.345-0.2*CE)

Although sample data for the majority of model paeters in question were available, many
crucial parameters could not be evaluated viatineeys. A typical example is the application
of irrigation water. Interviewed farmers could abshindicate the number of irrigation events
during the last vegetation period, but they usudity not record the volume as would be
needed for the model parameterization. For theseatgins, we used norm values
recommended by research institutes and the sumomants were defined as their £ 50%

deviations.
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Furthermore, the presented calibration requirestatdual values from the original model
constraints; e.g. of resource and policy constsaarid commodity market balances. The
expected values of the shadow prices for some ptmdu inputs such as land, diesel,
fertilizer, and labor were inferred by the authfisn the farm and household surveys, such
as unofficial land rents, black-market prices foesel and fertilizers, and total value of

agricultural wages which includes also the valupafments in kind.

4.2.2 Stage 2: Modification of Technology Coefficients

In the second stage, the observed activity valnelstle derived support points are used to
modify the technology parameters of KhoRASM. Whes dbserved activity levels represent
an optimum of the model as in equation (5), thekliicker conditions have to hold.

These conditions require that the shadow pricehe@fcommodity balancest( are equal to
the observed prices of corresponding commodities).( The same applies to inputs
purchased outside of agricultures,@°). Therefore, according to the first assumptionexeh
the equilibrium was achieved under the observedegabf production activities, the marginal
commodity value and marginal opportunity cost caists of the dual model are set to the
following equalities:

7= P y°= g° ©)

Y™ +Y et =B"@*+BPy° +A'L (10)
The next set of equations within the Kuhn-Tuckendiions are complementary slackness
equalities which stipulate that binding resourcesha optimum solution will have shadow

price values greater than zero:

(b0-Ax°)or=0 (11)
(Y"x°-g°)om®=0 (12)
(fo°-fo°)o(p=O (13)
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(v°-Bpx°)o\|1°=O (14)
Where “” denotes the Hadamard (element-wise) product ofrivatrices.
To solve the ill-posed problem of calibrating Kho8M¥, the CE estimation allows taking into

account additional information about the range arfameter modification, i.e. support space
specified by a priori information. For the purpasiemodel readability, we summarize all
technology coefficients and dual values to be estoh in one matrix which is basically

the first and last column of Table 1:

Ym
Yf
E=|B ¢ (15)
B v
A

In principle, it is possible to include also comntpdrices and input prices in the second
column of E, depending on the assumed reliability of the oleprices.E is expressed as

product of support points S and weights w:

s O 0| w,
vedE) = Sw = ? Sl : Wa (16)
0 -« 0 s, | w,

Where vec is the operator that transforms the m&rwith dimensions [i,j] into a column
vector with dimensions [ij,1], with ij=M. The sulegtors ofS are the support points for each

model parameter as it was derived from the samgtie id section 4.2.1:

S =[S Sve]

The CE objective function for the described estiaraproblem is now implemented as:
minCE = win (w/W) (17)
The CE problem is constrained by the following legments, presented by Golan et al.
(1996), and Kuhn-Tucker conditions related to thguanption on the optimum solution in the

observed situation:

15



1) Normalization-additivity requirements:

whereu is a Mx1 summation vector that ensures that thght®add up to one.

2) For ensuring the fulfillment of the optimal soluti@t the observed activity values,
equalities of the Kuhn-Tucker conditions must h@duation 10);

3) Additionally, the complementary slackness equalitimposed by the Kuhn-Tucker
conditions must hold for every constraint and skagdces (equations 11 to 14);

4) The original model’'s constraints are imposed tauenshat parameters are calibrated
under the model’s original structure:
b°-Ax°=0

5) Non-negativity constraints:

E=0

5 Calibration Results

The CE calibration of KhoRASM was programmed in GBMnd solved as non-linear
problem via CONOPT3 solver. After calibration, Khd®M is solved with the modified
technology coefficients and commodity yields, prodg an optimal solution that exactly
replicates the reference year situation.

To validate the calibration results, the percentdge@ation of adjusted values of technology
coefficients was calculated such as absolute diffez between the adjusted and observed
values divided by the observed value. The largésires of deviation in modified yield
coefficients from their observed values is betwe&d% (Figure 4).

While the support space for modification of ferdr, diesel and labor coefficients was a
range defined by their standard deviations basedheninformation obtained from the
surveys, the largest deviation from their observallies was mostly in the range of £10%.

The same pattern is observed for the modified watderop-water use parameters (Figure 5).

16



Figure 5 Deviation of Technology Coefficients from Observe&¥alues
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Source: Model calibration results

To motivate the calibration results, the modifiedhinology coefficients should be compared
with their original values. If their new values ameonsistent with empirical observations, the

model can be recalibrated imposing different supppace until it produces plausible results.

6 Conclusion

The calibration of KhoRASM is based on two assuondi First, the actual observed
information on production activities, obtained frothe official statistical bulletin, are

assumed as equilibrium in the agricultural sectdflrezm in the reference year. According
to the second assumption, the information on theravlevel data on technology coefficients
used in the aggregated sector model is the lelzblefor the modeler.

Consequently, to reproduce the actual observeditgctevels without altering the original

model’s structure, the model is calibrated via rfiodiions in technology and commodity
yield values using the CE estimation subject to khén-Tucker conditions. The main

advantage of this calibration approach is that Isinto PMP, it avoids overspecialization,

17



retains the model’s flexibility, and calibrates ettw Moreover, this calibration approach
allows the modeler to incorporate more propertfaaformation on technologies obtained via
surveys.

In general, as a starting point, the selected ilin approach allows the modeler to use
minimum number of data for policy analysis of chesgn agricultural and food systems.
However, the simple specification of the calibrationodel can generate unreasonable
responses to the policy simulations (Heckelei 2002)erefore, in next studies additional
information on the system behavior should be incfed into the calibration process.

At the optimum solution of the CE model, where pioitities of modified parameters are
maximized satisfying the Kuhn-Tucker conditionse ttechnology and commodity yield
parameters are modified at new levels such asdtesy the original model’s optimal solution
to reproduce the observed activity values. Nevétise although the unique solution for the
ill-posed problem of the technology coefficient nfm@tion has been found, the problem of
arbitrary simulation behavior of the calibrated mbdemains unsolved, since the ME
estimation is heavily dominated by support poiktedkelei and Britz 2000).

The main limitation of the proposed approach ig thes ad hog meaning that it works only
for this specific case, i.e. price-endogenous aatadrprogramming model. Since the
applicability of this approach for other models e been tested yet, the author does not
claim that this approach can be used as generdioahefor calibrating the programming
models. This can be a subject of further studieshieck the applicability of this calibration

approach for other models.
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