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Abstract 
 
The lack of study among the economic forecasting literature that can empirically proves 

the hypothesis of being more powerfulness of dynamic neural networks in comparison with 
the static neural networks models for forecasting, is the most important motivation of this 
study. In this paper, the utilization of NNARX as a nonlinear dynamic neural network model, 
ANN as a nonlinear static neural network model and ARIMA as a linear model were 
compared to forecast poultry retail price. As a case study on Iranian poultry retail price, we 
compare forecast performance of these models for three forecasts (1, 2 and 4 week ahead). 
Results show that NNARX and ANN models outperform ARIMA model, and also NNARX 
model outperforms ANN model for all three forecasts.  
 
Keywords: NNARX; Poultry Retail Price; Forecasting. 
 

1. Introduction 
 

In the last few decades, many forecasting models have been developed [19.]. Which 
among them, the autoregressive integrated moving average (ARIMA) model has been highly 
popularized, widely used and successfully applied not only in economic time series 
forecasting, but also as a promising tool for modeling the empirical dependencies between 
successive times and failures [13.]. Recently, it is well documented that many economic time 
series observations are non-linear while, a linear correlation structure is assumed among the 
time series values therefore, the ARIMA model can not capture nonlinear patterns and, 
approximation of linear models to complex real-world problem is not always satisfactory. 
While nonparametric nonlinear models estimated by various methods such as Artificial 
Intelligence (AI), can fit a data base much better than linear models and it has been observed 
that linear models, often forecast poorly which limits their appeal in applied setting [22.]. 

Artificial Intelligence (AI) systems are widely accepted as a technology offering an 
alternative way to tackle complex and ill-defined problems [15.]. They can learn from 
examples, are fault tolerant in the sense that they are able to handle noisy and incomplete 
data, are able to deal with non-linear problems, and once trained can perform prediction and 
generalization at high speed [16.]. They have been used in diverse applications in control, 
robotics, pattern recognition, forecasting, medicine, power systems, manufacturing, 
optimization, signal processing and social/psychological sciences. AI systems comprise areas 
like expert systems, ANNs, genetic algorithms, fuzzy logic and various hybrid systems, which 
combine two or more techniques [16.]. Among the mentioned AI systems, according to 
Haykin [12.], a neural network is a massively parallel-distributed processor that has a natural 
propensity for storing experiential knowledge and making it available for use. Also, the 
greatest advantage of a neural network is its ability to model complex nonlinear relationship 
without a priori assumptions of the nature of the relationship like a black box [17.].  

On the order hand, neural networks can be classified into dynamic and static categories. 
Static (feed-forward) networks have no feedback elements and contain no delays; the output 
is calculated directly from the input through feed-forward connections. In dynamic networks, 
the output depends not only on the current input to the network, but also on the current or 
previous inputs, outputs, or states of the network. Dynamic networks are generally more 
powerful than static networks (although somewhat more difficult to train). Because dynamic 
networks have memory, they can be trained to learn sequential or time-varying patterns [22.].  

Concerning the application of neural nets to time series forecasting, there have been 
mixed reviews. For instance, Lapedes and Farber [18.] reported that simple neural networks 
can outperform conventional methods, sometimes by orders of magnitude. Sharda and patil 
[28.] conducted a forecasting competition between neural network models and traditional 
forecasting technique (namely the Box-Jenkins method) using 75 time series of various 
natures. They concluded that simple neural nets could forecast about as well as the Box-
Jenkins forecasting system. Wu [29.] conducts a comparative study between neural networks 
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and ARIMA models in forecasting the Taiwan/US dollar exchange rate. His findings show 
that neural networks produce significantly better results than the best ARIMA models in both 
one-step-ahead and six-step-ahead forecasting. Similarly, Hann and Steurer [10.], Zhang and 
Hu [30.] find results in favor of neural network. Gencay [8.] compares the performance of 
neural network with those of random walk and GARCH1 models in forecasting daily spot 
exchange rates for the British pound, Deutsche mark, French franc, Japanese yen, and the 
Swiss franc. He finds that forecasts generated by neural network are superior to those of 
random walk and GARCH models.  

We couldn't big body of study among the economic forecasting literatures that can 
empirically proves the hypothesis of being more powerfulness of dynamic neural networks in 
compare with the static neural networks for economic time series forecasting. This lack 
motivated us to prepare this study. In this paper we compare the utilization of NNARX2 as a 
nonlinear dynamic neural network model, ANN3 as a nonlinear static neural network model 
and ARIMA as a linear model for forecasting. In order to comparison of mentioned models 
we use the common forecast performance measures such as Absolute fraction of variance 
( 2R ), Mean Absolute Deviation (MAD), Mean Square Error (MSE) and Root Mean Square 
Error (RMSE). As an empirical application, we compare the various forecasting performance 
of mentioned models for three perspectives (1, 2 and 4 week ahead) of Iran poultry retail price 
weekly time series via common forecast performance measures. We obtained the weekly 
poultry retail price time series of Iran for the period 2002:3-2007:12 from the website of Iran 
State Livestock Affairs Logistics. Also, we consider the period 2002:3-2006:3 (70% of total 
observations) and 2006:3-2007-12 (30% of total observations) for training and testing of all 
models, respectively. 
 
 

2. Auto-Regressive Integrated Moving Average (ARIMA) Model 
 

 

Introduced by Box and Jenkins [1.], in the last few decades the ARIMA model has been 
one of the most popular approaches of linear time series forecasting methods. An ARIMA 
process is a mathematical model used for forecasting. One of the attractive features of the 
Box-Jenkins approach to forecasting is that ARIMA processes are a very rich class of 
possible models and it is usually possible to find a process which provides an adequate 
description to the data. The original Box-Jenkins modeling procedure involved an iterative 
three-stage process of model selection, parameter estimation and model checking. Recent 
explanations of the process (e.g., [20.]) often add a preliminary stage of data preparation and 
a final stage of model application (or forecasting). 
Also, the ARIMA (p, d, q) model for variable y is as follow: 
 

qtttptptt eeeyytfy −−−− +++++++= θθφφ ......)( 1111  
 

Where y is estimated by the following equation: 
 

t
d

t
d

t xLxy )1( −=∆=  
 

Where ty  and te  are the target value and random error at time t, respectively, 

( )pii ,...,2,1=φ  and ( )qjj ,...,2,1=θ  are model parameters, p and q are integers and often 

referred to as orders of autoregressive and moving average polynomials.  
 

3. Artificial Neural Network model 
 

                                                 
1 . Generalized Auto-Regressive Conditional Hetroskedastic.  
2 . Neural Network Auto-Regressive model with eXogenous inputs. 
3 . Artificial Neural Network. 

(1) 

(2) 
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The major advantage of neural networks is their flexible capability of nonlinear 
modeling. With ANN, there is no need to specify a particular model. Rather, the model is 
adaptively based on the features presented from the data [11.]. This data-driven approach is 
suitable for many empirical researches where no theoretical guidance is available to suggest 
an appropriate data generating process. The most common types of ANN models have been 
shown in figure1: 
 
 
 
 
 
 
 
 
 

 

 
 

Fig1. Most common types of ANN models 
 

For the purposes of this paper, the feed-forward backpropagation neural network (also 
known as a MLP4 network) is the neural network model most widely used in time series 
forecasting, because it is capable of resolving a wide variety of problems [27.]. MLP network 
is made up of an input layer, an output layer and one or more hidden layers of neurons. As the 
fig2 shows, each input is weighted with an appropriate w. The sum of the weighted inputs and 
the bias forms the input to the transfer function f. 
 

 
 
 
 
 
 
 
 
 
 

 
 

Fig.2. A typical Back-Propagation neural network 
 

Neurons can use any differentiable transfer function f to generate their output. In general, 
transfer function introduces a degree of nonlinearity that is valuable for most ANN 
applications and ideally, it should be continuous, differentiable, and monotonic. Feed-forward 
networks often have hidden layer(s) of sigmoid neurons followed by an output layer of linear 
neurons.  

Two stages may be considered in the MLP network: the running stage, in which an input 
pattern is presented to the trained network and transmitted through successive layers of 
neurons until reaching an output, and the training or learning stage in which the weights or 
parameters of the network are iteratively modified on the basis of a set of input–output 

                                                 
4 . Multilayer Perceptron.  
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patterns known as a training set, in order to minimize the deviance or error between the output 
obtained by the network and the user’s desired output. This is why MLP network learning is 
said to be supervised. The learning rule commonly used in this type of network is the back 
propagation algorithm or gradient descent method, developed and disseminated by 
Rumelhart, Hinton and Williams [26.]. In this research, we use the following three-layer feed-
back networks: 

 

 
 
                                  

Where F is the output function of the output layer unit, 0β is the bias unit (equal to 1), G is 
the output function of the hidden layer units j , kjγ  denotes the weight for the connection 

linking input k  to the hidden unit j , jβ  is the weight of outputs from the hidden layers in the 
output layer unit, and X is the input vector.  
 

4. Neural Network Auto-Regressive model with eXogenous inputs (NNARX): 
 

Neural networks can be classified into dynamic (e.g. NNARX) and static (e.g. ANN) 
categories. Static networks have no feedback elements and contain no delays; the output is 
calculated directly from the input through feed-forward connections. In dynamic networks, 
the output depends not only on the current input to the network, but also on the current or 
previous inputs, outputs, or states of the network. Dynamic networks are generally more 
powerful than static networks (although somewhat more difficult to train). Because dynamic 
networks have memory, they can be trained to learn sequential or time-varying patterns [21.]. 
This model has a parametric component plus a nonlinear part, where the nonlinear part is 
approximated by a single hidden layer feed-forward ANN. The neural network autoregressive 
with exogenous inputs (NNARX) is current dynamic network, with feedback connections 
enclosing several layers of the network. The NNARX model is based on the linear ARX 
model, which is commonly used in time-series modeling. Also, this has applications in such 
disparate areas as prediction in financial markets [24.], channel equalization in 
communication systems [7.], phase detection in power systems [16.], sorting ([14.], fault 
detection [3.], speech recognition [23.], and even the prediction of protein structure in 
genetics [9.].  

The defining equation for the NNARX model is as follow: 
 

))(),...,2(),1(),(),...2(),1(()( uy ntututuntytytyfty −−−−−−=                          (4) 
 

Where, the next value of the dependent output signal y(t) is regressed on previous values 
of the output signal and previous values of an independent (exogenous) input signal. The 
output is feed back to the input of the feed-forward neural network as part of the standard 
NNARX architecture, as shown in the left fig3. Because the true output is available during the 
training of the network, we could create a series-parallel architecture [25.], in which the true 
output is used instead of feeding back the estimated output, as shown in the right fig3. This 
has two advantages. The first is that the input to the feed-forward network is more accurate. 
The second is that the resulting network has purely feed-forward architecture, and static 
backpropagation can be used for training. 

(3) 
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Fig3. Parallel and Series-Parallel Architectures 
 

Dynamic networks are trained in the same gradient-based algorithms that were used in 
“Backpropagation.” Although they can be trained using the same gradient-based algorithms 
that are used for static networks, the performance of the algorithms on dynamic networks can 
be quite different, and the gradient must be computed in a more complex way [5.]. A diagram 
of the resulting network is shown by fig 4, where a two-layer feed-forward network is used 
for the approximation.  

 
 

Fig4. A typical neural network auto-regressive with exogenous inputs (NNARX) 
 

This type of network's weights has two different effects on the network output. The first 
is the direct effect, because a change in the weight causes an immediate change in the output 
at the current time step (This first effect can be computed using standard backpropagation.). 
The second is an indirect effect, because some of the inputs to the layer, such as a(t,1), are 
also functions of the weights. To account for this indirect effect, we must use dynamic 
backpropagation to compute the gradients, which are more computationally intensive [6.]. 
Expect dynamic backpropagation to take more time to train, in part for this reason. In 
addition, the error surfaces for dynamic networks can be more complex than those for static 
networks. Training is more likely to be trapped in local minima. This suggests that you might 
need to train the network several times to achieve an optimal result [4.]. 
 

5. Forecast Performance Measures 
 

 

Forecast researchers need measures in order to compare the forecasting performance of 
various models. Commonly, these measures are including of 2R , MAD, MSE and RMSE that 
the following is their definition and general formulas: 
 

 
 
 



 7

n
yy

MAD tt∑ −
=

||
^

n
yy

RMSE tt∑ −
=

2
^

)(

2

2
2

ˆ
)ˆ(

1
t

tt

y
yy

R
∑

∑ −
−=

Table 2.Four common types of forecast performance measures 
Measure Definition Formulate 

 
Absolute fraction of variance ( 2R )

 
 
Mean Absolute Deviation (MAD) 

 

 
Mean Square Error (MSE) 

n
yy

MSE tt∑ −
=

2
^

)(
 

 
Root Mean Square Error (RMSE) 

 

      

Where ty , tŷ  and n are the target value, output value and number of observations, 

respectively. Clearly, the best score for 2R  measure is 1 and for other measures is zero.  
 

6. Data construction 
 

 

For the exercise which is follows, we modeled the Iran poultry retail price as a function 
of past prices. Clearly, this has the shortcoming that our models are somewhat naive from the 
perspective of theoretical macroeconomics. However, there is a large body of literature in 
economics suggesting that very parsimonious models, such ARIMA model, perform better 
than more complex models, at least from the perspective of forecasting [2.]. We obtained the 
weekly poultry retail price time series of Iran for the period 2002:3-2007:12 from the website 
of Iran State Livestock Affairs Logistics (www.IranSLAL.com). Also, we consider the period 
2002:3-2006:3 (70% of total observations) and 2006:3-2007-12 (30% of total observations) 
for training and testing of all models, respectively.  

 
 

7. Results and discussion  
 

In this section we presented the empirical results of comparing the forecasting 
performance of mentioned models for 1, 2 and 4 week ahead of Iran poultry retail price 
weekly time series via common forecast performance measures. For ARIMA model we 
identified the degree of integration (d), autoregessive (p) and moving average (q) by Dikey-
Fuller, correlation and partial correlation diagrams, respectively. We applied the Schwartz-
Bayesian criterion for identification of lag number. For ANN model and nonlinear part of 
NNARX we investigated the various architectures of feed-forward backpropagation network. 
Table3 shows the summary of these results:  
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Table 3.Comparision of NNARX, ANN and ARIMA models for forecasting 
A. ANN /ARIMA 

RMSE MSE MAD R^2 
Test Train Test Train Test Train Test Train 

 
Architecture 

Week(s)  
ahead  

5-2-1-1 
5-3-2-1-1 

5-4-3-2-1-1 
5-5-4-3-2-1-1 

5-6-5-4-3-2-1-1 

  
  
1 

 
 

5-2-1-1 
5-3-2-1-1 

5-4-3-2-1-1 
5-5-4-3-2-1-1 

5-6-5-4-3-2-1-1 

  
  
2 

0.30163 
0.58696 
0.36232 
0.21377 
0.80888 
0.82920 
0.29335 
0.68014 
0.42286 
0.50326 
0.37170 
0.55647 
0.34184 
0.80701 
0.19991 

0.14462 
0.43696 
0.31088 
0.08962 
0.60754 
0.08377 
0.15656 
0.45869 
0.24783 
0.34200 
0.29206 
0.51805 
0.14159 
0.67629 
0.14714 

0.07143 
0.30357 
0.10714 
0.03571 
0.57143 
0.59016 
0.08197 
0.39344 
0.14754 
0.21311 
0.10606 
0.22727 
0.09091 
0.53030 
0.03030 

0.04000 
0.20000 
0.12000 
0.04000 
0.40000 
0.46875 
0.03125 
0.18750 
0.06250 
0.12500 
0.07692 
0.05128 
0.02564 
0.38462 
0.02564 

0.36039 
0.70598 
0.43555 
0.25507 
0.97477 
0.96206 
0.33637 
0.78806 
0.48862 
0.57663 
0.42514 
0.54732 
0.39059 
0.92839 
0.22784 

0.16279 
0.58326 
0.38884 
0.10884 
0.73581 
0.91681 
0.16303 
0.59076 
0.31008 
0.41597 
0.36386 
0.67631 
0.14699 
0.80723 
0.16948 

1.05383 
1.04950 
1.05393 
1.05372 
1.05340 
1.05586 
1.05628 
1.05766 
1.05893 
1.05681 
1.05459 
1.05714 
1.05799 
1.05449 
1.05874 

1.04211 
1.04127 
1.04169 
1.04211 
1.04044 
1.04573 
1.04866 
1.04761 
1.04845 
1.04814 
1.05266 
1.05276 
1.05308 
1.05024 
1.05308 

5-2-1-1 
5-3-2-1-1 

5-4-3-2-1-1 
5-5-4-3-2-1-1 

5-6-5-4-3-2-1-1 

  
  
4 

B. NNARX/ARIMA 
RMSE MSE MAD R^2 

Test Train Test Train Test Train Test Train 
 

Architecture 
Week(s)  
ahead  

5-2-1-1 
5-3-2-1-1 

5-4-3-2-1-1 
5-5-4-3-2-1-1 

5-6-5-4-3-2-1-1 

  
  
1  

5-2-1-1 
5-3-2-1-1 

5-4-3-2-1-1 
5-5-4-3-2-1-1 

5-6-5-4-3-2-1-1 

  
  
2 

0.21377 
0.06431 
0.29121 
0.07790 
0.11685 
0.14429 
0.10300 
0.16341 
0.03738 
0.07171 
0.19126 
0.47339 
0.19991 
0.05539 
0.07443 

0.10816 
0.03337 
0.17985 
0.05748 
0.05624 
0.07626 
0.06181 
0.09705 
0.04275 
0.09359 
0.09828 
0.48029 
0.10328 
0.06607 
0.05664 

0.03571 
0.01786 
0.07143 
0.01786 
0.01786 
0.01639 
0.01639 
0.01639 
0.01639 
0.01639 
0.03030 
0.18182 
0.03030 
0.01515 
0.01515 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

0.25453 
0.07625 
0.34723 
0.08941 
0.13714 
0.16439 
0.11735 
0.18665 
0.03237 
0.08093 
0.21783 
0.54181 
0.22784 
0.04306 
0.03455 

0.12744 
0.03907 
0.20558 
0.06047 
0.06140 
0.09076 
0.06975 
0.11008 
0.03866 
0.09832 
0.10843 
0.56627 
0.11486 
0.05863 
0.04900 

1.05478 
1.05520 
1.05435 
1.05456 
1.05446 
1.05893 
1.05904 
1.05851 
1.05935 
1.05808 
1.05927 
1.06086 
1.05927 
1.05937 
1.05927 

1.04211 
1.04211 
1.04211 
1.04211 
1.04211 
1.04866 
1.04866 
1.04866 
1.04866 
1.04866 
1.05308 
1.05308 
1.05308 
1.05308 
1.05308 

5-2-1-1 
5-3-2-1-1 

5-4-3-2-1-1 
5-5-4-3-2-1-1 

5-6-5-4-3-2-1-1 

  
  
4 

C. NNARX/ANN 
RMSE MSE MAD R^2 

Test Train Test Train Test Train Test Train 
  

Architecture 
Week(s)  
ahead  

5-2-1-1 
5-3-2-1-1 

5-4-3-2-1-1 
5-5-4-3-2-1-1 

5-6-5-4-3-2-1-1 

  
  
1  

  
 

5-2-1-1 
5-3-2-1-1 

5-4-3-2-1-1 
5-5-4-3-2-1-1 

5-6-5-4-3-2-1-1 

  
  
2 

0.70871 
0.10957 
0.80375 
0.36441 
0.14446 
0.17400 
0.35111 
0.24026 
0.08839 
0.14249 
0.51455 
0.85070 
0.58481 
0.06863 
0.37229 

0.74786 
0.07638 
0.57853 
0.64138 
0.09257 
0.91034 
0.39483 
0.21159 
0.17249 
0.27365 
0.33650 
0.92712 
0.72941 
0.09770 
0.38491 

0.50000 
0.05882 
0.66667 
0.50000 
0.03125 
0.02778 
0.20000 
0.04167 
0.11111 
0.07692 
0.28571 
0.80000 
0.33333 
0.02857 
0.50000 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

0.70624 
0.10800 
0.79723 
0.35054 
0.14069 
0.17087 
0.34887 
0.23684 
0.06625 
0.14035 
0.51237 
0.98994 
0.58333 
0.04639 
0.15165 

0.78286 
0.06699 
0.52871 
0.55556 
0.08344 
0.09899 
0.42784 
0.18634 
0.12466 
0.23636 
0.29801 
0.83729 
0.78142 
0.07264 
0.28910 

1.00090 
1.00543 
1.00040 
1.00080 
1.00100 
1.00291 
1.00261 
1.00080 
1.00040 
1.00120 
1.00443 
1.00352 
1.00120 
1.00463 
1.00050 

1.00000 
1.00080 
1.00040 
1.00000 
1.00160 
1.00281 
1.00000 
1.00100 
1.00020 
1.00050 
1.00040 
1.00030 
1.00000 
1.00271 
1.00000 

5-2-1-1 
5-3-2-1-1 

5-4-3-2-1-1 
5-5-4-3-2-1-1 

5-6-5-4-3-2-1-1 

  
  
4 

 
 

• In part A of the above table: 
Columns 3-10 represent quantities of R^2, MAD, MSE and RMSE measures of some 
designed network architectures of ANN model divided to R^2, MAD, MSE and RMSE of 
ARIMA (2,1,1) model, for 1, 2 and 4 week ahead of weekly poultry retail price time series, 
respectively. Because the quantities of column 3 and 4 are bigger than 1 and the quantities of 
columns 4-10 are less than zero, for all observations allocated to train and test sets, we can 
find that ANN network architectures outperform the ARIMA (2,1,1) model for all considered 
perspectives. 
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• In part B of the above table: 
Similarly, columns 3-10 represent quantities of R^2, MAD, MSE and RMSE measures of 
some designed network architectures of NNARX model divided to R^2, MAD, MSE and 
RMSE of ARIMA (2,1,1) model, for 1, 2 and 4 week ahead of weekly poultry retail price 
time series, respectively. Similarly, because the quantities of column 3 and 4 are bigger than 1 
and the quantities of columns 4-10 are less than zero, for all observations allocated to train 
and test sets, we can find that NNARX network architectures outperform the ARIMA (2,1,1) 
model for all considered perspectives. 
 

• In part C of the above table: 
Similarly, columns 3-10 represent quantities of R^2, MAD, MSE and RMSE measures of 
some designed network architectures of NNARX model divided to R^2, MAD, MSE and 
RMSE of some designed network architectures of ANN model, for 1, 2 and 4 week ahead of 
weekly poultry retail price time series, respectively. Similarly, because the quantities of 
column 3 and 4 are bigger than 1 and the quantities of columns 4-10 are less than zero, for all 
observations allocated to train and test sets, we can find that NNARX network architectures 
outperform the ANN model for all considered perspectives. 
 

Also, table 4 shows: 
- The quantities of R^2, MAD and RMSE measures of the best designed architectures of 
NNARX, ANN and ARIMA (2,1,1) model for 1, 2 and 4 week ahead of  weekly poultry retail 
price time series. 
- The fitness of the best designed architectures of NNARX, ANN and ARIMA (2,1,1) model 
for 1, 2 and 4 week ahead of  weekly poultry retail price time series. 
 

Table4. Best designed architectures of NNARX, ANN and ARIMA models 
Fitness NNARX                                                         

1 week ahead 
5-3-2-1-1 

RMSE  MAD R^2 
 

Test 
 

Train 
 

Test 
 

Train 
 

Test 
 

Train 

 0.00142 0.00054 
 

0.00139 
 

0.00042 
 

0.99980 
 

0.99990 

2 week ahead 
5-5-4-3-2-1-1 

RMSE MAD R^2 
 

Test 
 

Train 
 

Test 
 

Train 
 

Test 
 

Train 

 0.00086 0.00074 
 

0.00064 
 

0.00046 
 

0.99950 0.99990 
4 week ahead 

5-6-5-4-3-2-1-1 
RMSE MAD R^2 

 

Test 
 

Train 
 

Test 
 

Train 
 

Test 
 

Train 

 0.00172 0.00102 0.00069 
 

0.00061 
 

0.99730 0.99990 

Fitness  ANN                                                               
1 week ahead 
5-5-4-3-2-1-1 

RMSE MAD R^2 
 

Test 
 

Train 
 

Test 
 

Train 
 

Test 
 

Train 

 
 

0.00472 
 

0.00145 
 

0.00465 
 

0.00117 
 

0.99840 
 

0.99990 

2 week ahead 
5-3-2-1-1 

RMSE MAD R^2 
 

Test 
 

Train 
 

Test 
 

Train 
 

Test 
 

Train 
 

0.00675 
 

0.00271 
 

0.00665 
 

0.00194 
 

0.99660 
 

0.99990 
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4 week ahead 
5-6-5-4-3-2-1-1 

RMSE MAD R^2 
 

Test 
 

Train 
 

Test 
 

Train 
 

Test 
 

Train 

 
 

0.00462 
 

0.00265 
 

0.00455 
 

0.00211 
 

0.99680 
 

0.99990 

Fitness  ARIMA                                                           
1 week ahead 

(2,1,1) 
RMSE MAD R^2 

 

Test 
 

Train 
 

Test 
 

Train 
 

Test 
 

Train 

 
 

0.02208 
 

0.01618 0.01823 0.01075 
 

0.94750 
 

0.95950 

2 week ahead 
(2,1,1) 

RMSE MAD R^2 
 

Test 
 

Train 
 

Test 
 

Train 
 

Test 
 

Train 

 
 

0.02301 
 

0.01731 0.01977 0.01190 
 

0.94350 
 

0.95350 

4 week ahead 
(2,1,1) 

RMSE MAD R^2 
 

Test 
 

Train 
 

Test 
 

Train 
 

Test 
 

Train 

 
s 

0.02311 
 

0.01801 0.01997 0.01245 
 

0.94150 
 

0.94950 

 
According to the above table: 

• The best network architectures for forecasting 1, 2 and 4 week ahead of weekly 
poultry retail price time series via NNARX model are 5-3-2-1-1, 5-5-4-3-2-1-1 and 5-
6-5-4-3-2-1-1 architectures, respectively. Because of the highest quantity of R^2 
measure, the lowest quantity of MAD and RMSE measures among the other 
architectures.  

• Similarly, the best network architectures for forecasting 1, 2 and 4 week ahead of 
weekly poultry retail price time series via ANN model are 5-5-4-3-2-1-1, 5-3-2-1-1 
and 5-6-5-4-3-2-1-1 architectures, respectively. Because of the highest quantity of 
R^2 measure, the lowest quantity of MAD and RMSE measures among the other 
architectures.  

• Similarly, The best architecture for forecasting 1, 2 and 4 week ahead of weekly 
poultry retail price time series via ARIMA model is (2,1,1) architecture. According to 
identified degree of integration (d), autoregessive (p) and moving average (q) by 
Dikey-Fuller, correlation and partial correlation diagrams. 

 
8. Conclusions and Discussions 
 

Non-linear processes are usually too complicated for accurate modeling by traditional 
and statistical models, therefore there are always rooms for alternative model types such as 
the data based models. Clearly, more research is needed to see if and how the proposed 
scheme could help the development of efficient models.  

We did not find big body of study done among the economic forecasting literature that 
can empirically prove the hypothesis of being more powerfulness of dynamic neural networks 
in comparison with the static neural networks for forecasting. This lack motivated us to carry 
out this study. We compared the utilization of NNARX as a nonlinear dynamic neural 
network model, ANN as a nonlinear static neural network model and ARIMA as a linear 
model for forecasting. As an empirical application, we compared the various forecasting 
performance of mentioned models for three perspectives (1, 2 and 4 week ahead) of Iran 
poultry retail price weekly time series via common forecast performance measures. We 
obtained the weekly poultry retail price time series of Iran for the period 2002:3-2007:12 
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from the website of Iran State Livestock Affairs Logistics. Also, we considered the period 
2002:3-2006:3 (70% of total observations) and 2006:3-2007-12 (30% of total observations) 
for training and testing of all models, respectively. We found that, NNARX and ANN models 
outperform ARIMA model and NNARX model outperforms ANN model for all perspectives. 
Also, we found that the best network architectures for forecasting 1, 2 and 4 week ahead of 
weekly poultry retail price time series via NNARX model are 5-3-2-1-1, 5-5-4-3-2-1-1 and 5-
6-5-4-3-2-1-1 architectures, via ANN model are 5-5-4-3-2-1-1, 5-3-2-1-1 and 5-6-5-4-3-2-1-1 
architectures and via ARIMA model is (2,1,1) architecture, respectively.  
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