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CENSORED PROBIT ESTIMATION WITH
CORRELATION NEAR THE BOUNDARY:
A USEFUL REPARAMETERIZATION

Joseph V. Terza” and Wei-Der Tsai™

The conventional computational algorithms for full information maximum likelihood (FIML)
estimation of the censored probit model (see Farber, 1983), will sometimes fail to converge
when the estimated value of the correlation coefficient (p) approaches + 1; even when the true
value of p is not at a boundary. We show that a simple reparametrization of the censored probit
model may afford straightforward Newton-Raphson convergence to the true FIML estimate for
cases in which likelihood maximization under the conventional censored probit parameterization
would have failed. Moreover, our method avoids the computational and inferential complications
that arise in alternative methods that, based on a specified criterion, suggest fixing the estimated
value of p at —1 or +1. For the purpose of illustration the method is used to estimate the
determinants of elderly parents’ receipt of informal care from their children.

JEL Classifications: 112, C24, C63

Keywords: sample selection, endogenous treatment effects, endogenous switching, qualitative
dependent variables, informal elderly care.

INTRODUCTION

In the present paper we focus on the estimation of a binary response model in which the
dependent variable (y) is observable if and only if a binary censoring variable (d) is equal to 1.
The probit version of this model, commonly referred to as the censored probit model, was first
considered by Farber (1983) and has since been widely applied in the literature.! In some cases,
during iterative full information maximum likelihood (FIML) estimation of this model the
estimated value of p, the correlation coefficient for y and d (conditional on the exogenous
variables), will approach one of its boundaries (+1 or —1) and the algorithm will fail to converge
—e.g., the gradient of the likelihood function will not approach zero. We henceforth refer to this
phenomenon as the boundary value problem. In such situations, one is inclined to terminate the

iterations when the correlation estimate (p) is within a prespecified neighborhood of the boundary,

*  Department of Epidemiology and Health Policy Research, Department of Economics, University of Florida
Gainesville, FL 32610.

**  The Graduate Institute of Industrial Economics, National Central University, Chung-Li, 32054, Taiwan,
R.O.C.



2 Joseph V. Terza and Wei-Der Tsai

and take the estimates for the remaining parameters to be those in force at the last iteration. In
search of a more rigorous alternative, Butler (1996) derives population conditions that are
necessary and sufficient for the population value of p to be at a boundary. He suggests that upon
termination of the iterations as described above, the sample analogue to these conditions can be
checked. If these sample analogue conditions hold, the estimate of p is set equal to the relevant
boundary and the remaining parameters are estimated via a constrained maximum likelihood
(CML) algorithm. Butler (1997) gives Monte Carlo evidence that the boundary value problem
does not occur randomly, i.e. when the true value of p is not at the boundary (between -.9 and
+. 9) the conventional censored probit algorithm will not fail.

The present paper contributes to the discussion by showing that it is possible for the
conventional censored probit algorithm to fail due to the boundary value problem when the
actual FIML estimate of p is not at a boundary. Specifically, we show that a simple
reparametrization of the censored probit model may afford straightforward Newton-Raphson
convergence to the true FIML estimate for cases in which likelihood maximization under the
conventional censored probit parametrization would have failed. This is a noteworthy result
because, in such cases, Butler’s method mistakenly fixes the estimated value of p at —1 or +1.
Moreover, our method offers a potentially simple estimation alternative in the presence of the
boundary value problem, because it avoids the gradient and Hessian discontinuities that result
from fixing p at a boundary of the parameter space. Such discontinuities complicate the
optimization of Butler’s constrained likelihood function and preclude the implementation of
standard unconstrained optimization methods like the Newton-Raphson algorithm.

Moreover, because Butler’s method involves fixing the value of p, asymptotic inference for
the full vector of parameters does not incorporate randomness due to the estimation of p. Our
reparameterized maximum likelithood (RML) algorithm optimizes over all parameters freely
and therefore yields standard information matrix based asymptotics in which sampling variation
due to all parameter estimates is taken into account. For the purpose of illustration we applied
both methods to data graciously supplied by Professor Butler.

In the next section, the conventional censored probit estimator of Farber (1983) is reviewed.
In Section 3 Butler’s CML estimator is detailed, and our RML approach is introduced in Section
4. In Section 5 we apply our estimator to a real dataset that is plagued by the boundary value

problem. For this dataset the conventional censored probit algorithm does not converge (p

approaching —1) and Butler concludes that the FIML estimate of p is —1. Our RML algorithm,
however, converges when applied to this dataset and yields the true interior FIML estimate of p
(p =-.976). We have thus demonstrated the possibility that conventional censored probit analysis
may fail due to the boundary value problem, when the true FIML estimate of p is at an interior
point. In such cases Butler’s CML method is obviated. This is not to say that our approach will
solve the boundary value problem in all cases. There may be empirical contexts in which the
population value of p is at a boundary and our RML method fails. When this happens Butler’s
CML method can be attempted. Given the relative computational simplicity of our RML technique
however, and the conventionality of its asymptotic properties, we recommend that it be used as
the first stage of any estimation protocol designed to deal with the boundary value problem in a
censored probit model.
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THE CONVENTIONAL CENSORED PROBIT ESTIMATOR?

In the conventional censored probit model the value of y, the binary outcome variable of
interest, is determined by

y=1xp+e>0) (1)

where x denotes a row vector of observable exogenous variables, B3 is the conformable column
vector of unknown parameters, ¢ is the unobservable random error term, and I(A) denotes the
indicator function which is equal to 1 if condition A holds and 0 otherwise. Values of y are
observed if and only if d = 1 where

d=1(za. + v > 0) )

z denotes a row vector of observable exogenous variables, a is the conformable column vector
of unknown parameters, and v is the unobservable random error term. In the probit version of
the model, first considered by Farber (1983), [e v | w] is assumed to be standard bivariate
normally distributed with mean vector zero and correlation coefficient p, where w denotes the
vector comprised of the union of the elements of x and z. In this model, conditional on the
exogenous variables (w), the probabilities corresponding to the observable (y, d) pairs are:

Pr{y=1,d=1} = O(xp, za; p)
Pr{y=0,d=1} = ®(za) — O(xB, za; p)
Pr(d=0} =Pr{y=1,d=0} +Pr{y=0,d =0} = 1 — ®(za)
where @(-)and @( -, - ;- ) denote the univariate and bivariate standard normal cdfs, respectively.

Therefore, in the conventional censored probit model the log-likelihood of a random sample of
size n is

LB,o.p|w)= Z{(l - ) In[®(z,0) - O(x;B,z,05p) +y; In[D(x;B, Zia;P)]}

+Zn:(1 —d.) In[1 - ®(z,00)] 3)

where C denotes the subset of the sample for which d = 1. Maximization of (3) yields estimates
of B, a, and p that are consistent, asymptotically normal and efficient.

BUTLER’S CONSTRAINED MAXIMUM
LIKELIHOOD ESTIMATOR

Iterative optimization of (3) will often fail to converge as the estimated value of p approaches
one of its boundaries. Butler (1996) offers a method for applied researchers who encounter this
boundary value problem. He shows that p =1 if and only if the joint probability that X} > za. and
y = 0is zero. Similarly, p =—1 if and only if the joint probability that xp <—za and y =1 is zero.
Butler suggests that, when confronted with the boundary value problem, the researcher should

terminate the likelihood iterations when p is “close” to +1 (~1), and then check the sample
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analogs to the aforementioned conditions using the estimates of o and 3 that were in force upon

termination of the iterations — call these estimates § and f} . For example, if p approaches +1

check to see if there are any observations for which xiﬁz z.a. andy, =0, where i denotes the i"
sample member. If there are no such observations then fix the value of p at 1 and maximize the
constrained (p = 1) version of the likelihood function. A similar procedure is followed when p

approaches —1. When p is constrained to be equal to 1, the probabilities corresponding to the
observable (y, d) pairs are:?

Pr{iy=1,d=1} =I(xB = za) (za) + [1 — [(xP = za) | D(xP)
Pr{y=0,d=1} =[1 - I(xp = za)][D(za) — D(xP)]
Pr{d=0} =Pr{y=1,d=0} + Pr{y=0,d =0} = 1 — O(z).

Therefore, when p is constrained to be equal to 1, the log-likelihood of a random sample of
size n

Ll(B’ OL3|X’Z) = Z{(l - yl)[l _I(XiBZZiOL)] ln[(I)(zioc) - q)(xlﬁ)]

ieC

Vi [I(XiB 2 z;a) In[@(z;0)]+[1 - I(x;,=2z;0)] In [q)(xlﬁ)]]}

+3(1-d)) In[1 - D(z,0)]. )

i=1
Similarly, when p is constrained to be equal to —1, the probabilities corresponding to the
observable (y, d) pairs are:

Pr{y=1,d=1} =1(xp > —za)[D(xP) + O(za) — 1]

Pr{y=0,d=1} =I(xp > —za)[1 - D(xP)] + [1 - I(x > —za)]|D(za)

Pr{d=0}=Pr{y=1,d=0} +Pr{y=0,d=0} = | — ®(z).

Therefore, when p is constrained to be equal to —1, the log-likelihood of a random sample of
size n is

L,B, oc,|w):Z{(1 - yi)[I(xiB >—z.a)In[1-0(x,f)]+[1-I(x,p >-za)] ln[q)(zioc)]]

ieC

+y; [1(xB > —z,0) In[D(x,B) + D(z,00) — 1]]}

+an(1 —d) In[1 - O(z,0)]. (5)

There are a number of problems with Butler’s constrained maximum likelihood (CML)
approach. First, the criterion for termination of the conventional censored probit iterations is
arbitrary. How the chosen termination criterion affects the sample analogs to Butler’s conditions
is not clear. Secondly, the gradients and Hessians of the constrained log-likelihood functions (4)
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and (5) are fraught with discontinuities due to the presence of the indicator functions. This
complicates the implementation of the method because it precludes standard optimization
techniques like the Newton-Raphson algorithm. Thirdly, CML standard errors are biased because
the computation of the estimated asymptotic covariance matrix does not take account of the fact
that the fixed value of p is an estimate and is therefore subject to sampling variation. Lastly, it is
possible that the CML method will produce a false boundary estimate for p when the true FIML
estimate is in the interior of the (-1, 1) interval.

THE REPARAMETERIZED MAXIMUM LIKELIHOOD ESTIMATOR

For censored probit models plagued by the boundary value problem, we suggest FIML
estimation of a reparameterized version of the conventional model given in (3). Note that under
the assumptions of the model we can write

T T o(g, v;p)dedv

—za. —Xf

Pr{y=1,d=1}

T [ T g(SIV,w)da} o(v)dv

—xB

—Z0o

where @(g, v; p | w) denotes the standard bivariate normal density with correlation coefficient p,
and g(e | v, w) is the density of ¢ conditional on v and w. But under the assumptions of the
model, g(¢ | v, w) is the normal density with mean vp and variance (1 — p?). Therefore, after
standardizing (¢ | v, w) we have

< xB+vp
gle|v,w)de — @
_J,:B {\ll—pzl

SO

J. O(xy +0v)o(v)dv (6)

—Zo

Pr{iy=1,d=1}

where y =B/, - p2 ,and 9 =p/, 1- p2 . From (6) the remaining components of the likelihood
function follow as

Pr{y=0,d=1} = ®d(za) — H(xy, za; 0)
and
Pr{d=0} =1-®O(za)

where
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H(xy, za; 0) = I D(xy +Ov) @(v)dv.

—Zo

Therefore, the reparameterized censored probit log-likelihood of a random sample of size n
is

L,(y,0,0]|x,2) = Z{(l —-y,) In[®(z,a) - H(x,y,2,0;0)] + y, In[H(x,y,Z,01; 9)]}

+an(1 —d.) In[1 - O(z,0)]. (7)

This log-likelihood function can be maximized with respect to y, o, and 0 to obtain estimates
that are consistent, asymptotically normal and efficient.>® Note that the parameter 0 is unrestricted
in range. We refer to our estimator as the reparameterized maximum likelihood (RML) estimator.
The likelihood function (7) is twice continuously differentiable so that it can be optimized via
conventional methods.” Note that if 6 = 0 then d is not endogenous and a simple binary probit
estimator will yield consistent estimates of the elements of'y. The null hypothesis that censoring
is exogenous can therefore be tested as H : 6 = 0 using the RML results.® Such a test is not
possible in Butler’s CML framework.

Estimates of the parameters of the original censored probit model (3 and p) can be obtained
via the following obvious transformations

) NGE
p =sgn(6) m (8)

B=(1-p")7 ©)

where sgn(q) =1 (—1) if q is positive (negative). The asymptotic t-statistics corresponding to (8)
and (9) can be computed using the 3-method.’ In examining various real datasets that are plagued
by the boundary value problem we have found cases in which our RML estimator produces the
true FIML interior estimate p, but the CML method leads to a spurious boundary estimate. We
discuss one such example in the following section.

and

AN EXAMPLE: INFORMAL CARE FOR THE ELDERLY

There are applied contexts in which the conventional censored probit model of Farber (1983)
fails due to the boundary value problem, but our RML algorithm successfully converges to a
maximum at an interior estimate of p. In order to demonstrate this fact, we applied the RML
estimator to a dataset supplied to us by Professor Butler for which the conventional censored
probit estimator failed. The data come from a study of the willingness of offspring to supply
informal care to elderly parents.!®!! For example, how does travel time to an elderly parent’s
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home affect the decision to supply informal care? If one is interested in analyzing such effects
for the entire elderly population (and their offspring) then conventional estimates may be biased
because willingness to supply informal care is only observed if the elderly person is not in a
nursing home, though such willingness may exist amongst the offspring of some nursing home
residents. Therefore, relative to the population of interest (viz. all elderly persons) the observed
sample is censored. If the unobservables that affect the decision to enter a nursing home are
correlated with the unobservables determining children’s willingness to supply informal care to
their elderly parents, then censoring is endogenous and estimates that treat the decision to enter
a nursing home as exogenous will likely be biased. In this example the dependent variable y is
equal to 1 if an elderly person receives informal care from any of her children, 0 otherwise. The
censoring variable d denotes whether (d = 0) or not (d = 1) the elderly person resides in a nursing
home. The sample is comprised of 2,530 elderly individuals, of whom 2,383 are not in a nursing
home. Definitions and sample means of the variables are given in Table 1.

Butler applied the conventional censored probit estimator and found these data to be plagued
by the boundary value problem. He then applied his CML method which produced an estimate

Table 1
Variable Means and Definitions
Variable Definition Mean
Endogenous Variables
y = 1 if receives informal care from children, 0 otherwise. 23
(n=2,383)
d =1 if not living in a nursing home), 0 otherwise. 94
(n=2,530)
Exogenous Variables (n=2,530)
URBAN =1 lives in an urban area, 0 otherwise 40
ADL number of personal activities of daily living 1.6
that the individual requires assistance with.
IADL number of less personal activities of daily 2.26
living that the individual requires assistance with.
DT1 Number of children living at home or less 1.15
than 31 minutes away.
DTH Number of children living 31 to 60 minutes away. .29
OTHK Number of children living more than 60 minutes away. 1.06
PFC Price of formal care per hr. 5.00
BEDRT Number of nursing home beds per 1,000 persons > age 75. 53.70
HH3 Expected Medicaid subsidy for home health (> per week). .90
SEX =1 if male, 0 otherwise. 31
AGE Age in years. 77.41
BLACK =1 if black, 0 otherwise 31
SPOUSE =1 if living with spouse, 0 otherwise .39
HOUSE Housing assets ($). 37967.25
WEALNEW Nonhousing and social security wealth [$x(.001)]. 7.59
DIF Wealth after nursing home price [$x(.001). 1.18
DISC Medicaid discount [$x(.0001)]. 1.77
WEALBET Financial income + social security income [$x(.001)] 11.39
NBINCS Social Security income of spouse ($ per month). 212.48

*WEALNEW, DIF, DISC, WEALBET are all dollar amounts, e.g. the mean of WEALNEW is $7,590 x (.001) = 7.59
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of p equal to —1. Using our RML estimator we obtained the results for the informal care (y)
equation which are given in Table 2. For the purpose of comparison, Butler’s CML estimates
are also displayed therein. The results for the censoring equation are shown in Table 3. The key
observation is that Butler’s method yielded a boundary estimate of p (-1); whereas our RML
approach, which uses a simple Newton-Raphson algorithm, produced an interior estimate
(-.976). We have thus demonstrated that it is possible for the conventional censored probit
model to fail when the true FIML estimate of p is interior to the (-1, 1) interval. Moreover, it is
implicit that our RML method avoids the complications (discontinuities) of the CML algorithm
which follow from fixing the value of p at a boundary value.

Mistakenly fixing the estimate of p at a boundary will also cause bias in the estimates of the
asymptotic standard errors of the remaining parameters for two reasons. First, if the estimate of
p is fixed at the wrong value, the rest of the parameter estimates will also be biased. Secondly,

Table 2
Informal Care - Dependent Variable =y (t-statistics in parentheses)
Variable CML (Butler) RML
INTERCEPT -3.00 -3.00
(-7.17) (-7.23)
PFC -.005 -0.015
(-0.17) (-0.58)
HH3 -.002 -0.001
(-0.26) (-0.15)
DT1 0.31 0.30
(13.11) (15.34)
DTH 0.07 0.08
(1.57) (1.67)
OTHK 0.02 0.02
(1.10) (0.87)
SPOUSE -0.67 -0.68
(-6.60) (-7.03)
WEALBET -0.02 -0.02
(-4.58) (-5.59)
NBINCS -.008 -.005
(-0.59) (-0.44)
ADL 0.04 0.04
(1.91) (1.67)
IADL 0.22 0.22
(11.51) (12.17)
SEX -0.14 -0.10
(-1.80) (-1.20)
BLACK -0.02 -.005
(-0.29) (-0.07)
URBAN -0.04 -0.03
(-0.57) (-0.49)
AGE 0.22 0.23
(4.60) (4.75)
p -1 -.976

() (-3.12)
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Table 3
Not in a Nursing Home - Dependent Variable = d
(t-statistics in parentheses)

Variable CML (Butler) RML
INTERCEPT 2.56 2.72
(2.93) (3.26)
ADL -0.27 -0.27
(-9.08) (-9.96)
SEX -0.17 -0.21
(-1.28) (-1.62)
SPOUSE 0.49 0.52
(2.50) (2.79)
AGE -0.14 -0.15
(-1.61) (-1.90)
PFC -.003 -0.01
(-0.08) (-0.28)
DIF -0.06 -0.06
(-2.36) (-2.43)
WEALNEW 0.03 0.03
(1.38) (1.44)
DTH 0.03 0.04
(0.39) (0.48)
OTHK 0.07 0.08
(1.80) (2.15)
HH3 -0.02 -0.02
(-2.10) (-2.17)
HOUSE 0.16 0.17
(5.45) (5.72)
NBINCS 0.10 0.11
(1.99) (2.21)
BLACK 1.08 1.08
(5.15) (5.18)
DISC -0.03 -0.02
(-0.55) (-0.46)
BEDRT -0.03 -0.04
(-0.98) (-1.11)
DT1 0.30 0.31
(5.53) (5.81)

the computation of the estimated asymptotic covariance matrix of the other parameters does not
take account of the sampling variation due to the estimate of p. To investigate the consequences
of such bias in the example, we computed the mean absolute nominal difference between the
CML and RML p-values, for all parameters except p. We found that the average difference
exceeded 5% (in nominal terms). This level of inaccuracy in the size of an hypothesis test can
easily lead to incorrect inference.

DISCUSSION

We offer a simple reparameterization of the conventional censored probit likelihood function,
and demonstrate that it is capable of producing the true interior FIML estimate of p in cases
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where other more complicated methods cannot. We want, however, to be careful not to overstate
our case. We are not suggesting that our approach is a panacea for all applied contexts in which
the censored probit model fails due to the boundary value problem. There may be instances in
which the true population value of p is indeed at the boundary, in which case Butler’s CML
technique would be apropos. The present paper merely suggests that, before resorting to the
relatively complicated CML method which, if successful, will produce a boundary estimate of
p, the researcher should apply our relatively simple RML method which might reveal that the
FIML estimate of p is actually in the interior of the (-1, 1) interval. In this case, in addition to
being less computationally burdensome, the RML approach avoids the inherent biases in the
CML standard errors and the potential consequent errors in inference.

Morever, if indeed the population value of p is at a boundary, the RML approach will yield
evidence of this fact because, as expression (8) implies,

po>-1<0—->—
and
p>1<0—>x

Therefore, if during the RML iterations the estimated value of |0] appears to increase without
bound with no evidence that the optimization algorithm is converging, one can terminate the
iterations at a prespecified value of 6, check Butler’s conditions, and proceed with CML
estimation.'?

NOTES

1. This model is often referred to as the probit model with sample selection. For examples of applications
of binary response models with sample selection see Abdel-khalik, 1994; Boyes et al., 1989; Butler,
1996; Chaykowski et al., 1992; Dubin and Rivers, 1989 and 1990; Farber, 1983; Farber and White,
1990; Jappelli, 1990; Kenkel and Terza, 1999; Meng and Schmidt, 1985; Rivers and Vuong, 1988;
Stanley and Coursey, 1990; Van de Ven and Van Praag, 1981; and Van de Ven and Van Vliet, 1995.

2. Note that the present discussion is placed in the context of the censored (sample selection) model, but
it can be easily extended to cover models involving an endogenous treatment effect, and the more
general class of endogenous switching models (of which sample selection and treatment effect models
are special cases).

3.  See Butler (1996) Table 1.

4. A more general from of this result can be found in Zeger et al. (1988). We thank Scott Shonkwiler for
leading us to this reference.

5. Although the integral in (6) does not have a closed-from it can be accurately and efficiently evaluated
using simple Gaussian quadrature—as is programmed in the INTQUADI procedure in GAUSS® (Aptech
Systems Inc., 2005).

6. Alternative estimators such as the conditional maximum likelihood approach of Vuong (1984) are
possible, but the FIML approach we suggest: (1) is more efficient; (2) has an objective function that
imposes minimal marginal programming burden; and (3) does not require that the standard errors be
corrected for the two-stage nature of the estimator.

7. A GAUSS® program implementing the Newton-Raphson optimization of (7) is available from the
authors. The optimization algorithm terminates when the sum of the squared gradient elements is
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less than 10, Starting values are obtained using the consistent but less efficient two-stage method of
moments estimator developed by Terza (2000).

8. This test for censoring is the simple Wald test of = 0. This of course requires that you first estimate
the model under the alternative. A simple Lagrange multiplier (LM) test, requiring estimation only
under the null, could be developed be based on the likelihood function in (7).

9. See Greene (2000) p. 118.

10. See Sloan et al. (1992) for details on the policy implications of such analyses.

11. For the purpose of comparison, we applied LIMDEP to these data but the algorithm terminated
abnormally. The method used in STATA is the one suggested by Van de Ven and Van Praag (1981),

but this method is clearly ad hoc and inconsistent. Therefore, the use of STATA in this context will
not provide a fair comparison.

12. The prespecified value of 6 would of course be chosen to correspond to a value of p that is a small
distance away from the relevant boundary.
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