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Many important problems in agricultural and natural resource economics concern
an intertemporal choice between alternate dynamic systems. This significance has
motivated a theoretical literature generalizing the necessary conditions of Optimal
Control Theory to multiple-phase problems. However, gaining detailed insight into
their practical management is difficult because general numerical solution methods
are not available. This paper resolves this deficiency through the development of a
flexible and efficient computational algorithm based on a set of necessary conditions
derived for finite-time, multiple-phase systems. Its effectiveness is demonstrated in
an application to a nontrivial crop rotation problem.
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Introduction

The Maximum Principle of Optimal Control Theory (Seierstad and Sydsaeter, 1987) has
been employed extensively in agricultural and resource economics given its intuitive
economic interpretation and the significant methodological extensions to this theory
developed in other fields of study, such as engineering. Key examples of its application
are the seminal works of Clark (1976) in the analysis of renewable resource exploitation,
Dasgupta and Heal (1979) in the analysis of nonrenewable resources, Gisser and
Sanchez (1980) in the analysis of the optimal extraction of groundwater, and McConnell
(1983) in the study of soil conservation.

Yet, despite this broad utilization, there hasbeen limited treatment of multiple-phase
systems. These consist of multiple alternate regimes, each characterized by its own
dynamic system, of which only one may be active at each point in time. This is
surprising since this is a natural and more precise means of describing and analyzing
many important choices facing decision makers. Selecting between individual crops to
plant on a given area of land is one example (Doole, 2008). Other examples include deter-
mining the optimal time to switch between alternative energy sources (e.g., Tomiyama
and Rossana, 1989), production technologies (e.g., Amit, 1986), and environmental
policies.
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The optimal switching times for different regimes may be determined through the
standard Maximum Principle ifindividual stages are represented by piecewise-constant
control variables (e.g., Goetz, 1997). However, the numerical optimization of these
systems is difficult since problem size increases geometrically with the number of
discrete phases considered, and the optimal control trajectories within each phase will
change substantially with each sequence. Moreover, the inclusion of transition costs
introduces significant computational difficulties, as it introduces a discontinuous process
into gradient calculations (Teo, Goh, and Wong, 1991). These limitations have motivated
the analysis of multiple-phase systems in which the sequence of stages is pre-assigned.
This approach is, in fact, relevant to many important economic problems, such as the
alternative crop, technology, or government policy examples outlined above. Generali-
zation of the Maximum Principle is required if control variables are defined within
independent phases. Such conditions have been derived for two-stage systems with
costless transition (Tomiyama and Rossana, 1989) and switching costs (Amit, 1986). The
latter framework has also been extended to include an infinite horizon (Makris, 2001).
Furthermore, Mueller, Schilizzi, and Tran (1999) developed necessary conditions for a
three-phase problem.

Though this theory is well established, the practical management of multiple-phase
problems is difficult to study given a distinct lack of suitable optimization algorithms.
Gradient-based methods are difficult to apply to a multiple-phase system incorporating
control variables in each stage because the state and costate equations are piecewise
defined and the performance index has, by definition, discontinuous derivative(s) with
respect to the control variable(s) within each regime. Transition costs also introduce step
discontinuities into the adjoint and Hamiltonian trajectories along an optimal path.
Moreover, the efficient computation of optimal strategies for multiple-phase problems
of realistic complexity through dynamic programming (Miranda and Fackler, 2002) is
nontrivial in most instances. This is intuitive given the large state and policy spaces
typically encountered within such applications.

Some numerical procedures have been specifically constructed for multiple-phase
optimal control systems, but are limited in their applicability. Mueller, Schilizzi, and
Tran (1999) used linear programming to identify switch points following the manipu-
lation of a set of necessary conditions derived for a specific problem. However, general
application of this method is constrained by the lack of explicit solutions for many types
of differential equations and the inability of the algorithm to optimize the control
variables defined within each phase. In addition, some frameworks (e.g., Kim, Moore,
and Hancher, 1989; Koundouri and Christou, 2006) do not determine the switching
times through the appropriate necessary conditions of optimal control (Amit, 1986;
Makris, 2001). Rather, the switching times arise naturally from endogenous switching
thresholds inherent in the control systems considered. For example, in a study conducted
by Kim, Moore, and Hancher (1989), the crop selected under optimal management
changes as the shadow price of irrigation water adjusts over time. This method is con-
ceptually interesting, but is restricted to those types of switching problems containing
such thresholds. In addition, multiple-phase control problems also may be studied in a
financial-options framework (Dixit and Pindyck, 1994), but only if no control variables
are exercised over the duration of a stage (e.g., Willassen, 2004).

This paper presents a computational algorithm for the solution of multiple-phase
optimal control problems incorporating transition costs. This is the first general algorithm
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available to practitioners that allows them to study these systems in considerable detail.
Its capacity to incorporate substantial complexity overcomes the need for the restrictive
assumptions required in analytical investigations of multiple-phase systems and the
algorithm of Mueller, Schilizzi, and Tran (1999). The algorithm involves the iterative
improvement of switch points using a root-finding procedure, an approach inspired by
the use of shooting methods to solve boundary-value problems (Ascher, Mattheij, and
Russell, 1995). The algorithm is based on a set of necessary conditions derived for a
finite-time, multiple-phase system with different endpoint constraints and n stages.
This derivation is necessary because previous theoretical studies have ignored alter-
native endpoint constraints, consequently narrowing their applicability, and the prior
analysis of finite-time systems has been limited to two (Amit, 1986; Tomiyama and
Rossana, 1989) or three (Mueller, Schilizzi, and Tran, 1999) regimes. The effectiveness
of the algorithm is demonstrated in an application to a control problem incorporating
strong nonlinearities and stiff process equations. Its primary purpose is to demonstrate
the reasonable complexity of problems that may be solved using this computational
procedure. This land-use rotation example closely follows a more detailed application
in Doole (2008).

The paper is structured as follows. First, the model and necessary conditions are
presented. The numerical algorithm is then described, along with a discussion of its
implementation. Next, an application of this algorithm to a land-use rotation problem
is presented. The final section offers conclusions and recommendations for further
research. The derivation of the necessary conditions is presented in an appendix.

Model and Necessary Conditions

This section formally defines a model of a multiple-phase dynamic system. A Maximum
Principle for its solution is derived and its key results are presented in a theorem.

® DEFINITION 1. A general multiple-phase system is assumed to incorporate an
m-dimensional state vector x(t) = {x'(¢), x%(¢), ..., x™(¢)} of continuous functions,
piecewise continuously differentiable over the time interval ¢ = [¢,, ..., ¢,] and
belonging to X € R™. The state variables are assumed fixed at the initial time
and are denoted x,. The state variables free at the terminal time are denoted x_ for
i=11,2,...,d]. Terminal state variables x}, fori = [d + 1, ..., m], are fixed.

& DEFINITION 2. A multiple-phase switching system is defined as Z = {T, K, 0}, where:

a. T'is a set of discrete controls known as switching times that dictate the termina-
tion of one phase and the start of the next.

b.K = {&,, ks, ..., k,} is a finite, fixed, and exogenously determined sequence of
discrete (integer) states that indexes individual continuous dynamic systems,
U = {,)scx, where 0, = [X, f,, U]. The ordinal ranking of sequences is defined
over the closed interval j = [1, 2, ..., n].

c. X is a continuous state space where X ¢ R™.

d. f, is a vector of state equations for each stage k.
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e. U, is a set of admissible controls for eachjinj=[1, 2, ...,n]. Each set liesin R “,
where v, is the dimensionality of the control vector for phase j.

® DEFINITION 3. A control input for a multiple-phase switching system E consists of
a set of vectors yz = {¢, u;}, where:

a.t=1{t,t, ..., t, ;) is a sequence of real numbers denoting switching times, the
moment ¢; at which stage k; is terminated and the stage &;,, becomes active. It
follows that regime k; is active over the interval [tj_l*, tj_],where t g is the

moment just after ¢, ,, and ¢ is the moment just before ¢,.
b.t =t¢, is a freely determined terminal time.

cu = {ujl, ujz, ey ujl-)j }is a v;-dimensional vector of control functions continuous
over the interval [¢,;+,¢,-] for each j and belonging to U € R".

The state variable is continuous at the switching times in this model; however,
Jjumps in the state variable may be accommodated with manipulation of the neces-
sary conditions (see Seierstad and Sydsaeter, 1987, theorem 7).

B DEFINITION 4. A trajectory (I') for a multiple-phase switching system Z and control
sequence Yy is admissible over the interval ¢ = [¢,, ¢,, t,, ..., t,_,, t,] if it satisfies
definitions 1-3 and the continuous dynamics x = £,(x(¢), u,(¢), t), for [t 45 ¢-1 and
J=11,2, ..., n], for a predefined switching sequence K = {k,, k,, ..., k,}.

The above definitions permit the classification of a general multiple-phase optimal
control problem.

® PROBLEM MP. For a multiple-phase system E, identify an admissible trajectory that
maximizes the objective functional:

@ J=e"fnG(x(tn))—§e-”fcj(x(tj))+ ) [ [ leF(x(t), uj(t))]dtJ,
Jj=1 J=1 ')

-1t

subject to:

(2) % =f(x(), w;(#),2), for [t,_., ¢, ] and j=[1,2, ..., n], given K= {ky, ky, ..., k,},

3) t; free, forj=[(1,2,...,nl,

(4) x(t;) free, for j=1[1,2,...,n-1],

(5) X, fixed,

(6) x!(t,) free, fori=[1,...,d],
and

(7) x,i(tn) fixed, fori=[d +1, ..., ml],
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where r is an appropriate discount rate, G(x(¢,)) is a terminal-reward function,
C,(x(t;)) is a switching-cost function for the jth phase, and F;(x(¢), u,(¢)) is a single-
valued reward function on X™ x U" for the jth phase. Functions G(-), C(-), and F(-)
are all real-valued functions that are twice continuously differentiable in the
relevant arguments. The terminal-value function G is defined for x’(¢,), where i =
[1, ..., d]. The terminal-reward function G(x(¢,)) is defined as a salvage value in
economic applications of optimal control. The switching-cost function C,(x(¢;)) is a
cost accruing to the termination of one stage and the start of another. These can
be understood as terminal-value functions for individual regimes; they are a
pertinent feature of many multiple-phase systems. For example, it can be costly to
remove one crop and establish another or invest in the productive capacity required
for the subsequent phase (Amit, 1986).

The following theorem outlines the necessary conditions required for an optimal solu-
tion to Problem MP. In it, the necessary conditions of the standard Maximum Principle
of Optimal Control Theory (Seierstad and Sydsaeter, 1987) are generalized to hold for
a multiple-phase control system. These conditions provide a basis to the algorithm
presented in the next section.

® THEOREM. Consider a multiple-phase system E described by definitions 1-4. For
J=11,2, ..., n] and switching sequence K = {k,, k,, ..., k,}, let (xX'(¢), u;(¢), ¢ ;) denote
the admissible trajectory that maximizes the value of J in Problem MP. This is the
optimal trajectory I'".

Define a Hamiltonian function for each regime &, as:
(8) HJ»(X(t), u,(f), A,(8), t)= e_'tFj(X(t), uj(t)) + lj(t)f;(X(t), u,(t), t)

across the interval [¢, ., t,-]. An optimal trajectory I'" requires the following con-
ditions:

i. the initial condition,

(9) X, = x(t,),

for fixed initial state variable(s) x,;

ii. n m-dimensional vectors of real-valued, piecewise continuous adjoint func-
tions lj(t) = {)ujl(t), kf(t), vees )»J'-"(t)}, defined across j = [1, 2, ..., n] and piece-
wise continuously differentiable over the interval [tj_1+ , tj_] ,that satisfy

OH,(x(2), w,(t), A(2), t)

(10) PHOES ,
ox(2)

where lf(t) denotes the transpose of the n adjoint vectors;

iii. optimal control function(s) that satisfy

1y Max H,(x(@®), w,®), 4;®), t) forallt € [t,-,¢.];

u;(t)



114 April 2009 Journal of Agricultural and Resource Economics

iv. a terminal adjoint vector A (¢,) that satisfies

de"G(x(t,),t,)
ox(t,)

(12a) 2w =
for state variables x:(¢,), where i = [1, ..., d], free at the terminal time and

defined in G,
(12b) A =0

replaces equation (12a) for those state variables x'(¢,), where i = [1, ..., d],
that are not defined in G,

(12¢) x'(¢) =x(t)

replaces equations (12a) and (12b) for fixed terminal state variables x(¢,),
wherei=[d+1, ..., m];

v. a terminal time that satisfies

ae_""G(x(tn), t,)

(13a) H (x(8), u,(), A, @), t) |t + p =0,
but if no terminal value function is defined, then the equivalent of equation
(13a) is

(13b) H,(x(),u,®),1,@®),t)|, =0,

but if, instead, the terminal time is fixed, then
(13¢) no additional necessary condition is required, ast =t,;
vi. adjoint vectors that satisfy the boundary conditions

de"C,(x(t,)
(14) ),jT(tj_) + —J—(——J—) = l}:l(tﬁ)
ax(tj)
at switching times ¢ = {¢,, ¢,, ..., ¢, ;}Jand j=[1,2,...,n - 1];
vii. Hamiltonian functions that satisfy the switching conditions

deC (x(t;
(15)  Hj(x(®), w,(®), (), 1) —w=qu(x(t), u,(®), 4;,,(), )]

t- 6tj

£
for those switching times in ¢t = {¢,, ¢,, ..., ¢, ;).
B Proof. See the appendix.
The necessary conditions defined in equations (8)—(13) are analogous to the standard

Maximum Principle (Seierstad and Sydsaeter, 1987). This follows the definition of a
multiple-phase problem as a set of n dynamic systems. In contrast, the switching
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conditions in equations (14) and (15) are not found in standard single-phase optimal
control problems. These describe how individual systems are linked over time under
optimal management, and have been derived previously for two- and three-stage prob-
lems in finite time by Amit (1986) and Mueller, Schilizzi, and Tran (1999), respectively.
However, in contrast to these previous analyses, these conditions incorporate alternative
endpoint constraints and allow any number of regimes to be defined.

Equation (14) determines the optimal level of the state variable(s) at each switching
time x(¢;) (these are referred to as transition states in the following discussion). The
shadow price variables, Af(t ) and Af+1(t ), represent the marginal adjustment in optimal
value accruing to a change in the state variable within the corresponding stage when
switching time ¢, is approached from below or above, respectively. The second term in
equation (14) represents the marginal transition cost for the active regime. Equation
(14) thus states that it is optimal to switch when the marginal value of a change in the
state variable is equivalent between stages.

Equation (15) describes the management of optimal switching times given the relative
value of alternate stages. The value of a Hamiltonian function H;(x(t), u;(#), A,(t), t) eval-
uated at a given time represents the shadow price of altering the length of this phase.
The second term in equation (15) is the rate at which transition costs change over time
within regime j. Equation (15) therefore states that it is optimal to switch to the subse-
quent regime at time ¢, if the rate at which the capital value of each stage changes over
time is equal at that pomt

Equations (14) and (15) are not required if T'is empty In this instance, the theorem
collapses to the standard Maximum Principle. The state variable(s) could be fixed for
a given switching time ¢,. In this case, equation (14) is no longer required for the deter-
mination of x(¢,). Alternatively, the control input x; may contain fixed switching times;
equation (15) is not required in this instance.

The boundary conditions are obviously affected if switching cost functions e "%C (x(2))
and/or their relevant derivatives are not defined. If switching costs do not exist or are
independent of the state vector, equation (14) requires equality between the adjoint
variables of stages j and j + 1; that is, AT(t )= ).Tﬂ(t ). Likewise, equation (15) simplifies
to a requirement of equality between the total capital value of each regime at the
switching time—specifically, H (- )|, =H,,,()|,if switching costs are not defined, or are
independent of time. Note that sw1tch1ng costs will be a function of time in most eco-
nomic problems because of discounting. These results are analogous to the Weierstrass-
Erdmann corner conditions from variational calculus (Seierstad and Sydsaeter, 1987),
which are also required when state and/or control variables are subject to inequality
constraints. This equivalency highlights the close symmetry between multiple-phase
problems with fixed- and free-stage sequencing, provided the latter is incorporated
utilizing piecewise constant controls and transition costs do not exist.

An Algorithm for Multiple-Phase Control Systems

The theorem from the previous section may be used to identify analytical solutions to
multiple-phase problems of low dimension. However, such solutions are extremely
difficult to obtain, even in systems incorporating only weakly nonlinear differential
equations. This section consequently describes an optimization algorithm suited to the
study of more complex problems.
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The following algorithm is motivated by the structure of the theorem, which infers
decomposition into two distinct stages. The first concerns the solution of each phase as
an independent control problem at each iteration. The second concerns the updating of
the switch points using equation (14), equation (15), and a bisection technique (Judd,
1998). Bisection successively reduces the size of an interval where a root is bound
between function values that are opposite in sign. Bisection is utilized here, as other
root-finding methods—such as the Newton, Broyden, and secant methods—require
continuity of the switching conditions, a condition that is invalidated by the presence
of transition costs. Newton’s method also requires derivative information that is not
available in this instance. The existence of a solution to an interval bisection technique
is guaranteed for a continuous function through the intermediate-value theorem,
provided the initial function evaluations are opposite in sign. The step discontinuity that
occurs at each switch point does not void this condition in computational application
given its equivalence to a continuous function whose root is located between two floating-
point numbers (Press et al., 1992).

Algorithm Initialization

® STEP 1. Determine a fixed-stage sequence K. Let i denote the number of iterations.
Define the maximum number of permissible iterations (i). Define the stopping
tolerance ¢. Define a set of initial conditions A = {¢,, X,}. Let numeric superscripts
denote the iteration number for ease of reference. Provide estimates of the optimal
switching times (tj forj =11, 2, ..., n — 1]) and the transition states (x(tj) forj =
[1,2,...,n-1]) fori = {1, 2}. Ensure tj1 < tj2 and x(tjl) < x(tjz).

® STEP 2. Optimize each phase k;, for j = [1, 2, ..., n — 1], as a fixed-point control
problem using equations (8)—~(11), (12¢), and (13c). Equations (12¢) and (13c) are
determined by the estimates of ¢ and x(¢}) from step 1. Optimize the terminal stage
using equations (8)—(11) and the relevant terminal conditions from equations (12)
and (13). Obtain A’(¢,) and compute H(t,) for all j. Do for i = {1, 2}.

® STEP 3. Ensure (H;'(t;) - (e "“C;()), - H}\1(¢))) (H(¢)) - (e "C,())} - H}’1(¢)) < 0 and
(Aj@)) + (e"thj(-))i(tj)— AL () (AT + (e—rtfcj(-))i(tj)— A2.(¢))) < 0 before starting the
main computation.

Algorithm Main Computation (for i = 3 to )

® STEP 1. Form switch points using the midpoint formulas ¢ J‘ =t ji_2 + (tji‘1 -t J’ 2)/2 and
x(t) =x(t]?) + (x@t] ) -x(¢]2)/2.

® STEP 2. Optimize each phase k; for j = [1, 2, ..., n — 1] as a fixed-point control
problem using equations (8)—(11), (12¢), and (13c). Equations (12¢) and (13c) are
determined by the estimates of tj- and x(t}) from step 1. Optimize the terminal stage
using equations (8)~(11) and the relevant terminal conditions from equations (12)
and (13). Obtain lf(tj) and compute H(¢,) for all j.
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m STEP 3. If (A(t)) + (e 79C;())y ) — Aba (&) (AT2(t)) + (e T5C; ()2, — Ai3(t)) > 0, then

P 3.1t AR @) xi) =~ 410
x(t})=x(t{?) and x(¢/ ) =x(t/"). Else, x(t) =x(t/™) and x(t/?) =x(t/?).

® STEP 4. If (H;(t;) - (e 75C;()), - Hia @) (H () (e "iC,());* ~ HZ(¢)) > 0, then
ti= tj“Z and tj"l = tj‘_l. Else,t; = tji'l and tj‘_z = tj’"2.

® STEP 5. Stop and print output if tji - tj‘l <eand x(tj) —x(tf‘l) <¢for allj, or
(Ai(t) + (€5C,( Dy~ Ajat)) <€ and (H[ ()= (eT9C,()); - H.1¢)) <.

m STEP 6. If i = i, then stop and report progress; else, go to step 1. a

The following application is programmed in MATLAB version 7.1 (Miranda and
Fackler, 2002). The MATLAB code for the algorithm is appended to this article filed at
the AgEcon Search repository (http:/ageconsearch.umn.edw/). Each sub-problem (phase)
is solved utilizing a variant of the MISER parameterization algorithm of Teo, Goh, and
Wong (1991). This involves an approximation of control functions within each phase
through interpolation with sets of linear basis functions and solution of the discretized
problem using nonlinear programming (NLP). Adjoint and state equations are integrated
explicitly over the length of a stage using a differential algebraic equation method
(Ascher, Mattheij, and Russell, 1995) following the definition of an initial guess of the
optimal control. These control histories are subsequently iteratively improved using
NLP, with the integration of the process equations repeated at each step to calculate the
required gradients, until an optimal solution is obtained.

Approximation of control trajectories with basis functions introduces some degree of
suboptimality. However, this is greatly reduced through the use of a high number of
knot points in each stage. Ten nodes are included in each phase in this application. This
is motivated by the short length of each phase (which increases the level of accuracy
obtained with this number of basis functions) and a need for computational efficiency
in the iterative algorithm.

It is well known that the bisection technique employed in the algorithm will converge
linearly to a root in log(p,/e)/log(2) iterations, where p, is the size of the initial interval
and ¢ is the stopping tolerance (Press et al., 1992). A loose stopping criterion (e = 0.01)
is used in the outer iteration in the following application, so that numerical errors
generated in the optimization phase do not detrimentally affect convergence. Moreover,
there is little benefit in identifying the defined state variables and switching time to a
greater accuracy.

Application of Algorithm

This section describes an application of the algorithm to a crop-rotation problem. This
example contains realistic biological processes within the level of complexity that may
be incorporated in an optimal control framework.

Background

Annual ryegrass (Lolium rigidum Gaud.) is the most economically important weed
constraining crop production in Western Australia. Moreover, nearly half of the annual
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ryegrass populations in the primary grain-growing region of this state (the Western
Australian wheat belt) are estimated to be resistant to regular selective herbicides
(Pannell et al., 2004). This reduces producer profit through forcing substitution toward
less cost-effective replacements, such as the mechanical collection of weed seeds at
harvest. The greater profitability of cereals, relative to livestock activities, in many
farming systems in this region motivates continuous cropping. However, the inclusion
of regular pasture phases has the potential to delay or help to minimize the effects of
herbicide resistance through permitting the use of a wide range of weed control strat-
egies, such as grazing and the application of nonselective herbicides.

Although the management of ryegrass infestations in extensive cropping systems in
this region has been studied previously (Gorddard, Pannell, and Hertzler, 1995; Pannell
et al., 2004), these analyses ignored the optimal management of pasture-crop rotations
and inputs available during a pasture phase given the computational difficulties associ-
ated with the numerical solution of multiple-phase control problems. Doole and Pannell
(2008a,b) compared the profitability of a number of alternative land-use sequences,
including some incorporating pasture, in the Western Australian wheat belt. A
metaheuristic search procedure, compressed annealing, was used to identify the optimal
portfolio of weed management strategies among each pre-defined rotation in a complex
simulation model (Doole and Pannell, 2008a). However, this framework could not
simultaneously optimize phase length and the choice of weed control methods. These
limitations evident in earlier work may be overcome through the employment of the
algorithm presented in the previous section. Moreover, output from the following
application is useful to improve interpretation of the results of the more complex model
studied by Doole and Pannell (2008a,b).

It is assumed that a producer wishes to determine the optimal management of a
single field in the central wheat belt of Western Australia. The goal of the producer is
to maximize the net present value of a rotation between lucerne (Medicago sativa L.)
pasture and wheat (Triticum aestivum L.) cropping. This consists of the sum of the net
present value of income earned during the lucerne and the cereal phase and the cost of
switching between them. The model explicitly studies the management of weed control
inputs and phase length across the steady-state cycle. This approach is adopted as a
suitable terminal value function does not exist and an appropriate equation could not
be estimated given a lack of data. Stationarity of the steady-state cycle is represented
through requiring equality between the initial (x?) and terminal (xg) state vectors. There
is one switching time (¢,), and the terminal time (¢,) is free. The free terminal time
determines the length of the second phase in the rotation. Time notation is omitted
where not required in the following discussion for notational parsimony.

Two state variables are used to represent the weed seed population because of herbi-
cide resistance (Gorddard, Pannell, and Hertzler, 1995). First, x°(¢) is the population of
annual ryegrass seeds that following germination are susceptible to the selective Group
A herbicide (diclofop-methyl). Second, x"(¢) is the population of seeds that following
germination is resistant to this herbicide.

Pasture System Equations

The producer’s problem in the lucerne phase is to maximize net present value (F,),
defined by:
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1.2

1
- u
(16) max F,= t Tert ( gt[ 1- %] au:[l - ?“] —cidoseuf —c,iappl] dt—cp,
(]

Uy Uy oty
subject to:
8 s uoc —suz
am Xy =%, U +U,| 1= e"“R|,
uald +1
u1 2
(18) il =xl v v v, 1- —=— |e™™R],
u,d +1
(19) xe?:{x;(to), x:(to)},
(20 xm1 ={xs(t1),xh(tl)},
and
(21) ¢, fixed,

where u, is the sheep stocking rate; 1.2 is nonselective herbicide application [measured
in kilograms of active ingredient (glyphosate) per hectare]; ¢ is a parameter describing
the intertemporal productivity of lucerne pasture; t is the maximum productive length
of alucerne phase; a and b are parameters describing the relationship between stocking
rate and profit; cZ . is the cost of active ingredient for the nonselective herbicide; 2 ool
is the application cost for the nonselective herbicide; c,,,, is a fixed cost representing the
establishment cost of lucerne; v, =—g — (1 ~g)M,,,, where g is the germination rate and
M.,.., is the natural mortality rate of ungerminated seeds; v, = g(1-M,,,,,), where M,, .,
is the natural mortality rate of germinated seeds; d and [ are parameters describing the
strength of the relationship between grazing rate and weed control; s describes the
efficacy of the nonselective herbicide; and R is the number of seeds produced by a single
weed. Equation (19) is the set of initial conditions, and the terminal conditions in equa-
tions (20) and (21) are determined by the estimated switch points in the algorithm.

Cereal System Equations

The terminal time is free in the cereal phase to endogenize its optimal length in the
cycle. This is dealt with numerically through the introduction of an additional control

parameter u) = [0, ..., ¢,,.], where the control variable may take any value in the set
5=10, ..., ¢,,], and ¢, is the maximum length of the cereal phase.
The producer’s problem in the cereal phase is to maximize net present value (F,),
defined by:
1 m
pyoll—nyy | (1-2) + 2| ——o
1 3 oft-n ")( m + kw()
(22) max F,= f u[,3 e Tt 2 dt,
ulu2u’ 0 1 1 1 2 Ug
b7p"p —cﬂ,doseuﬁ @)~ cﬁ,appl —Cp = Ceest

1—(u§)



120 April 2009 Journal of Agricultural and Resource Economics

subject to:

(23) X = ugx;(vl +v,e (1 - ug‘)R),
(24) th = ugxg(vl +0,(1 —ug)R),
(25) xy ={x%(t)), x"(¢)},

(26) ¢, fixed,

and

@7) xp = {xity), 22y},

where u} is selective herbicide application [measured in kilograms of active ingredient
(diclofop methyl) per hectare], uf, is the intensity of nonselective weed control utilized
during the cropping phase, p is a constant price, y, is weed-free yield, 1) is the proportion
of yield lost to phytotoxic damage for a given dosage of selective herbicide, z is the
maximum proportion of grain yield lost at high weed density, m is a crop-dependent
density parameter, & is a constant representing the competitiveness between the weed
population and the wheat crop, w(t) represents the total weed population, c[{dase is the
cost of the selective herbicide dose, ¢ ,,,, is the cost of applying this dosage, cj is the cost
of achieving 50% weed control using alternative weed control treatments (Gorddard,
Pannell, and Hertzler, 1995), c,, is a fixed cost representing the establishment cost of
wheat, and g is a parameter designating the strength of the relationship between
ryegrass mortality and selective herbicide dosage. The weed population is w(t) = w*(t)
+ w"(t), where w* is the susceptible weed population and w” is the herbicide-resistant
weed population. These are rellated to the susceptible and resistant seed populations
through w * =x°g(1 - M,;,,.,)e (1 - u3) and w" =x"g(1-M,,,,)(1-u3). Itis observable
from equations (23) and (24) that the selective herbicide only affects the susceptible
weed population. The initial conditions in equations (25) and (26) for the second phase
are determined by the estimated switch points in the algorithm.

The effective removal of lucerne requires careful grazing management and the
application of nonselective herbicides. A switching cost function for ¢, is therefore
defined as e "i¢c,,,,,, where c,,,,, is the fixed cost of lucerne removal. This is obviously not
a function of the state variables, so equation (14) will hold as AlT(tl) = kg(tl) at x(¢,) in
this example.

The decision problem faced by the producer is therefore to maximize the net present
value of income earned during the steady-state rotation, defined as J = F, + F, —e "¢, ..
The parameter values for this application are presented in table 1. All values are
expressed in Australian dollars. Detailed information on the estimation of parameters
may be obtained from the author on request.

Model Output
Base Model Output

This section presents the standard solution obtained using the algorithm presented
in the previous section. The base model incorporates initial conditions of 50 susceptible
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Table 1. Parameter Values for the Two-Phase Model
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Parameter Description Value

r Discount rate r=0.05

< Parameter describing lucerne productivity ¢=0.78

T Maximum productive length of a lucerne phase Tt =4.96

a, b Pasture profit function parameters a=2532,b=14.88

czdose, c;app, Nonselective herbicide cost parameters cuz,dose = $12.50, czappl = $2.50

g Germination rate g=038

M. Rate of seed mortality M,.,=0.55

M, Rate of plant mortality M, = 0.05

d, ! Parameters describing weed control by grazing d=111,1=0.5

s Efficacy of nonselective herbicide s=17.87

R Seed production per plant R =100

Clost Cost of lucerne establishment Crose = $88

P Price per ton of wheat p=$185

Yo Weed-free yield ¥, = 1.82 tons ha™!

n Parameter describing rate of phytotoxic damage n=0.14

z,m k Wheat yield function parameters z=0.6,m =105,k =0.33

Coont Cost of cereal establishment Ceest = $82

q Efficacy of selective herbicide q="1745

c[i dose> cﬁl’appl, cﬂz Control cost parameters for crop phase cﬁl,dm =40, c&app, = $2.50,
ey =$1.09

Note: All values are expressed in Australian dollars.

seeds per square meter (ss m™2) and 25 herbicide-resistant seeds per square meter
(rs m™). The algorithm uses 14 iterations to identify a solution for this problem. As
shown in figure 1, the switching time denoting the length of the lucerne phase occurs
at 3.6 years, while the cereal phase is defined for the four years between this switching
time and the terminal time of 7.6 years. The optimal transition states are 45 ss m~ and
23 rs m™2.

Figure 1illustrates a number of important results. First, both seed populations decline
over the length of the lucerne phase (i.e., between [0, 3.6]). This decrease reflects the
combined efficacy of grazing and nonselective herbicide application for weed control in
a pasture phase. The value of integrated weed management during a pasture phase
highlights the intuitive unsuitability of single-phase models (e.g., Gorddard, Pannell,
and Hertzler, 1995) for resistance analysis. Second, the state trajectories within the first
phase are clearly convex. The initial reduction in the state variables is caused directly
by spray-topping with glyphosate, with an application rate that decreases from 0.67
kilograms of active ingredient per hectare (kg ai h™) to 0.29 kg ai ha™ over the duration
of this regime. This phase could be much shorter if effective weed control were the only
determinant of value. However, it is extended to maintain grazing—at a constant rate
of 7.46 DSE ha™ under optimal management—over the most productive years of the
lucerne stand. Third, no selective herbicide is applied in the cropping phase. Rather,
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intensive nonselective control is maintained at around 98%. This is necessary to mini-
mize population growth in the ryegrass population due to its strong competitiveness
with crops and its large seed production. Finally, the maximum length of the cereal crop
(four years) is adopted following the effective restraint of the ryegrass seed population
over the pasture phase.

In contrast to the algorithm developed by Mueller, Schilizzi, and Tran (1999), the
procedure utilized here does not require the differential equations describing the
transition of the state and adjoint variables to be explicitly solvable. This improves its
ability to incorporate realistic functional forms and thereby provide relevant and
practicable conclusions. For example, Mueller, Schilizzi, and Tran identified an optimal
cropping phase of 25 years duration in their standard model, compared with four years
in this application. The former is unrealistic since it will often be profitable to switch to
pasture production after four years of continuous cropping following soil structure
decline and the development of disease (Greenland, 1971). This is one example of the
value accruing to the greater complexity that may be incorporated through the use of
the algorithm presented above.
~ Important parameters in the decision problem are now perturbed to gain insight into
their impacts on the optimal solution identified by the algorithm. A low (p,,,, = $148) and
high (p,,, = $222) wheat price are defined as a 20% decrease and increase, respectively,
of the standard cereal price (p,,,, = $185). The implications of alternative discount rates
(r) of {0, 0.025, 0.075, 0.1} and removing the switching cost are also explored. The switch
points for the base model and these alternative scenarios are presented in table 2 to aid
comparison. The characteristics of each solution are discussed in detail in the following.

Impacts of Changes in the Cereal Price

A 20% decrease in the price received for a ton of wheat increases the optimal switching
time from 3.4 years to 4.8 years (figure 2). This result is logical given the subsequent
lower profitability of the cropping phase, relative to the pasture enterprise. The price
decrease also reduces the marginal value of weed management carried out during the
lucerne phase, as the optimal transition states increase from 45 ssm™ and 23 rs m~= to
49 ssm™ and 24 rs m™, respectively. The continuity of the state variables and the point
of nondifferentiability (corner) in the time derivatives of their trajectories at the switch-
ing time (¢,) are both obvious in figure 2. These follow naturally from the definition of
the discrete phases.

The optimal switching time decreases to three years and the optimal transition states
decrease from 45 ss m™ and 23 rs m 2 to 39 ss m2 and 19 rs m™?, respectively, at a cereal
price that is 20% higher than in the base model. The higher wheat price magnifies the
marginal value of weed control conducted during the lucerne phase. The lucerne stand
is retained over its most productive period (lucerne production peaks at t-27 = 2.48
years), despite the enhanced value of the cereal crop. This finding demonstrates the
importance of grazing to recoup the significant establishment cost of lucerne and the
direct relationship between livestock and pasture production.

The optimal stocking rate does not change following any of these modifications of the
cereal price. This result is intuitive since the (logistic) profit function will decline past
a given grazing rate (-2 = 7.15 DSE ha™') and the marginal contribution of an
additional grazing unit to weed control is rapidly diminishing at this point. In contrast,
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Figure 1. The optimal seed trajectories for a lucerne and
cereal rotation with initial seed populations of 50 ss m™

and 25 rs m™?

Table 2. Optimal Switch Points for Different Model Scenarios

Switching Susceptible Seed Resistant Seed
Time Population Population
in Years at ¢, at ¢,
Model Scenario (t) (x°(t)) Gty
Base model (p = $185, r = 0.05) 3.6 45 23
Piow = $148 4.8 49 24
Phign = $222 3.0 39 19
r=0 5.2 40 20
r=0.025 4.7 42 21
r=0.075 3.1 48 24
r=0.1 2.7 53 27
No switching cost 2.8 41 21
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the pattern of glyphosate application changes markedly. The reductions in the weed
populations at the beginning and the end of the pasture phase when the wheat price is
low (figure 2) are achieved through high rates of glyphosate application (figure 3, panel
A). In comparison, the shorter pasture phase motivated by the increased cereal price
encourages the producer to maintain low seed populations throughout its duration.
This is achieved with a primarily declining dose rate (figure 3, panel B), very similar to
that employed in the base model. The use of linear basis functions to approximate the
continuous control functions is evident in figure 3, where the close examination of each
trajectory reveals its piecewise definition.

Implications of Alternative Discount Rates

An increase in the discount rate decreases the profitability of each phase, consequently
reducing the optimal switching time (table 2). This effect offsets the positive impact that
ahigher discount rate has on the relative value of the first phase through the switching-
cost function. In contrast, the susceptible and resistant seed densities at the switching
time increase with the discount rate under optimal management. This result is intuitive
because discounting directly reduces the future cost of weed infestation, motivating
a decrease in the mean rate of glyphosate application from 0.376 kg ai ha™ to 0.358 kg
ai ha™' over the length of the lucerne stage as the discount rate increases from 0% to
10%.

Effects of Removing Transition Costs

The costless removal of lucerne (c,,,, = 0) decreases the optimal switching time from 3.6
to 2.8 years and the optimal transition states from 45 ss m™ and 23 rs m ™ to 41 ss m™
and 21 rs m™®, respectively. The derivative of the switching-cost term (i.e., re”"c,,,,) is
positive in equation (15), the switching condition that determines the optimal switching
time, since extending the length of the pasture phase will reduce switching costs through
discounting, increasing its dynamic profitability. Costless removal eliminates this
benefit, thus reducing the value of the lucerne enterprise, and thereby motivating a
shorter pasture phase under optimal management.

Conclusions

There isno general framework for the numerical optimization of multiple-phase systems
in which control variables are defined in each stage. This is a significant limitation
because these systems arise in many important economic problems, such as determining
the optimal time to switch between production technologies, energy sources, and land
uses. The computational algorithm presented in this paper offers a flexible and efficient
platform for the solution of multiple-phase problems in which the number and sequence
of phases is pre-assigned.

The reasonable complexity of problems that may be handled using this algorithm is
demonstrated in an investigation of the optimal management of herbicide-resistant
weed populations in a pasture-cereal rotation in the Western Australian wheat belt.
Model output shows that integrated weed management implemented in a pasture phase
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is important when the efficacy of selective herbicides is limited by resistance. In fact,
use of intensive nonselective control is necessary in both phases of the rotation, moti-
vated by a strong economic incentive to maintain a low number of seeding plants given
the competitiveness and large seed production of annual ryegrass. A higher wheat price,
higher discount rate, or lower switching cost decreases the optimal length of the peren-
nial pasture phase. Thus, even though the establishment of perennial pasture requires
substantial investment, it is pertinent for producers to adjust the length of these phases
in response to temporal changes in economic conditions and available technology.

Furthermore, this application provides insight into the operation of the multiple-
phase control algorithm. The bisection procedure used therein requires switching
conditions that alternate in sign to effectively begin the search for optimal switch points.
Identification of these initial values may be time-consuming in some models; thus,
coding of a search algorithm to automate this process may be of benefit. However, it
would require careful construction to avoid infeasibilities from interrupting its oper-
ation. In addition, the identification of starting points through experimentation is
valuable for increasing a practitioner’s knowledge of the framework in question.

The use of an efficient computational procedure to solve the individual control prob-
lem posed by each phase is also important if the algorithm is to solve in a reasonable
amount of time. The employment of control parameterization in this application is
valuable given the complexity of the problem and the difficulty involved with other
methods of solution, particularly those—such as multiple shooting—that require the
analytical derivation of adjoint trajectories and accurate guesses of their evolution
across time.

An interesting extension of this work would be an examination of the sufficiency of the
necessary conditions derived in this paper, perhaps using viscosity solutions. Preliminary
experiments also indicate that the efficiency of solution may be improved through solving
the control problem posed by each individual phase using parallel processing.

[Received August 2008; final revision received February 2009.]
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Appendix:
Derivation of Necessary Conditions

This appendix outlines a proof of the theorem from the second section of the text using both weak
(Amit, 1986) and strong (Seierstad and Sydsaeter, 1987; Hull, 2003) variations.
First, adjoin the n constraint(s) from equation (2) to the objective functional [equation (1)] using
n m-dimensional vectors of adjoint multipliers A,(¢) to form the augmented functional ¢:
n-1

(AD) b= e‘""G(x(t"))— e 5C;(x(t))

J=1

f [ (x@), u®) « AT (x(0, u,0),¢) - x(0)) | dt

DeﬁneaHamlltomanfunctlon for each stage, H(x(8),ui£),A(8),t)=eF,(-) + &; (t)f (), and substi-
tute into equation (A1):

n-1

(A2 §=e""G(x(t,)- Y eTIC,(x(t)) + ¥ f [ H,(x(8), w,®), Aj(t),t)—lf(t)x(t)]dt

Jj=1 Jj=1 J_1+
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Integrate the final term in the square brackets in equation (A2) by parts:

n-1 n
(A3) b =eT"G(x(2,)) - ; eIC;(x(2)) + 2 (—Af(tj_)x(tj_) CAT(E, 1,)x(tj_1+))
. Jg ) ‘1 [H,(x(0), 0,0, A,), ) - LT O | at.

The differential of equation (A3) is:

t'l

—rt, . i 7 {
a0 do=|m | » ETEED (aHj() oA, (t)x(t)] o O L
ot ox(¢) ox(¢) du,(t)

n
dt i
n+j§ft_

-1t

¥ 0eTHC,(x(t;) de""G(x(t,) g
+ FO | RS A SN = SO | e MG L
fz-*; [HJ()’J’- ot; H’”()"f*]dtj [ ox(t,) A, | dx(t,)

=

n—

T de7C (x(t.))
+ [lj,l(tj+) —lf(tj-) -t

ox(t;)

Il
=N

. ] dx(t)),

J

where d, dt, and dx(¢,) are differential changes in the performance index, time, and the state
variable at the final moment; H,(-) = H,(x(¢), w;(¢), A,(¢), t) for j = {1, 2, ..., n}; 5x and du represent
variations in the state and control trajectories; and H, = 0. The functional ¢ is extremal if it is
stationary with respect to arbitrary perturbations. A stationary ¢ requires necessary conditions
(i)=(vii) in the theorem in the second section of the text, except the control functions in (iii) are
selected so (H,(")),=0forj=(1,2,...,nl.

Condition (iii) is now generalized to hold for constrained control variables using strong varia-
tions. Assume that (x'(2), u;(t), tj*) are optimal through satisfaction of conditions (i)—(vii) in the
theorem. Form a comparison vector of control functions u () for each regime, admissible through
definitions 1-4. Over the length of each phase ([¢; +, ¢;-]), consider three intervals:

m ¢ ,+<t<t, where u;(t) -u)=0;

m ¢t <ts<t,, where u;(t) —u,(t) = constant;
and

Wt <tst, where uj(t) - uj(t) satisfies the terminal constraints on x(¢) in (iv) in the theorem.

The relative performance of the comparison controls is defined through:

N n-1 N n-1
(A5) ¢ =(eT"GE ()~ e Gx(t,)) | ¥ eV Cx(E) - X eTIC,x(t,)
=1 =1

. 121 N [H(x®), w©), 40, ¢) - AT 0K 0 - H,(x0), u0), A(0), ) « A% ] e

! Zl ft‘ [H,(x'0), w0, (@), ¢) - AT OK O - H, (x(8), u (), 4,(0), ¢ ) + T Ox(t) | dt.

Terms across the interval [t,, ¢;-] for all j are expanded using a Taylor series, and the standard
integration of parts is performed for lf(t)éx. The first-order terms are retained. Simplifying this
expression using the necessary conditions specified in (i)-(vii) in the theorem yields:
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(A6) dd= E [ [Hj(x*(t), w(t), (), t) - A (OX () - H,(x(0), wit), A,(0), ¢)

 ATOR(0) |t + 4t 5C,).

The values of the state and adjoint vectors at time ¢, are x(¢,) = x(¢,) + XAt and A7(¢,) = A7(z,) +
).fAt, respectively. The initial condition for the optimal trajectory and the comparison path for the
prior partition are the same; therefore, (x(¢,) — x(¢,)) = 0 in dx(¢,) = (x"(¢,) — x(¢,)) + (X" - %)A¢,
80 8x(¢,) = (X" — X)At. Substitution into equation (A6) yields:

(A7) do =Y [H{x®, w50, K0),t) - H {x®), 0, 1,0, t)]ac.

j=1
The augmented functional will only be maximal in relation to the control vector for each phase if
d¢ > 0 for all u,(t). The moment ¢, is chosen arbitrarily, and At > 0. It follows that an optimal

control vector u ;(t) for each phase j requires H j(x*(t), u;(t), l;(t), £)> H(x(t), u;(t), A,(8), t) across
[¢,1+, ¢;-1, or, alternatively,

Max H (x(£), u,(8), A,(8), t) for all ¢ € [¢,;+, ¢;-]. O

()





