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Techniques for Multivariate
Simulation from Mixed
Marginal Distributions with
Application to Whole-Farm
Revenue Simulation

John D. Anderson, Ardian Harri, and Keith H. Coble

Alternative techniques for representing dependencies among variables in multi-
variate simulation are discussed and compared in the context of rating a whole-farm
insurance product. A procedure by Iman and Conover (IC) that is common in
actuarial applications is compared to a new technique detailed by Phoon, Quek, and
Huang (PQH). Results suggest that rates derived from the IC procedure may be
inaccurate because the procedure produces biased estimates of correlation between
simulated variables. This situation is improved with the PQH procedure.
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Introduction

Monte Carlo simulation represents an important analytical tool for evaluating a wide
array of complex problems. Simulation of independent variables from parametric distri-
butions or nonparametrically from empirical distributions is straightforward; however,
modeling dependent variables from a joint distribution is considerably more difficult.
This difficulty is compounded if the marginal distributions comprising the joint distribu-
tion are not consistent. As Biller and Nelson (2003) note, relatively few tools are readily
available for simulating correlated variables from different marginal distributions (or
different families of marginal distributions). Still, the number of applications requiring
a flexible simulation procedure is substantial. For example, the calculation of rates for
multi-crop revenue insurance requires the simulation of multiple prices and yields. So,
too, does the analysis of the costs and benefits of whole-farm, revenue-based policy
instruments—a topic which has taken on greater significance this year with anew Farm
Bill that includes a choice between continued participation in the preexisting set of
commodity programs or a new whole-farm, revenue-based countercyclical program.
More generally, almost any risk analysis going beyond a single enterprise will encounter
these problems. Thus, fundamental management issues such as diversification, portfolio
analysis, and many investment decisions require this kind of modeling capability.

A number of techniques for simulating correlated random variables—including from
mixed marginal distributions—do exist in the literature. For instance, Iman and Conover
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(IC)(1982) present a procedure for correlating simulated variables from mixed marginal
distributions in the multivariate case that has become standard in actuarial applications.
More recently, Phoon, Quek, and Huang (PQH) (2004) describe a procedure for simulating
correlated variables from mixed marginal distributions based on an eigen decomposition
of the rank correlation matrix. While these procedures are both appropriate for the same
applications, to date, no empirical work has been done comparing their performance.

Although the potential application of multivariate simulation techniques in the field
of agricultural economics is essentially unlimited, the literature provides little detail on
how to implement such procedures. With this fact in view, the objectives of our paper
are threefold. First, the implementation of the PQH simulation procedures will be
described in detail. Second, this procedure will be applied to a simulation of rates for a
whole-farm revenue product. PQH results will be compared to results from the more
familiar IC procedure. Within this context, the performance of both procedures in repro-
ducing specified marginals and correlations will be compared. Finally, the robustness
of each procedure to factors such as distribution parameters, alternative correlation
matrices, and sample size will be investigated.

The exposition of a flexible multivariate simulation procedure will provide a source
in the economics literature for a guide to programming the procedure. Moreover, results
of the empirical application presented in this study will contribute useful information
to aid practitioners in the selection of simulation methodologies for evaluating other
specific applied problems in agricultural economics.

Review of Common Simulation Procedures

A number of techniques for simulating correlated random variables exist in the litera-
ture. Naylor et al. (1966) describe the programming of a methodology for simulating
correlated variables from a multivariate normal distribution [Krzanowski (1988) pro-
vides a very accessible explanation of the theoretical underpinnings of this procedure].
Clements, Mapp, and Eidman (1971) adapt Naylor et al.’s procedure to farm revenue
simulation, and their application of this technique is widely cited in the agricultural
economics literature (e.g., Bailey and Richardson, 1985; Anderson and Zeuli, 2001). For
the simulation of prices (for example, where the assumption of lognormality is not overly
restrictive), this procedure is useful; however, if the assumption of normality is not well-
supported (for example, if both prices and yields are being simulated), the restriction to
the multivariate normal distribution is a major limitation.

Johnson and Tenenbein (1981) describe a procedure for simulating from a bivariate
distribution with mixed marginals. Babcock and Hennessy (1996) illustrate the use of
the Johnson-Tenenbein procedure in simulating correlated prices and yields from mixed
marginal distributions (a beta distribution for yields and a lognormal distribution for
prices) in the context of crop insurance rating. This procedure is quite flexible, accommo-
dating simulation from either parametric or empirical distributions. While the ability
to simulate from mixed marginals is attractive, the Johnson-Tenenbein procedure is not
readily extended beyond the bivariate case. Hennessy, Babcock, and Hayes (1997) use
a variation of the Johnson-Tenenbein procedure in a multivariate simulation of whole-
farm revenue assurance (RA) rates. However, Hart, Hayes, and Babcock (2006) caution
that the procedure is not capable of reliably maintaining correlations between more
than two variables at a time.
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Asnoted earlier, the Iman and Conover (IC) procedure for correlating simulated vari-
ables from mixed marginal distributions in the multivariate case has become standard
in actuarial practice. In fact, Mildenhall (2005) opines that the procedure “should be
part of every actuary’s toolkit.” The IC procedure involves simulating independent
variables and then re-sorting them using information in the correlation matrix. This
essentially brute-force approach is computationally intensive, particularly ifthe number
of variables being simulated is large. Moreover, Ferson et al. (2004) note that the pro-
cedure has been criticized for its ad hoc nature. Nonetheless, the procedure has gained
wide currency, owing largely to its intuitive appeal, its relative simplicity, and its
suitability to a wide variety of programming environments.

Hart, Hayes, and Babcock (2006) present an application of the IC procedure to whole-
farm crop insurance rating. Paulson and Babcock apply the procedure to the modeling
of alternative grain contract structure (2007) as well as to an area revenue insurance
instrument (2008). In the literature of many other disciplines, the IC procedure is
pervasive, finding application in engineering (e.g., Vorechovsky and Chudoba, 2006),
environmental sciences (e.g., Webster et al., 2003), and agronomy (e.g., Tattari et al.,
2001), among many others.

The PQH procedure is similar to IC in that it is—to borrow the language of Iman and
Conover—a “distribution-free” technique, allowing for the simulation of correlated vari-
ables from mixed marginal distributions, including empirical distributions. Their
procedure consists of the simulation of correlated probabilities using information in the
correlation matrix. These probabilities are used in an inverse transformation of the
relevant marginal distribution to produce correlated variables from the simulation. To
date, this procedure is not well-established in the literature. In one of the few applica-
tions of PQH outside of the engineering literature, Anderson, Coble, and Miller (2007)
apply the procedure to the simulation of risk management strategies related to the
countercyclical payment program in the 2002 Farm Bill.

Copula procedures represent another approach to modeling dependence among
variables. A copula is simply a function (alternatively referred to as a dependence
function) that defines the relationship of marginal distributions to their full
multivariate distribution (Frees and Valdez, 1998). Clemens and Reilly (1999) present
a good overview of copula procedures, including examples using empirical data.
Simulation using the copula approach can be found in the agricultural economics
literature. The Johnson-Tenenbein procedure referenced earlier is essentially a copula
approach to bivariate simulation. More recently, Zhang et al. (2007) adopt a copula
approach to simulate correlated prices and yields from a bivariate distribution using two
different families of copulas (Gaussian and Frank) for comparison. Zhu, Ghosh, and
Goodwin (2008) apply a copula approach in their development of a multi-crop insurance
product design.

This work focuses on the PQH procedure because of the limited treatment it has
received in the literature, because of its flexibility (suitability for both parametric and
nonparametric applications), and because of its potential for application to very timely
issues in agricultural economics research (e.g., multi-crop revenue and whole-farm
policy instruments). Comparison with the IC procedure is presented since IC is the
alternative technique most directly analogous to PQH and because of the familiarity
with IC across a broad range of disciplines.
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Methodology

The PQH procedure is, in general terms, a translation process, that is, the simulation
of a non-Gaussian process based on a nonlinear transformation of an underlying Gaus-
sian process (Phoon, Quek, and Huang, 2004). Fundamentally, the procedure involves
using a Karhunen-Loeve (KL) expansion in the simulation of correlated normal deviates
that are used as probabilities in an inverse transformation on the desired marginal
distributions.

The KL expansion is a well-established approach to representing a variety of stochastic
processes and is widely employed as a signal processing technique (e.g., see Hua, 1998)..
Van Trees (1968) presents the KL expansion of a Gaussian process, w,, with mean &,:

(1 w, =y + Y A f(0f, (),
k

where A, and f,(x) are eigenvalues and eigenvectors, respectively, of the covariance
function. Phoon, Huang, and Quek (2002) adapt this expression of the KL expansion to
the simulation of a stochastic process using a vector of randomly generated independent
standard normal variables, ,(0), as follows:

() W =@ + Y A EL(O)f ().
k

PQH extend this technique to the simulation of multivariate non-Gaussian processes,
noting that the fractile correlation (or other nonparametric measures of association such
as Kendall’s 1) of a nonnormal process will be the same as that of the underlying normal
process since it is invariant to monotone transformations. The procedure described by
PQH for simulating £ random correlated variables starting with a rank correlation
matrix and defined marginal distributions (including, as noted, the possibility of using
empirical distributions) is implemented in five steps:

a. Convert rank correlation, S, to Pearson correlation, p, using
(3) p = 2sin[(n/6)S].

b. Compute eigenvalues, 4,, and eigenvector, f,(x), from p and confirm
that p is nonnegative definite (i.e., that the minimum eigenvalue is
equal to or greater than zero).

c. Use these eigen solutions in the KL expansion of a standard normal
process to derive correlated standard normals, w,, as follows:

(4) W, = 3 A, EL(O)f, ().
k

where £,(0) are independent standard normal variables, and other
variables are as previously defined.

d. Determine probability associated with each of the correlated standard
normal deviates via transformation on the standard normal cumula-
tive distribution function (CDF).
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Step (d) results in a vector of probability values that are correlated according to the rank
correlation used at the beginning of the procedure. The final step of the PQH procedure
is:

e. Translate correlated probabilities from step (d) into simulated out-
comes by inverse transformation on the desired marginal distribution.

Numerical Comparison of IC and PQH
Data Simulation

To evaluate the performance of the IC and PQH procedures, a simulation of six correlated
variables with mixed marginal distributions was performed. The assumed correlation
across variables is presented in table 1. Three of the variables were simulated from
lognormal distributions differing in mean and volatility. The other three variables were
simulated from beta distributions with different parameters a and b. These marginal
distributions were chosen because lognormal and beta distributions are frequently used
to model prices and yields, respectively, in the agricultural economics literature (e.g.,
see Babcock and Hennessy, 1996). Distributional parameters for this simulation are
summarized in table 2.

For each procedure, the mean and standard deviation of each element of the
correlation matrix are calculated across 1,000 samples of simulated data. Results are
generated for sample sizes of 500, 1,000, 5,000, and 10,000; ¢-tests evaluate the
difference between simulated correlation coefficients and the correlations prescribed in
table 1." Results of these tests are reported in table 3 for a sample size of 10,000. Note
that the figures in this table are ¢-values comparing the simulated and actual
correlations corresponding to the given position in the table. Clearly, t-tests suggest the
PQH procedure provides a more accurate representation of the dependencies between
variables than does the IC procedure. In fact, all of the correlation coefficients in the IC
simulated data were significantly different from the prescribed value (at p < 0.01), while
only one in the PQH simulated data was significantly different from the prescribed
correlation value.?

To gain further insight into differences in the simulation outcomes from the two
procedures, the mean squared error (MSE) was calculated across the 1,000 samples for
three of the correlation coefficients: rpy;, 7'p1pe, and ry;y;.> MSE values for rp,y, are
shown in figure 1 and are representative of the results for the other correlation
coefficients. The interesting feature of this graph is that the MSE of the correlation
coefficient in the PQH simulation is relatively large in smaller samples but declines
dramatically as sample size increases so that by a sample size of 5,000, MSE is smaller
in the PQH simulated data than in the IC simulated data.

' A number of alternative correlation structures were investigated, and results of the comparison of the two procedures
were very robust. Thus, our discussion of results will be confined to those associated with the correlation matrix in table 1.

? Note that the difference between the PQH and IC procedures is how they impose correlations on simulated data. The
inverse transformation on marginal distributions is the same across both procedures. Hence, the discussion here focuses on
simulated correlations (which may be expected to differ some across the two procedures) rather than on moments of the
marginal distributions (which should not be expected to differ across the two procedures).

®In this context, the mean squared error is based on the difference between the sample mean for the correlation coefficient
in question and the prescribed value for the correlation coefficient (see table 1).
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Table 1. Rank Correlation Matrix Used in Simulating Multi-Crop Revenue
Insurance Premium

P1 Y1 P2 Y2 P3 Y3
P1 1.00 -0.35 050 -0.15 0.10 ~0.05
Y1 1.00 -0.30 0.70 ~0.08 0.30
P2 1.00 ~0.42 0.28 ~0.12
Y2 1.00 -0.07 0.25
P3 1.00 ~0.20
Y3 1.00

Table 2. Distribution Parameters Used in Multivariate Simulation to Compare
Performance of IC and PQH Correlation Procedures

Distribution Type and Parameters

Lognormal Beta
Variable n o a b
P1 3.00 0.10
P2 8.00 0.30
P3 5.00 0.20
Yl 0.50 0.75
Y2 0.25 0.80
Y3 0.40 0.85

Table 3. t-Test Comparing Correlation Coefficients from PQH and IC Simulated
Data to Correlation Coefficients Prescribed in Table 1

Y1 P2 Y2 P3 Y3

PQH ic PQH IC PQH IC PQH IC PQH IC

Pl -0.75 -312.80 | -0.28 300.81 | -0.12 -8893| -0.36 101.95 048 4587
Y1 0.62 -123.61 | -0.17 264.99 | -0.79 -61.05 093 201.00
P2 095 -182.57 | -0.82 163.95 | 2.14 -69.72
Y2 -0.21 -37.93 0.00 124.24
P3 -0.58 -143.85

Notes: t-values in bold/italics denote significance at p < 0.01; sample size = 10,000.
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0.437 Ic W PQH

MSE as % of rho

500 1,000 5,000 10,000
Sample Size

Note: Mean squared error presented as percentage of true correlation between P1 and Y1 (i.e., pp,y, = —0.35).

Figure 1. Mean squared error of simulated price/yield correlation
coefficient using PQH and IC simulation procedures

Components of the MSE were decomposed for the rp,y, correlation coefficient for all
sample sizes. Variance and bias of the correlation coefficient from both PQH and IC
simulated data are shown in figures 2 and 3. The interesting point to note in these
graphs is that, not surprisingly, the variance of the coefficient from the PQH simulation
is quite large (in relative terms, at least) in the small sample but declines to a very
small value in the larger samples. The variance associated with the coefficient from the
IC simulated data is relatively small in all sample sizes. On the other hand, the coeffi-
cient from the IC simulated data displays a relatively large bias, and the magnitude of
the bias is hardly mitigated by increasing sample size. By contrast, the bias associated
with the coefficient from the PQH simulated data is relatively small, even in small
sample sizes.

The bias of IC simulated correlations appears to be a general result, at least given the
marginal distributions and covariance structure being modeled here. Figure 4 plots the
bias of all 15 pairwise correlations for the six variables simulated here (for N = 10,000).
Clearly, the IC simulated correlation coefficients display considerably more bias than
the PQH simulated correlation coefficients—for every element of the correlation matrix.
In most cases, the bias of the IC simulated correlation is several times greater than that
of the PQH simulated correlations. Note that bias in figure 4 is expressed as a percent-
age of the actual correlation according to: '

(5) Bias = (pactual - E[psimulated ] ) / pactual *

The fact that all of the IC bias values in figure 4 are positive is instructive. This finding
indicates the IC procedure consistently simulates correlations that are smaller in abso-
lute value than actual correlations.
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Variance

Bias

0.50 -
0.45 0.4366

IC EPQH

0.40 -
0.35 4
0.30
0.25 4 0.2236
0.20 4
0.15 4

0.10 +
0.0461
0.05 - 0.0243

0.0111 0.0059 0.001 1- 0.00086,
000 4 = [
500 1,000 5,000 10,000

Sample Size

Note: Variance presented as percentage of true correlation between P1 and Y1 (i.e., pPpyy; = —0.35).

Figure 2. Variance of simulated price/yield correlation coefficient
using PQH and IC simulation procedures

50 - ic mPQH

45 4.350 4.280
4.080 4.060

500 1,000 5,000
Sample Size

Note: Bias presented as percentage of true correlation between P1 and Y1 (i.e., Ppyy; = —0.35).

Figure 3. Bias of simulated price/yield correlation coefficient
using PQH and IC simulation procedures
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P3Y3 (-0.20)
Y2Y3 (0.25)
Y2P3 (-0.07)
P2Y3 (-0.12)

P2P3 (0.28)
P2Y2 (-0.42)
Y1Y3 (0.30)
Y1P3 (-0.08)
Y1Y2 (0.70)
Y1P2 (-0.20)
P1Y3 (-0.05)

P1P3 (0.10)

P1Y2 (-0.15)

P1P2 (0.50) IC HEPQH

P1Y1 (-0.35)

-1 0 1 2 3 4 5
% of Actual Correlation

Note: Bias presented as percentage of true correlation coefficients (in parentheses next to category labels).

Figure 4. Bias of simulated correlation coefficients using PQH
and IC simulation procedures

To further explore the bias of IC and PQH simulated correlations, two additional
correlation matrices were simulated: one with smaller price/yield correlations and larger
price/price correlations than those in table 1, and another with negative correlations
between P3 and the other price variables. (This would be roughly consistent with a
simulation of revenue for a farm producing both grain and livestock.) Figure 5 plots
histograms for the bias values calculated for all 45 of the simulated correlations (15
pairwise correlations, three correlation matrices) from each procedure. The nature of the
bias of the IC procedure noted above (i.e., that simulated correlations tend to be smaller
in absolute value than actual correlations) appears to hold up when alternative
correlation matrices are considered. Also of note is the fact that the PQH procedure
seems more likely to produce outliers than the IC procedure. This result should be
interpreted with a bit of caution, however. The largest bias values for either procedure
were associated with very small correlation coefficients which, for all practical purposes,
would likely be ignored. Considering only correlations greater than 0.10 in absolute
value, bias values ranged from about —0.6% to +0.2% for the PQH procedure and from
about +2.4% to +4.7% for the IC procedure.

There are a number of potential sources of this positive bias in the IC procedure.
Iman and Conover caution that the distribution chosen for the “score” matrix (a set of
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Figure 5. Distribution of bias estimates for simulated correlation
coefficients using PQH and IC simulation procedures

values used in the process of reordering the independently simulated values to achieve
the desired correlation) can affect simulation results. Though not specifically comment-
ing on the issue of bias, Mildenhall (2005) notes that the IC procedure results in a more
faithful reproduction of the desired correlation matrix when marginal distributions are
symmetrical. The asymmetric nature of the distributions used in this study thus may
be contributing to the bias in the IC results. It is possible, given the marginal distribu-
tions employed here, that a different specification of the score matrix could improve
results. Evaluation of this issue is beyond the scope of this paper; however, this situa-
tion itself does represent one of the difficulties in implementing the IC procedure.

An Application to Whole-Farm Insurance Rating

To illustrate the practical implications of the differences in simulated data from the
PQH and IC procedures, we model the rating of a whole-farm revenue insurance product
consistent with the Revenue Assurance-Harvest Price Option (RA-HO). In this example,
three crops are assumed to be produced. Since the primary purpose of this analysis is
the evaluation of the simulation technique, hypothetical distributional parameters and
correlations are assumed rather than derived from empirical data. This approach facili-
tates sensitivity analysis related to the parameters. The correlation matrix used in the
simulation is reported in table 1. Parameters of the marginal distributions used in the
analysis were changed from those reported in table 2 in order to be more consistent with

*In this study, following the preference expressed by Iman and Conover (1982), the standard normal distribution was used
in generating the score matrix.
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Table 4. Parameters of Beta (Yield) Distribution Used to Compare Performance
of IC and PQH Correlation Procedures in Whole-Farm Rating Exercise

Distribution Parameters

Variable a b Upper Bound Lower Bound
Yield 1 2.67 1.78 300 50
Yield 2 2.08 1.03 90 15
Yield 3 2.93 3.47 95 12

actual distributions of prices and yields for corn, soybeans, and wheat. Specifically, the
three lognormal distributions (price variables) were all assumed to have a volatility of
0.25. For the beta distributions (yield variables), parameters for the insurance rating
simulation are summarized in table 4.

For the hypothetical multi-crop revenue coverage rated in this simulation (three pos-
sible crops), the per acre revenue guarantee, TRG, is defined as:

3
(6) TRG =CL Y 'sEP)E(Y),

i=1
where CL is the selected coverage level (75% in the analysis presented here), and E(P,)
and E(Y), respectively, are planting time expectations for price and yield for crop i.
Since the revenue product is modeled with a harvest revenue option, the final per acre
revenue guarantee, TRG", is defined as:

3
M TRG = CL'Y. ¥sMax|E(P), P, |E(Y)),
i=1

where E(P)) is the original planting time expectation of harvest price, P, is the actual
realized harvest time price, and other variables are as previously defined.

For this multi-crop product, a pure premium rate for coverage level ¢ based on n
simulated outcomes (PPR,,) is calculated as the average indemnity over n simulated
outcomes® divided by the average initial revenue guarantee, or:

LY Max|0, 7RG, - TR,
€) PPR,, = -

E[TRG] ’
where j denotes the simulated outcome, TR, is the jth simulated total revenue outcome,
and other variables are as previously defined.

Results of the PQH simulation are compared to results from an IC simulation using
identical parameters. For each simulation, a set of 1,000 samples are drawn. For each
procedure, the mean and standard deviation of the estimated premium rate and of each
element of the correlation matrix are calculated across the 1,000 samples. Results are
generated for sample sizes of 500, 1,000, 5,000, and 10,000; ¢-tests are used to test for
statistically significant differences between the prescribed correlation and the average

® Technically, this applies only for large samples since the numerator of equation (8) approaches the population mean as
n approaches infinity.
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BIC HEPQH

4.48% -
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4.36%

Pure Premium Rate

4.34%

4.32%
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500 1,000 5,000 10,000
Sample Size

Note: Premium rates for all sample sizes are significantly different between IC and PQH procedures at o = 0.01.

Figure 6. Simulated pure premium rates for multi-crop revenue
insurance at the 75% coverage level using PQH and IC simulation
procedures

correlation resulting from the two different simulation procedures. Simulated rates are
also compared to evaluate the differences in premium rate resulting from the differences
in simulation performance. Given the marginal distributions used in this application,
it is not possible to derive a premium rate analytically. Thus, it is not possible to define
categorically which simulation procedure produces results closest to the “true” rate. It
is possible, however, to approximate the true rate numerically by simulating a large
number of outcomes.

Whole-Farm Insurance Rating Results

Figure 6 shows simulated premium rates for the three-crop revenue derived from the
PQH and IC procedures. Rates are very consistent across sample sizes for both pro-
cedures; however, rates are not necessarily consistent between procedures. The ¢-tests
reveal a statistically significant difference (p < 0.05) between premium rates estimated
from the two different procedures at all sample sizes. Specifically, as figure 6 makes
clear, premium rates simulated from the PQH procedure are statistically larger than
rates simulated from the IC procedure for all sample sizes. While statistically signifi-
cant, these differences in rates are not necessarily economically significant. To put these
statistical differences in context, using the expected prices and yields estimated here,
each 0.1% change in premium rate amounts to a difference in premium paid of just
under $0.35/acre at the 75% coverage level.

As noted, we cannot derive the true rate analytically. To approximate the true rate,
we estimated the rates for 100,000 simulated outcomes. In this exercise, each procedure
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produced a rate that was virtually identical (the same to the fourth decimal place) to the
rates shown in figure 6 for the 10,000 sample size (i.e., 0.0439 for the IC procedure and
0.0446 for the PQH procedure). In other words, the numerical approximation of the true
rate differs significantly depending upon which simulation procedure is used. It seems
reasonable to infer that the simulation resulting in the most accurate reproduction of
the underlying data produces the more accurate rate.

The more accurate representation of the dependencies in the data from the PQH pro-
cedure in large samples suggests that the rates derived from this procedure are closer
to the true rate than those derived from the IC simulation (though, as stated, there can
be no analytical proof of this). The difference in rates estimated in the simulation of
sample size 10,000 results in a total premium difference of around $0.25/acre at the 75%
coverage level. On a total premium of about $15/acre based on the expected prices and
yields used in this application, the difference in estimated premium is not economically
significant, despite the high level of statistical significance. However, in a crop insur-
ance context, rates must be generated for literally hundreds of empirical settings.
Hence, a biased rating system is problematic in that adverse selection may be severe in
certain contexts. The greater accuracy of the PQH procedure in reproducing the desired
dependencies between variables, as well as the fact that it requires no subjective judg-
ments toimplement (such as the distribution of the score matrix with the IC procedure),
suggests the PQH procedure is an attractive alternative to the widely used IC procedure
for actuarial applications.

Summary and Conclusions

This study calculates rates for a hypothetical multi-crop revenue insurance policy using
two alternative multivariate simulation techniques: the Iman and Conover (IC) (1982)
procedure, which is standard in actuarial practice, and a newer procedure described by
Phoon, Quek, and Huang (PQH) (2004). Results indicate significantly different rates can
be obtained depending on which simulation procedure is used.

While it is not possible to calculate the true rate analytically from the price and yield
distributions assumed here (i.e., lognormal prices and beta yields), it is possible to
evaluate the accuracy of the simulations from each of the alternative procedures. Results
of ¢-tests show that correlations in the PQH simulated data were not significantly
different from the actual (assumed) correlation, while correlations in the IC simulated
data were generally significantly different from actual values. More specifically, corre-
lations in the IC simulated data are biased, being smaller in absolute value than the
actual correlation. This bias was not corrected by increasing sample size (though the
amount of the bias could be marginally reduced).

While perhaps not a major consideration, it is nonetheless worth noting that the
programming of the PQH procedure is much more straightforward than for the IC
procedure. As pointed out earlier, the IC procedure involves sorting data to achieve the
desired correlation. This necessarily requires separating matrices into individual
columns for individual sorting and then re-merging to produce a final simulated data
set. This is a rather cumbersome process from a programming standpoint (and one that
becomes more cumbersome as the number of simulated variables increases) compared
to the PQH procedure, which for the most part involves intact matrix manipulation.®

¢ Sample code for implementing the PQH procedure is available from the authors upon request.
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Results of this study suggest that more accurate rates for multi-crop insurance
products (an area of growing interest) could be obtained by simulation with the PQH
procedure, though the difference in rates is not economically significant in the case we
examined. More generally, these results provide an effective and easily implemented
alternative to existing multivariate simulation techniques that can be applied in a wide
variety of analyses. For example, the 2008 Farm Bill includes both a revenue counter-
cyclical program as well as a whole-farm disaster compensation program. Analysis of
either of these policy instruments requires the type of multivariate simulation from
mixed marginal distributions as described and evaluated here.

[Received April 2008; final revision received February 2009.]

References

Anderson, J. D., K. H. Coble, and J. C. Miller. “Hedging a Government Entitlement: The Case of
Counter-cyclical Payments.” J. Agr. and Appl. Econ. 39(2007):507-522.

Anderson, J. D., and K. A. Zeuli. “The Revenue Risk of Value-Based Pricing for Fed Cattle: A Simu-
lation of Grid vs. Average Pricing.” Internat. Food and Agribus. Mgmt. Rev. 4(2001):275-286.

Babcock, B. A,, and D. A. Hennessy. “Input Demand Under Yield and Revenue Insurance.” Amer. J.
Agr. Econ. 78(1996):416-427.

Bailey, D. V., and J. W. Richardson. “Analysis of Selected Marketing Strategies: A Whole-Farm Simula-
tion Approach.” Amer. J. Agr. Econ. 67(1985):813-820.

Biller, B., and B. L. Nelson. “Modeling and Generating Multivariate Time-Series Input Processes Using
a Vector Autoregressive Technique.” ACM Transactions on Modeling and Computer Simulation
13(2003):211-237.

Clemens, R. T., and T. Reilly. “Correlations and Copulas for Decision and Risk Analysis.” Management
Sci. 45(1999):208-224.

Clements, A. M., H. P. Mapp, and V. R. Eidman. “A Procedure for Correlating Events in Farm Simula-
tion Models.” Exp. Sta. Bull. No. T-131, Oklahoma State University, Stillwater, 1971.

Ferson, S., R. B. Nelson, J. Hajagos, D. J. Berleant, J. Zhang, W. T. Tucker, L. R. Ginzburg, and W. L.
Oberkampf. Dependence in Probabilistic Modeling, Dempster-Shafer Theory, and Probability Bounds
Analysis. Pub. No. SAND2004-3072, Sandia National Laboratories, 2004.

Frees, E. W, and E. A. Valdez. “Understanding Relationships Using Copulas.” N. Amer. Actuarial J.
2(1998):1-25.

Hart, C. E., D. J. Hayes, and B. A. Babcock. “Insuring Eggs in Baskets: Should the Government Insure
Individual Risks?” Can. J. Agr. Econ. 54(2006):121-137.

Hennessy, D. A, B. A. Babcock, and D. J. Hayes. “The Budgetary and Producer Welfare Effects of
Revenue Assurance.” Amer. J. Agr. Econ. 79(1997):1024-1034.

Hua, Y. “Generalized Karhunen-Loeve Transform.” IEEE Signal Processing Letters 5(1998):141-142.

Iman, R. L., and W. J. Conover. “A Distribution-Free Approach to Inducing Rank Correlation Among
Input Variables.” Communications in Statistics B11(1982):311-334.

Johnson, M. E., and A. Tenenbein. “A Bivariate Distribution Family with Specified Marginals.”J. Amer.
Statis. Assoc. 76(1981):198-201.

Krzanowski, W. J. Principles of Multivariate Analysis: A User’s Perspective. New York: Oxford Univer-
sity Press, 1988.

Mildenhall, S. J. “Correlation and Aggregate Loss Distributions with an Emphasis on the Iman-Conover
Method.” Report of the Research Working Party on Correlations and Dependencies Among All Risk
Sources, Casualty Actuarial Society, 2005. Online. Available at http:/www.casact.org/pubs/forum/
06wforum/06w107.pdf.

Naylor, T. H., J. L. Balintfy, D. S. Burdick, and K. Chu. Computer Simulation Techniques. New York:
John Wiley and Sons, Inc., 1966.



Anderson, Harri, and Coble Multivariate Simulation from Mixed Marginal Distributions 67

Paulson, N. D., and B. A. Babcock. “The Effects of Uncertainty and Contract Structure in Specialty
Grain Markets.” Paper presented at annual meetings of the American Agricultural Economics
Association, Portland, OR, 29 July-1 August 2007.

. “Get a GRIP: Should Area Revenue Coverage Be Offered Through the Farm Bill or as a Crop
Insurance Program?” J. Agr. and Resour. Econ. 33,2(August 2008):137-153.

Phoon, K., H. Huang, and S. T. Quek. “Simulation of Second-Order Processes Using Karhunen-Loeve
Expansion.” Computers and Structures 8(2002):1049-1060.

Phoon, K., S. T. Quek, and H. Huang. “Simulation of Non-Gaussian Processes Using Fractile Correla-
tion.” Probabilistic Engineering Mechanics 19(2004):287-292.

Tattari, S., I. Barlund, S. Rekolainen, M. Posch, K. Siimes, H. R. Tuhkanen, and M. Yli-Halla. “Modeling
Sediment Yield and Phosphorus Transport in Finnish Clayey Soils.” Transactions ASAE 44(2001):
297-307

Van Trees, H. L. Detection, Estimation, and Modulation Theory: Part I. New York: John Wiley and Sons,
Inc., 1968.

Vorechovsky, M., and R. Chudoba. “Stochastic Modeling of Multi-Filament Yarns: II. Random Proper-
ties over Length and Size Effect.” Internat. J. Solids and Structures 43(2006):435-458.

Webster, M., C. Forest, J. Reilly, M. Babiker, D. Kicklighter, M. Mayer, R. Prinn, M. Sarofim, A.
Sokolov, P. Stone, and C. Wang. “Uncertainty Analysis of Climate Change and Policy Response.”
Climatic Change 61(2003):295-320.

Zhang, R., J. E. Houston, D. Vedenov, and B. J. Barnett. “Hedging Downside Risk to Farm Income with
Futures and Options: Effects of Government Payment Programs and Federal Crop Insurance Plans.”
Poster presented at annual meetings of the American Agricultural Economics Association, Portland,
OR, 29 July-1 August 2007.

Zhu, Y., S. K. Ghosh, and B. K. Goodwin. “Modeling Dependence in the Design of Whole-Farm Insur-
ance Contract: A Copula-Based Model Approach.” Paper presented at annual meetings of the
American Agricultural Economics Association, Orlando, FL, 27-29 July 2008.






