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Abstract 

 

 
This paper assesses the roles of various factors influencing the volatility of crude oil 

prices and the possible linkage between this volatility and agricultural commodity 

markets. Stochastic volatility models are applied to weekly crude oil, corn, and wheat 

futures prices from November 1998 to January 2009. Model parameters are estimated 

using Bayesian Markov chain Monte Carlo methods. The main results are as follows. 

Speculation, scalping, and petroleum inventories are found to be important in explaining 

oil price variation. Several properties of crude oil price dynamics are established, 

including mean-reversion, a negative correlation between price and volatility, volatility 

clustering, and infrequent compound jumps. We find evidence of volatility spillover 

among crude oil, corn, and wheat markets after the fall of 2006. This could be largely 

explained by tightened interdependence between these markets induced by ethanol 

production. 
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1. Introduction 

Crude oil prices exhibited exceptional volatility throughout much of 2008. After setting a 

record high of over $147 per barrel in July, the benchmark price of the West Texas 

Intermediate (WTI) crude oil fell to just over $40 per barrel in early December. Oil price 

shocks and their transmission through various channels impact the U.S. and global 

economy significantly (Kilian 2008). In various studies seeking to explain this sharp 

price increase, speculation was found to play an important role. Hamilton (2009) 

concludes that a low demand price elasticity, strong demand growth, and stagnant global 

production induced upward pressure on crude oil prices and triggered commodity 

speculation from 2006 to 2008. Caballero, Farhi, and Gourinchas (2008) also link the oil 

price surge to large speculative capital flows that moved into the U.S. oil market.      

Agricultural commodity prices have displayed similar behavior. The Chicago cash 

corn price rose over $3/bushel to reach $7.2/bushel in July 2008. It then fell to 

$3.6/bushel in December 2008. Volatile agricultural commodity prices have been, and 

continue to be, a cause for concern among governments, traders, producers, and 

consumers. With an increasing portion of corn used as feedstock in the production of 

alternative energy sources (e.g., ethanol), crude oil prices may have contributed to the 

increase in prices of agricultural crops by not only increasing input costs but also 

boosting demand. Given the relatively fixed number of acres that can be allocated for 

crop production, it is likely that shocks to the corn market may spill over into other crops 

and ultimately into food prices. Thus, the interdependency between energy and 

agricultural commodity markets warrants further investigation. 

In this study, we attempt to investigate the role of speculation in driving crude oil 

price variation after controlling for other influencing factors. We also attempt to quantify 

the extent to which volatility in the crude oil market transmits into agricultural 

commodity markets, especially the corn and wheat markets. We hypothesize that the 

linkage between these markets has tightened and that volatility has spilled over from 

crude oil to corn and wheat as large-scale corn ethanol production has affected 

agricultural commodity price formation. 

A considerable body of research has been devoted to investigate the price 

volatility in the crude oil market. For example, Sadorsky (2006) evaluates various 
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statistical models in forecasting volatility of crude oil futures prices. Cheong (2009) 

investigates and compares time-varying volatility of the European Brent and the WTI 

markets and finds volatility persistence in both markets and a significant leverage effect 

in the European Brent market. Kaufmann and Ullman (2009) explore the role of 

speculation in the crude oil futures market. While there are a number of papers on 

volatility transmission in financial and/or energy markets (e.g., Hamao, Masulis, and Ng 

1990; Ewing, Malik, and Ozfidan 2002; Baele 2005), specific studies on volatility 

transmission between crude oil and agricultural markets are sparse. Babula and Somwaru 

(1992) investigate the dynamic impacts of oil price shocks on prices of petroleum-based 

inputs such as agricultural chemical and fertilizer. The effect of oil price shocks on U.S. 

agricultural employment is investigated by Uri (1996). 

For the purpose of modeling conditional heteroskedasticity, ARCH/GARCH 

models, originally introduced by Engle (1982), and stochastic volatility (SV) models, 

proposed by Taylor (1994), are the two main approaches that are used in the literature. 

While ARCH/GARCH models define volatility as a deterministic function of past return 

innovations, volatility is assumed to vary through its own stochastic process in SV 

models. ARCH-type models are relatively easy to estimate and remain popular (see Engle 

2002 for a recent survey). SV models are directly connected to diffusion processes and 

thus allow for a volatility process that does not depend on observable variables. SV 

models provide greater flexibility in describing stylized facts about returns and 

volatilities but are relatively difficult to estimate (Shephard 2005). Much progress has 

been achieved on the estimation of SV models using Bayesian Markov chain Monte 

Carlo (MCMC) techniques, and this appears to yield relatively good results (e.g., Chib, 

Nardari, and Shephard 2002; Jacquier, Polson, and Rossi 2004; Li, Wells, and Yu 2008).  

Oil price dynamics are characterized by random variation,1 high volatility, and 

jumps, and are accompanied by underlying fundamentals of oil supply and demand 

markets (Askari and Krichene 2008). The recent jumps in oil prices could possibly be 

explained by demand shocks together with sluggish energy production and lumpy 

investments (Wirl 2008). Incorporating the leverage effect, a negative correlation 

                                                 
1 An augmented Dickey-Fuller test indicated that the crude oil price over the sample period possessed a unit 
root, while changes in oil prices were stationary.  
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between price and volatility, is found to provide superior forecasting results for crude oil 

price changes (Morana 2001).2 To fully capture the stylized facts of oil price dynamics, 

we adopt a stochastic volatility with Merton jump in return (SVMJ) model. In the model, 

the instantaneous volatility is described by a mean-reverting square-root process, while 

the jump component is assumed to follow a compound Poisson process with constant 

jump intensity and a jump size that follows a normal distribution.  

The applied SVMJ model belongs to the class of affine jump-diffusion models 

(Duffie, Pan, and Singleton 2000), which are tractable and capable of capturing salient 

features of price and volatility in an economical fashion. It has the advantage of ensuring 

that the volatility process can never be negative or reach zero in finite time and of 

providing close-form solutions for pricing a wide range of equity and derivatives. The 

Bayesian MCMC method that we employ in this study is particularly suitable for dealing 

with this type of model. Based on a conditional simulation strategy, the MCMC method 

avoids marginalizing high dimensional latent variables, including instantaneous volatility, 

and jumps to obtain parameter estimates. MCMC also affords special techniques to 

overcome the difficulty of drawing from complex posterior distributions with unknown 

functional forms, which can significantly complicate likelihood-based inferences. 

To the best of our knowledge our study is the first to apply an SVMJ model to 

crude oil prices and to empirically examine crude oil price and volatility dynamics in a 

model that allows for mean-reversion, the leverage effect, and infrequent jumps.  

Our results suggest that volatility peaks are associated with significant political 

and economic events. The explanatory variables we use have the hypothesized signs and 

can explain a large portion of the price variation. Scalping and speculation are shown to 

have had a significantly positive impact on price volatility. Petroleum inventories are 

found to reduce oil price variation. We find evidence of volatility spillover among crude 

oil, corn, and wheat markets after the fall of 2006, which is consistent with the large-scale 

production of ethanol. 

A methodological innovation of our approach is that we introduce a Bayesian 

estimation method capable of accommodating parameters of the underlying dynamic 

                                                 
2 Examples from the literature of modeling leverage effects within an ARCH/GARCH framework include 
Nelson 1991, Engle and Ng 1993, and Glosten, Jagannathan, and Runkle 1994. 
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process and additional explanatory variables in the volatility formulation. The 

coefficients of the endogenized variables are estimated using a weighted least square 

(WLS) method given MCMC draws of other model parameters and latent realizations. 

The WLS method performs well in our generated data experiment and provides an 

adequate fit to the real data.  

In the following section, we describe the model and the associated Bayesian 

posterior simulators for the stochastic volatility models. Section 3 describes our data, 

while Section 4 presents the empirical results. Concluding remarks are presented in 

Section 5. 

2. The Model  

2.1  The univariate SVMJ model 

Let  be the crude oil futures prices and  tP ty  denote the logarithm of prices, i.e., 

lot g ty P= . The dynamics of ty  are characterized by the SVMJ model as the following: 

1 1

1 1

,  

( )

y y y y
t t t t t t t

v
t t t t v t t 1.

y
ty y v J J

v v v Z v

μ ε ξ

κ θ β σ ε
+ +

+ +

= + + + =

= + − + +

N

+

       (1) 

where both 1
y

tε +  and 1
v
tε +  are assumed to follow  with correlation (0,1)N

1 1)corr( ,y v
t tε ε+ + =

Poisson

ρ

y
tJ

)t

, which measures the correlation between returns and instantaneous 

volatility. This is the leverage effect. The instantaneous volatility of returns, , is 

stochastic and assumed to follow the mean-reverting square-root process developed by 

Heston (1993). While  represents a jump in returns, the jump time  is assumed to 

follow a 

tv

y
tN

(λ  with the probability ( 1)y
t yP N λ= = , and the jump size y

tξ  follows 

the distribution of 2
y( ,N )yμ σ , both of which are independent of 1

y
tε +  and 1

v
tε + .  

The symbol μ  measures the mean return, θ  is the long-run mean of the 

stochastic volatility,  is the speed of mean reversion of volatility, while κ vσ  represents 

the volatility of volatility variable. 1 2( , , ) 't t nt...,tZ Z Z Z=  is a 1n ×  vector of n  

explanatory variables at time , whose effects on volatility are represented by t β . For this 
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process, we have observations 1
1( )T

t ty +
=  and 1

1( )T
t tZ +

= , latent volatility variables , a 

jump time  and size 

1
1( )T

t tv +
=

1( )y T
t tN = 1( )y T

t tξ = . Model parameters are 

{ , , , ,v y, , , ,y }yμ κ θ β σ ρ λ μΘ = σ .  

2.1.1  Bayesian inference 

Conditioning on the latent variables,  and , tv y
tJ y 1t ty+ −  and 1tv + tv−  follow a bivariate 

normal distribution: 

1

1

~t t

t t

y y
N

v v
+

+

−⎡ ⎤
⎢ ⎥−⎣ ⎦

2
1

.v

v v

ρσ
σβ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜
⎢ ⎥⎝ ⎠⎣ ⎦

1
, tv

ρσ
⎛

⎝

1
1{ }T

t ty y

| , y
t tv J

( )

y
t

t t

J
v Z
μ

+

+
− +κ θ

⎞
⎟
⎠

                                    (2) 

+
=So the joint distribution of the returns, = , the volatility, , the jumps, 

, and the parameters 

1
1{ }t

t tv v +
==

1={ }y T
t tJ J= Θ  is: 

( )

1

1

1 1 1
0

11

2
0 0

( , , ( , | ) ( )

                       xp ( ) 2 (

1                             
2

y
t

T
y y v

t t t
t v t

yT
J
y

t y y

p v p y v J p

v
ε ρε ε

ξ μ
λ

σ σ
+

−

+ + +
=

−

=

Θ

2 2
1)v

tε +2

2

1 1
2(1 )

( ) T
t y

t

ρ

−

=

Θ

2

) ( |

e
1

exp

p J

σ ρ

| )  

 

J yΘ ∝

⎧ ⎫
+∝ − −⎨ ⎬

⎩ ⎭

Θ

−

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

−

× −
−

×

∏

∏ 11(1 ) ( )
y
tJ

y pλ +−− ×

    (3) 

where 1 1t t( )t /y
t ty y Jμ − ( )1 1 1( )v−ε + += −  and / ( vβ )t t t tv v v Z vε κ θ σ+= − − − −

y

v
t t+ +

, , , ,

.  

We assume the parameters, { , , , , }v y yμ κ θ β σ ρ λ μ σΘ = , are mutually 

independent. Following the literature, we employ the following convenient conjugate and 

proper priors: ~ (0,1)N , , (0, )~ (∞ (0, )~ (0,1)TN0,1)TNκ θμ ∞ ~y, (0,100)Nμ , 

, and 2 ~ (y IGσ 5,1 / 20) ~ (2,beta 40)yλ , where 2
( , ) ( , )a bTN μ σ  denotes a normal 

distribution with mean μ  and variance 2σ  truncated to the interval , and ( , )a b IG  and 

 represent the inverse gamma and beta distribution, respectively. Similar to Jacquier, 

Polson, and Rossi (1994), 

beta

 are re-parameterized as ( , )v vφ ω , where ( , )vρ σ v vφ σ ρ=  and 

2 2 )(1v vω σ= ρ− . The priors of the new parameters are chosen as | ~v v N (0,1 / 2 )vφ ω ω  

and ~v (2,200)IGω .  
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2.1.2 The Gibbs sampler 

The complete model is given by equation (3), together with the prior distribution 

assumptions. The model is fitted using recent advances in MCMC techniques, namely, 

the Gibbs sampler. Given the conditionally conjugate priors, the posterior simulation is 

straightforward and proceeds in the following steps. 

Step 1. |  ~  ( / ,1 / )N S W Wμ ⋅  

where  
1

2 2
0

1 1 1
1

T

t tv Mρ

−

=

⎛ ⎞
= +⎜ ⎟− ⎝ ⎠

∑W , 
1

2 2
0

1 1
1

T
t

t
t t v

D mS C
v M

ρ
ρ σ

−

=

⎛ ⎞
= −⎜ ⎟− ⎝ ⎠

∑ + ,       

1
y y

t t t t tC y y N ξ+= − − , and 1 ( )t t t t tD v v v Z 1κ θ β+= − − − − + .  and m M  are the 

hyperparameters for the prior of the corresponding parameter (the same hereafter). 

Step 2. |  ~ ( / ,1 / )y N S W Wμ ⋅  

where 2
y

TW
σ

= , 

1

0
2 2

T
y

t
t

y

mS
M

ξ

σ

−

== +
∑

.  

Step 3. 2
1

2

0

1|  ~ ,
2 1 / 2 ( ) 1 /

y T
y

t y
t

TIG m
M

σ
ξ μ

−

=

⎛ ⎞
⎜ ⎟
⎜ ⎟⋅ +
⎜ ⎟− +⎜ ⎟
⎝ ⎠

∑
. 

Step 4. . 
1 1

0 0

|  ~ ,
T T

y y
y t t

t t

beta N m T N Mλ
− −

= =

⎛ ⎞⋅ + −⎜ ⎟
⎝ ⎠
∑ ∑ +

Step 5. (0, )|  ~ ( / ,1 / )TN S W Wθ ∞⋅  

where 
2 1

2 2 2
0

1 1
(1 )

T

tv tv M
κ

σ ρ

−

=

= +
− ∑W ,  

1

2 2
0

1 /
(1 )

T
t v t

tv t t

D CS
v v

κ σ ρ
ρ σ

−

=

⎛ ⎞−
= +⎜ ⎟− ⎝ ⎠

∑ m
M

, 

1
y y

t t t t tC y y N ξ+= − − , and 1 1( 1)t t t tD v v Zκ β+ += + − − . 

Step 6.  (0, )|  ~ ( / ,1 / )TN S W Wκ ∞⋅
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where  
2 21

2 2
0

( )
(1 )

T
t

tv t

vW
v M

κ θ
σ ρ

−

=

−
= +

− ∑ 2

1 , 

1

2 2
0

( )( / )
(1 )

T
t t v t

tv t

v D C mS
v M

κ θ σ ρ
ρ σ

−

=

⎛ ⎞− −
= +⎜ ⎟− ⎝ ⎠

∑ , 1
y y

t t t tC y y N tξ+= − − , and 

1 1t t t tD v v Z β+ += − − . 

Step 7. 1
2 2

0

1|  ~ ,
2 1 / 2 1 / / 2

v T

t
t

TIG m
D M S W

ω −

=

⎛ ⎞
⎜ ⎟
⎜ ⎟⋅ +
⎜ ⎟+ −⎜ ⎟
⎝ ⎠

∑
 and |  ~ ( / , / )v v vN S W Wφ ω ω  

where , ,  
1

2

0

2
T

t
t

W C
−

=

= +∑
1

0

T

t t
t

S C
−

=

= ∑ D 1( )y y
t t t t tC y y N vξ+= − − / t , and 

1 1)t tv Z β+ +− −( (t t tD v v κ θ= − − ) / tv .  

Step 8.  1 |  ~ ( / ,1 / )y
t N S W Wξ + ⋅

where 
2

2

( )
(1 )

y
t

t

NW
vρ

=
−

, ( )
1

2 2
0

/
(1 )

y T
yt

t t t
tv y

NS C D v
μ

ρ
ρ σ σ

−

=

= −
− ∑ + 1t t tC y y , μ+= − − , and 

. 1 1( )t t t t tD v v v Zκ θ β+ += − − − −

Step 9. 1
1

1 2

|  ~y
tN Bernoulli α

α α+

⎛ ⎞
⋅ ⎜ ⎟+⎝ ⎠

 

where 2
1 12

1exp 2
2(1 ) yA A B1α ρ λ

ρ
⎧ ⎫

⎡ ⎤= − −⎨ ⎬⎣ ⎦−⎩ ⎭
, 

2
2 2 22

1exp 2 (1 )
2(1 ) yA A Bα ρ λ

ρ
⎧ ⎫

⎡ ⎤= − − −⎨ ⎬⎣ ⎦−⎩ ⎭
 , 1 1( )y

t t tA y y vμ ξ+= − − − / t , 

2 1( )t tA y y vμ+= − − / t , and 1 1( ( ) ) / (t t t t v )tB v v v Z vκ θ β σ+ += − − − − . 

Step 10. The posterior distribution of 1tv +  is time-varying as follows: 

for 1 ,  1t T< + <
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2 2
1 1 1 2 2 2 2

1 2 2
1

2 ( ) 2 ( )1( | )  exp exp
2(1 ) 2(1 )

y v v y y v v
t t t t t t t

t
t

p v
v

ρς ς ς ς ρς ς ς
ρ ρ

+ + + + + + +
+

+

⎧ ⎫ ⎧⎡ ⎤ ⎡− + − +⎪ ⎪ ⎪⎣ ⎦ ⎣⋅ ∝ − × × −⎨ ⎬ ⎨− −⎪ ⎪ ⎪⎩ ⎭ ⎩

⎫⎤ ⎪⎦ ⎬
⎪⎭

, 

where  1 1 1/y
−( )y y

t t t t t t tC y y N vς ξ+ += = − − , 1 1 1( ( ) ) / (v
t t t t t vv v v Z vς κ θ β+ + += − − − − )tσ . 

For ,  1 1t + =

2
2 2 2 2

1 2
1

2 ( )1( | )  exp
2(1 )

y y v v

p v
v

ς ρς ς ς
ρ

⎧ ⎫⎡ ⎤− +⎪ ⎪⎣ ⎦⋅ ∝ × −⎨ ⎬−⎪ ⎪⎩ ⎭
. 

For , 1 1t T+ = +

2
1 1 1

1 2
1

2 ( ) 1( | )  exp
2(1 )

y v v
T T T

T
T

p v
v

ρς ς ς
ρ

+ + +
+

+

⎧ ⎫⎡ ⎤− +⎪ ⎪⎣ ⎦⋅ ∝ − ×⎨ ⎬−⎪ ⎪⎩ ⎭
.  

It is difficult to sample from this posterior distribution of  1tv +  because it is time-

varying and in complicated forms. We employ the random walk Metropolis-Hasting 

algorithms (Gelman et al. 2007) to update the latent volatility variables.  

Step 11. Estimation method for β  

A minor yet important methodological contribution of this study is the way we estimate 

the effect of economic variables tZ  on the instantaneous latent volatility. After obtaining 

simulated draws of the latent variables and other model parameters, we estimate β  using 

the WLS method: 

1ˆ ( ' ) 'W W W Gβ −=           (4) 

where  1
21 )

t

v t

ZW
vσ ρ

+=
−

, 
2(1 )

t v t

v t

D C
v

G ρσ
σ ρ

−
=

−
t, 1

y y
t t t tC y y Nμ ξ+= − − − , and 

.  1 ( )t t t tD v v vκ θ+= − − −

2.2  The bivariate stochastic volatility model 

To investigate possible volatility spillover between crude oil and agricultural commodity 

markets, we model three pairs of log return of commodity prices in the bivariate 

stochastic volatility (SV) framework: crude oil/corn, corn/wheat, and crude oil/wheat. We 
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refer to the first commodity in the pair as commodity 1, and to the second commodity in 

the pair as commodity 2. That is to say that crude oil or corn is commodity 1 in each pair, 

while corn or wheat is commodity 2. We denote the observed log-returns of futures prices 

at time  by  for , i.e., t 1 2( , )t t tY Y Y= ' 1,...,t T= , , 1log log log ,  1,2it i i t i tY P P P i−= Δ = − = . 

Let 1 2( , ) 'tt tε ε ε ( ,= , 1 2 ) 'μ μ μ= , and V V1 2 ) 'tV( ,t t= . The bivariate SV model with 

possible volatility spillover from one market to the other is specified as  

1

,   ~ (0, ),

( ) ,   ~ (0,

iid

t t t t
iid

t t t t

Y N

V V N

ε

η

ε ε

μ μ η η+

= Ω Σ

= +Φ − + Σ ).
 (5) 

where , 1

2

exp( ) / 2 0
0 exp( ) / 2

t
t

t

v
v

⎛ ⎞
Ω = ⎜

⎝ ⎠
⎟

1
1
ε

ε
ε

ρ
ρ
⎛ ⎞

Σ = ⎜
⎝ ⎠

⎟ . While ηΣ  describes the 

dependence in returns dependence by the constant correlation coefficient ερ , the 

volatility spillover effect is captured by 11

21 22

0φ
φ φ
⎛

Φ = ⎜
⎝ ⎠

⎞
⎟ . We constrain 12φ  to equal zero to 

exclude the possibility of unrealistic volatility transmission from the market of 

commodity 1 to the commodity 2 market. As 21φ  is different from zero, the cross-

dependence of volatilities is realized via volatility transmission from the commodity 1 to 

the commodity 2 market. The matrix ηΣ  defines the variation of individual volatility 

process as .  1

2

2

2

0

0
η

η

σ

σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

The model in equation (5) is completed by the specification of a prior distribution 

for all unknown parameters . We assume the model 

parameters are mutually independent. The prior distributions are specified as  

2 2
1 2 11 12 21 1 2' { , , , , , , , }ε ημ μ ρ φ φ φ σ σΘ = η

;(i) 1 ~ (0,25)Nμ  (ii) 2 ~ (0,25)N ;μ  (iii)   * *
11 11 11~ (20,1.5),  where ( 1) / 2;betaφ φ = +φ

φ(iv)  (v) * *
22 22 22~ (20,1.5),  where ( 1) / 2;betaφ φ = + 21 ~ (0,10)Nφ ;  

(vi) ; (vii) . 2
1 ~ (2.5,0.025)IGησ

2
2 ~ (2.5,0.025)IGησ
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After observing the data, the joint posterior distribution of unknown parameters 

 and the vector of latent volatility 'Θ 0 1( ,..., )TV V V −=  is 

      .                   (6) 
1 1

0 0

( ', | )  ( | ', ) ( ', )  ( | ) ( | ') ( ')
T T

t t t
t t

p V Y p Y V p V p Y V p V p
− −

= =

Θ ∝ Θ Θ ∝ Θ∏ ∏ Θ

The software package WinBUGS (Bayesian inference using Gibbs Sampling) is 

employed for the computation of the bivariate SV model (see Meyer and Yu 2004 and Yu 

and Meyer 2008 for implementation details). It uses a specific MCMC technique to 

construct a Markov chain by sampling from all univariate full conditional distribution in 

a cyclic way.   

3. Data 

Our empirical analysis makes use of weekly average settlement prices of crude oil futures 

contracts traded on the New York Mercantile Exchange (NYMEX) from November 16, 

1998, to January 26, 2009. Similarly, the corn and wheat prices are the weekly average 

settlement prices of futures contracts traded on the Chicago Board of Trade (CBOT) over 

the same period. The futures prices are taken from the corresponding nearest futures 

contracts, which are the contracts closest to their expiration. Figure 1 presents the 

logarithm of crude oil prices and the log returns over the sample period. 

To investigate the forces influencing oil price volatility, the SVMJ model in 

equation (1) relates price volatility to a set of explanatory economic variables tZ . Each of 

the included variables, its hypothesized relationship with oil price variability, and the 

related data sources are discussed in detail as follows. 

3.1 Scalping  

Scalping refers to activities that open and close contract positions within a very short 

period of time so as to realize small profits. It typically reflects market liquidity. Focusing 

on taking profits based on small price changes, scalpers may allow prices to adjust to 

information more quickly and assumedly increase price variability. A standard measure 
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of scalping activity in futures markets is the ratio of volume to open interest. We 

construct the proxy for scalping activities in crude oil futures market using weekly 

average trading volume and open interest of nearest futures contracts in the NYMEX 

market.  

3.2 Crude oil inventory 

The volatility of a commodity price tends to be inversely related to the level of stocks. A 

significant negative relationship between crude oil inventory and price volatility has been 

documented in Geman and Ohana (2009). Total U.S. crude oil and petroleum product 

stocks (excluding the Strategic Petroleum Reserve) were downloaded from the Energy 

Information Administration Web site. 

3.3 Speculation index 

The speculation index is intended to measure the intensity of speculation relative to short 

hedging. For traders in the futures market who hold positions in futures at or above 

specific reporting levels, the U.S. Commodity Futures Trading Commission (CFTC) 

classifies their futures positions as either “commercial” or “noncommercial.” By 

definition, commercial positions in a commodity are held for hedging purposes, while 

noncommercial positions mainly represent speculative activity in pursuit of financial 

profits. So the speculation index is constructed as the ratio of noncommercial positions to 

total positions in futures contracts using the following: 

 
1   if 

1   if 

SS HS HL
HS HL

SL HS HL
HS HL

⎧ + >⎪⎪ +
⎨
⎪ + <
⎪ +⎩

;

.

)

)

 

where  represents speculative short (long) positions in the crude oil futures 

market, while  represents short (long) hedged positions. These weekly position 

numbers are obtained from Historical Commitments of Traders Reports (CFTC 1998-

2009). All independent variables 

(SS SL

(HS HL

tZ  are centralized by subtracting the means.  

To facilitate the analysis of volatility spillover between crude oil and corn markets, 

we apply the algorithm, which is proposed in Bai (1997) and implemented in Zeileis et al. 
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(2002), to test for possible structural change of corn and wheat prices over the sample 

period. The test results presented in figures 2 and 3 indicate that while the pattern of corn 

futures prices changed during the week of October 23, 2006, the wheat futures prices also 

have a structure change in the same period. The change points are represented by the 

vertical lines in the figures. The timing of the structure change is consistent with the 

finding in the literature (e.g., Irwin and Good 2009). For comparison, we split the sample 

into two subsamples and estimate equation (5) repeatedly to estimate for possible 

volatility spillover among crude oil, corn, and wheat markets.  

4. Empirical Results 

First, we coded the Gibbs sampler of the univariate SVMJ model introduced in Section 2 

in Matlab and ran it for 50,000 iterations on generated data. The generated data 

experiment was done to test the reliability of the estimation algorithm. Inspection of the 

draw sequences satisfied us that the sampler had converged by iteration 20,000. The 

results indicate that our algorithm can recover the parameters of the data-generating 

process sufficiently. Then we run the estimation 50 times with 30,000 iterations each 

time on the collected data described in Section 3. For each run, we discard the first 

20,000 runs as a “burn-in” and use the last 10,000 iterations in MCMC simulations to 

estimate the model parameters. Specifically, we take the mean of the posterior 

distribution as a parameter estimate and the standard deviation of the posterior as the 

standard error.  

The estimated volatility over the sample period is plotted in figure 4. From an 

examination of figure 3, it is clear that there exists volatility clustering, i.e., when 

volatility is high, it is likely to remain high, and when it is low, it is likely to remain low. 

Also, it can be seen that volatility peaked around March 2003, the time of the Iraq 

invasion. The other period with high price variation is December 2008, that is coincident 

with the recent oil price surge and subsequent financial crisis. 

The posterior estimates of the SVMJ models reported in table 1 indicate the 

following: 

1. Mean-reversion in the behavior of volatility: the speed of mean reversion ( ) is 0.49 

with the long-run mean return 0.0056*52=0.29.  

κ
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2. A negative leverage effect, the negative correlation between instantaneous volatility 

and prices, 0.1187ρ = − .  

3. Infrequent compound Poisson jumps: the estimate of λ  suggests on average 

0.0035*52=0.182 jumps per year.  

All the explanatory variables included in the time-varying volatility have the 

hypothesized sign. The posterior standard deviations associated with these coefficients 

are quite small relative to their means. While scalping activity increases the crude oil 

price volatility, petroleum inventory negatively affects the price variability. More 

importantly, speculation in the crude oil futures market is found to increase oil price 

variation in a significant manner. 

We ran Winbugs codes for the bivariate SV model for 30,000 iterations with the 

first 20,000 iteration discarded as burn-in. The estimation results for volatility spillover 

between crude oil and corn markets are presented in table 2, while table 3 shows those for 

oil/wheat and corn/wheat markets. The spillover effects are not significantly different 

from zero in the first subsample period, November 1998–October 2006. In the second 

subsample period, October 2006–January 2009, the estimate of 21 0.13φ =  in table 2 

indicates a significant volatility spillover from crude oil market to corn market. This 

result supports the hypothesis that higher crude oil prices led to forecasts of a large corn 

ethanol impact on corn prices, which in turn affected corn price formation. The 

estimation result of  21 0.16φ =  for the model of corn and wheat markets indicates that a 

significant portion of the price variation in the wheat market during this time period was 

a result of price variation in the corn market, which in turn was due to price variation in 

the crude oil market. These results make sense when one considers that corn and wheat 

compete for acres in some states. 

The correlation coefficient between crude oil and corn markets in table 2 

increases from 0.13 to 0.33 in the second period, while that for crude and wheat markets 

increases from 0.09 to 0.28, as presented in table 3. These results indicate a much tighter 

linkage between crude oil and agriculture commodity markets in the second period.  
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5. Conclusion 

In this study, we show that various economic factors, including scalping, speculation, and 

petroleum inventories, explain crude oil price volatility. After endogenizing these 

economic factors, the model with both diffusive stochastic volatility and Merton jumps in 

returns adequately approximates the characteristics of recent oil price dynamics. The 

Bayesian MCMC method is shown to be capable of providing an accurate joint 

identification of the model parameters. Recent oil price shocks appear to have triggered 

sharp price changes in agricultural commodity markets, especially the corn and wheat 

market, potentially because of the tighter interconnection between these food/feed and 

energy markets in the past three years.  
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Table 1. SVMJ Model Parameter Posterior Mean and Standard Deviations 

Variable Mean Std. dev. 
μ  0.0056 0.0001 

yμ  0.1256 6.8448 

yσ  2.1821 0.0630 

yλ  0.0035 0.0001 

θ  0.0106 0.0001 

κ  0.4900 0.0092 

vσ  0.0576 0.0004 

ρ  -0.1187 0.0050 

1β  0.0031 0.0002 

2β  -0.0034 0.0004 

3β  0.0029 0.0003 
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Table 2. Bivariate (Oil/Corn) SV Model Estimation Results 

Variable 11/1998 - 10/2006 10/2006 – 01/2009 

Mean Std. Dev. Mean Std. Dev. 

1μ  -5.94 0.22 -5.94 0.35 

2μ  -8.42 0.22 -7.60 0.25 

1φ  0.96 0.002 0.98 0.02 

2φ  0.86 0.05 0.79 0.11 

21φ  -0.049 0.06 0.13 0.09 

ρ  0.13 0.05 0.33 0.09 

1σ  0.19 0.03 0.17 0.04 

2σ  0.50 0.08 0.14 0.06 
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Table 3. Bivariate (Oil/Wheat and Corn/Wheat) SV Model Estimation Results 

 Oil and Wheat Markets Corn and Wheat Markets 

Variable 11/1998-10/2006 10/2006-01/2009 11/1998-10/2006 10/2006-01/2009 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

1μ  -6.12 0.14 -5.99 0.45 -6.89 0.18 -6.08 0.29 

2μ  -6.39 0.23 -5.89 0.28 -6.55 0.17 -6.08 0.35 

1φ  0.90 0.06 0.98 0.02 0.88 0.04 0.91 0.09 

2φ  0.94 0.04 0.85 0.11 0.91 0.09 0.86 0.12 

21φ  -0.07 0.05 0.04 0.05 0.04 0.05 0.16 0.17 

ρ  0.09 0.05 0.28 0.09 0.63 0.03 0.60 0.06 

1σ  0.20 0.05 0.19 0.05 0.36 0.07 0.16 0.07 

2σ  0.12 0.04 0.13 0.05 0.12 0.03 0.12 0.04 
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Figure 1. The log and log-return of crude oil prices (11/1998–01/2009) 
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Figure 2. Structure change test of corn futures prices (11/1998–01/2009) 
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Figure 3. Structure change test of wheat futures prices (11/1998–01/2009) 
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Figure 4. Estimated volatility of crude oil futures prices (11/1998–01/2009) 
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