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ABSTRACT

Breeding for food-staple plant varieties that load high amounts of iron and zinc in their
seeds holds great promise for making a significant, low-cost, and sustainable contribution
to reducing iron and zinc deficiencies in humans in developing countries.  This strategy also
may well have important spinoff effects for increasing farm productivity in developing
countries in an environmentally-beneficial way.

Understanding how household incomes, food prices, and culturally-based preference
patterns interact to drive food consumption and nutrient intake patterns can provide crucial
background information for designing effective nutrition intervention programs.

Research in both of these areas is being pursued under a five-year project organized
by the International Food Policy Research Institute and implemented by the Consultative
Group on International Agricultural Research, with funding from the Office of Health and
Nutrition of the United States Agency for International Development.
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FOREWORD

This paper presents findings from a project titled "Food Policy and Agricultural
Technology to Improve Diet Quality and Nutrition," organized by the International Food
Policy Research Institute (IFPRI), implemented by the Consultative Group on International
Agricultural Research (CGIAR) and other collaborating organizations, and funded by the
Office of Health and Nutrition of the United States Agency for International Development
(USAID).  IFPRI, one of 18 international research organizations that comprise the CGIAR,
undertakes research, primarily from an economics perspective, to assist policymakers in
developing countries to increase food production and improve food consumption and
nutrition among the poor.  The main focus of research at most Centers in the CGIAR,
however, is development of improved crop varieties, which increase the food supply and so
lower food prices, and raise farm profits and rural employment.

The primary objective of the project is to explore cost-effective alternatives within the
CGIAR for increasing micronutrient intakes.  There are two broad strategies that the CGIAR
can pursue in the area of nutritional improvement.  The first broad strategy involves analysis,
by social scientists and nutritionists, through the use of household surveys, of the interaction
of agricultural technologies generated by the Centers, household resource allocation, and
health, nutrition, and other policies implemented by national governments.  Through a better
understanding of this process, programs and policies may be better designed that enhance
beneficial and mitigate harmful nutrition outcomes.

The second broad strategy is to enhance the micronutrient content of edible portions
of crops through plant breeding.  Plant breeding, which in this context may be viewed as a
form of fortification, has tremendous potential for improving micronutrient intakes.  This
strategy is discussed in the paper, which summarizes one aspect of the discussion and papers
presented at an initial organizational workshop for the project held in Annapolis, Maryland,
U.S.A., January 10-12, 1994.  In particular, the paper draws heavily on a keynote paper
entitled "Breeding for Staple-Food Crops With High Micronutrient Density: Long-Term
Sustainable Agricultural Solutions to Hidden Hunger in Developing Countries," authored by
Robin Graham and Ross Welch.  Robin Graham is a Reader in Plant Science at the Waite
Agricultural Research Institute, University of Adelaide, Glen Osmond, South Australia.
Ross Welch is Lead Scientist and Plant Physiologist, U.S. Plant, Soil, and Nutrition
Laboratory (PSNL), United States Department of Agriculture, Agricultural Research Service,
Ithaca, New York.



viii

Under the project, initial screening for germplasm variability will commence soon for
five staple food crops at three Centers: for rice at the International Rice Research Institute
(IRRI) in the Philippines; for wheat and maize at the International Center for Maize and
Wheat Improvement (CIMMYT) in Mexico; and for beans and cassava at the International
Center for Tropical Agriculture (CIAT) in Colombia.  Complementary activities will be
undertaken at Waite and the PSNL under the direction of Robin Graham and Ross Welch,
respectively.

For further information about the project and copies of the three keynote papers
presented at the organizational workshop, please contact Howarth Bouis at IFPRI, 1200
Seventeenth St., N.W., Washington, D.C. 20036; telephone (202-862-5641); fax (202-467-
4439); e-mail (h.bouis@cgnet.com).  The remaining two keynote papers were delivered by
Doris H. Calloway, Professor Emerita, Department of Nutritional Sciences, University of
California at Berkeley, "Human Nutrition: Food and Micronutrient Relationships," and Jere
R. Behrman, William R. Kenan, Jr. Professor of Economics, University of Pennsylvania,
"Household Behavior and Micronutrients: What We Know and What We Don't Know."



 Paper prepared for presentation at a workshop entitled "Food-Based Approaches*

for the Elimination of Hidden Hunger," sponsored by the Department of Human Nutrition
of the Wageningen Agricultural University and the Program Against Micronutrient
Malnutrition, held in Arnhem, Netherlands, June 12-24, 1994; revised July 1994.

AGRICULTURAL TECHNOLOGY AND FOOD POLICY TO COMBAT
IRON DEFICIENCY IN DEVELOPING COUNTRIES*

Howarth E. Bouis

1. INTRODUCTION

Food-based strategies hold the promise for treating the underlying causes of mineral

deficiencies.  However, successful implementation of food-based strategies requires a

thorough understanding of the very complex processes involved in the movement of minerals

from soils to plants, through marketing systems, and ultimately to utilization for better

human nutrition.  This paper will argue that a specific food-based approach—plant

breeding—not only holds great promise for making a significant, low-cost, and sustainable

contribution to reducing iron and other mineral deficiencies in humans, it also may well have

important spinoff effects for increasing farm productivity in developing countries in an

environmentally-beneficial way.

Understanding the underlying causes of and cost-effective solutions to iron and other

mineral deficiencies in human diets in developing countries is a frustratingly complex and

inherently interdisciplinary exercise.  Minerals are taken up from various types of soils with

varying degrees of success through the roots of innumerable types of plants.  Depending on

a number of factors that are not well understood, these minerals are translocated to varying

degrees from the plant roots to various edible portions of the plants.
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These edible parts of the plants and the minerals contained in them (1) may be directly

consumed by members of farm households or their livestock, but (2) most enter some form

of marketing system directly as plant products or "indirectly processed" as livestock products.

The marketing system may be thought of as a sorting process, which at various points in time

provides potentially high quality diets for some households, but dictates low quality diets for

others, depending on such key factors as household incomes, seasonal food prices, nutritional

knowledge, and cultural beliefs and preferences.

A second sorting process goes on inside the household as specific foods may be

allocated, for example, according to the age, gender, and/or earning power of particular

household members.  Finally, the actual nutritional value of the foods consumed (provided

by the iron and other minerals contained in them) depends on a host of crucial factors, again

that are not well understood, such as the particular combination of nutrients eaten at any

given meal (nutrient interactions in the gut and/or the presence of inhibiting and promoting

compounds), how the food is processed, stored, and cooked, iron status of the consumer, her

morbidity, parasite levels, and physiological status (pregnancy/lactation).

Supplementation, and to a lesser extent, fortification, as strategies to combat iron

deficiency, have the advantage that they are interventions at the end, or toward the end of this

sequence of linkages.  Even though the scientific roadblocks associated with implementation

of these two strategies have proven troublesome (for example, manufacturing a pill whose

ingredients will provide sufficient bioavailable iron), successful interventions require

accurate understanding "only" of human nutrition and/or a narrow spectrum of food

marketing and consumption behavior (for example, identifying an appropriate food for
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 Although, once these "scientific" problems have been solved, there are inevitably1

the organizational problems of program implementation.

 Often, the benefit-cost ratios for these recurrent costs are quite high (for example,2

see Levin et al. 1993).  Therefore, it is important to continue these interventions until such
time as the underlying causes of iron and other mineral deficiencies can be addressed.

fortification).    An important drawback to these strategies is that they treat the symptoms1

rather than the underlying causes of the problem and so involve recurrent costs.2

A strategy of breeding plants that load high amounts of necessary minerals into seeds

has the potential for substantially reducing recurrent costs.  However, this strategy will work

only if farmers are willing to adopt such varieties.  Therefore, these varieties must either out-

yield present varieties or use fewer inputs.  As discussed below, prospects are good that both

outcomes may occur.

The basic reasons for these agronomic advantages may be stated in a simple way (for

details, see Graham and Welch 1994).  Plant nutrition may suffer from mineral deficiencies

in a number of ways (for example, zinc and manganese play key roles in preventing root

disease in wheat).  These "deficiencies" are caused not by the physical absence of iron and

other minerals in the soil, but by the fact that the iron and other minerals are bound

chemically to other elements that make them "unavailable" to plants.  Such soil

"deficiencies" are widespread in developing countries.

Certain plant genotypes, however, are more efficient than others in the uptake of iron

and other minerals from soils (for example, their roots exude substances that chemically

"unbind" minerals in the soil, resulting in their becoming available to plants).  Plant breeding

may select for such "efficiency" characteristics, including the characteristic of translocating
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high amounts of iron and other minerals to the plant seeds.  When replanted in "deficient"

soils, such mineral-dense seeds have been shown to be more vigorous and disease-resistant,

which, in turn, leads to higher plant yields, even though fewer chemical inputs and less

irrigation are required.

The paper is organized as follows.  First, food consumption patterns of poor

households in developing countries are discussed at some length in the following section.

There is a broad consensus that poor quality diets are the primary cause of micronutrient

deficiencies.  However, to date little analysis has been undertaken to understand how low

incomes and high food prices constrain food consumption choices to produce this pernicious

situation.  Programs and policies to raise the incomes of the poor and to lower food prices

may be powerful tools with which to improve dietary quality.  An analysis of consumption

patterns for a sample of Philippine households will demonstrate how the optimal mix of

interventions can vary widely by nutrient.

The analysis in this section will also show that intakes of food staples in the aggregate

vary little by income group and by season.  Even though food staples are not naturally dense

in mineral content, they already provide a substantial proportion of mineral intakes of poor

households.  Thus, food staple crops serve as possible candidates for "fortification" through

plant breeding.  The third section then provides a summary of Graham and Welch (1994) on

the positive agronomic benefits to breeding for mineral-dense seeds.  A fourth section

addresses the issue of the bioavailability of the increased levels of iron and other minerals

in staple foods.  A fifth section undertakes a review of the present status of activities of the

IFPRI-CGIAR effort to improve the dietary quality of staple foods.
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 For a more detailed analysis of these data with respect to patterns of micronutrient3

intakes, see Bouis (1991).  For a more detailed description of how the data were collected
and sample characteristics, see Bouis and Haddad (1990).

2. PATTERNS OF FOOD CONSUMPTION, HOUSEHOLD INCOMES,
AND FOOD PRICES

The two primary "food-based" interventions that have been implemented to correct

micronutrient malnutrition have been nutrition education and home gardening, the former

strategy aimed at providing information as to nutrient-dense foods and the latter strategy

directed at production of nutrient-dense foods (thus, programs in these two areas may

complement one another).  Understanding how household incomes, food prices, and

culturally-based preference patterns interact to drive food consumption and nutrient intake

patterns can provide crucial background information for designing nutrition education and

home gardening programs so that they work as intended.

To demonstrate these points, food consumption patterns that vary by income level and

by season are analyzed below for a sample of Philippine farm households.   The3

generalizability of the conclusions reached will be tested through the analysis of several

additional data sets at IFPRI over the next year.

AN OVERVIEW OF FOOD EXPENDITURE PATTERNS

Table 1 shows per capita food expenditures, price paid per kilogram, and per capita

kilogram consumption by expenditure quintile by seven broad food groups.  Note that at the

margin as income and food expenditures increase, consumers buy meat, fish, fruits, and
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 The information presented in Tables 1-8 are all constructed from these 24-hour4

recall surveys.  A total of 448 households were surveyed four times at four-month
intervals.

snacks.  Expenditures for the primary food staples, corn and rice, and for vegetables, increase

with income, but the percentage increases are far smaller than for the other food groups.

Such a pattern of food expenditures is consistent with behavior specified in a food

demand system proposed by Bouis (1990) in which consumers maximize utility from three

food characteristics—energy, variety, and tastes of individual foods.  At very low levels of

income, considerations of energy and variety drive food consumption choices so that diets

consist primarily of staples and vegetables (vegetables being relatively cheap sources of

variety).  As income increases, marginal utilities from additional energy and variety in the

diet fall to the point where considerations of tastes of individual foods drive consumption

decisions.

Table 2 presents calorie intake information from four 24-hour recalls of food intakes

disaggregated by food group.   Calorie consumption from corn and rice is 4
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Table 1—Food expenditures, food prices, and kilograms consumed, by expenditure
quintile and food group

             Expenditure Quintile             
Food Group 1 2 3 4 5 All

Food expenditures (pesos per capita per week)
Rice 2.32 3.77 4.76 4.51 10.12 5.09
Corn 9.64 9.73 9.19 8.79 4.40 8.36
Other staples 1.46 1.65 1.59 2.47 3.74 2.18
Meat, fish 7.25 9.09 10.77 15.68 24.09 13.37
Vegetables 2.71 2.86 3.58 3.77 3.85 3.35
Fruits, snacks 0.87 2.59 5.34 7.58 10.62 5.40
Cooking ingredients 2.13 3.22 3.46 4.77 4.83 3.68

All 26.37 32.91 38.67 47.59 61.65 41.43

Food prices (pesos per kilogram)
Rice 5.74 5.98 5.76 5.67 5.59 5.70
Corn 4.36 4.52 4.50 4.46 4.46 4.46
Other staples 2.79 3.39 2.34 3.72 5.35 3.57
Meat, fish 19.58 18.82 20.79 20.63 23.40 21.15
Vegetables 6.36 5.54 7.13 5.97 5.90 6.15
Fruits, snacks 2.83 5.42 11.45 15.22 15.69 11.18
Cooking ingredients 17.21 21.93 19.69 21.52 20.80 20.46

All 6.04 6.72 7.42 8.59 10.15 7.94

Kilograms (per capita per week)
Rice 0.40 0.63 0.83 0.80 1.81 0.89
Corn 2.21 2.15 2.04 1.97 0.99 1.87
Other staples 0.52 0.49 0.68 0.66 0.70 0.61
Meat, fish 0.37 0.48 0.52 0.76 1.03 0.63
Vegetables 0.43 0.52 0.50 0.63 0.65 0.55
Fruits, snacks 0.31 0.48 0.47 0.50 0.67 0.48
Cooking ingredients 0.12 0.15 0.18 0.22 0.23 0.18

All 4.36 4.90 5.21 5.54 6.08 5.22

Source:  International Food Policy Research Institute-Research Institute for Mindanao
Culture survey, 1984/85.
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Table 2—Family calorie intake per adult equivalent and calories purchased per peso of
food expenditure, by expenditure quintile and food group

Quintile 5
Data Source              Expenditure Quintile             Minus
and Food Group 1 2 3 4 5 Quintile 1

Calorie intakesa

Rice 251 388 511 488 1,111 +860
Corn 1,501 1,469 1,372 1,317 659 -842
Other staples 116 114 147 159 200 +84
Meat, fish 88 118 134 178 283 +195
Vegetables 30 35 35 42 39 +9
Fruits, snacks 41 67 64 71 91 +50
Cooking ingredients 61 81 97 143 178 +117

Rice and corn 1,753 1,857 1,884 1,805 1,770 +17
All others 336 415 477 594 791 +455

All 2,089 2,272 2,361 2,398 2,561 +472

Calories purchased per peso Allb

Quintiles
Rice 570 563 582 570 604 582
Corn 872 846 858 858 847 857
Other staples 623 526 584 470 396 508
Meat, fish 87 79 84 72 69 77
Vegetables 79 89 72 75 67 76
Fruits, snacks 407 363 351 278 193 300
Cooking ingredients 145 171 180 214 268 197

All 492 440 414 344 286 395

Source: International Food Policy Research Institute-Research  Institute for Mindanao
Culture survey, 1984/85.

Calories computed from 24-hour recall survey.a

Calorie information from 24-hour recall survey and price information from foodb

expenditure survey.
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 Income (as measured by total expenditures) increases from approximately US$575

per capita per year to US$239 from lowest to highest expenditure quintile, a percentage
increase of 320 percent.

 An "income elasticity" measures the percentage change in the quantity of a food6

or nutrient consumed associated with a given percentage change in household income.

nearly constant across expenditure quintile; as income increases, marginal increases in

calorie intakes come from nonstaple sources.  Note from the bottom of Table 2 that corn is

the cheapest source of calories among the seven food groups.  Three pesos worth of corn

buys the recommended daily allowance of calories.  Table 1 indicates that the per capita food

expenditure per day for the lowest income quintile is about four pesos.  If three pesos are

spent for corn to meet recommended energy requirements, this leaves approximately one

peso a day per person for the purchase of nonstaple items.

NUTRIENT ADEQUACY RATIOS BY TOTAL EXPENDITURE QUINTILE
AND FOOD GROUP

Table 3 presents the simple sample average of household adequacy ratios for nine

nutrients by expenditure quintile.  Intakes of iron, calcium, niacin, riboflavin, and thiamin,

all appear to be quite strongly and positively correlated with income.   Income elasticities5

would appear to be somewhat lower for calories and proteins, and lowest for vitamin A and

vitamin C, the only two nutrients for which a pattern of monotonically increasing adequacy

ratios across expenditure quintiles is not in evidence.6
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Table 3—Nutrient adequacy ratios by expenditure quintile

       Expenditure Quintile         National
Nutrient 1 2 3 4 5 All Averagea

Calories 0.81 0.88 0.92 0.93 0.99 0.91 0.89
Protein 0.99 1.11 1.13 1.21 1.33 1.15 1.00

Iron 0.66 0.75 0.81 0.87 1.03 0.82 0.92
Vitamin A 1.06 1.08 1.35 1.30 1.38 1.23 --
Vitamin C 0.88 0.85 1.04 1.04 1.04 0.97 0.91

Calcium 0.55 0.65 0.76 0.79 0.90 0.73 0.80
Niacin 0.62 0.80 0.88 0.96 1.35 0.92 1.20
Riboflavin 0.44 0.47 0.52 0.58 0.64 0.53 0.56
Thiamine 0.49 0.59 0.65 0.65 0.87 0.65 0.72

Source: International Food Policy Research Institute-Research Institute for Mindanao
Culture survey, 1984/85.

Food and Nutrition Research Institute, Second Nationwide Nutrition Survey, Philippinesa

1982 (Manila: National Science and Technology Authority, 1984).
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 Not only would this be "unappetizing," given revealed preferences for various7

foods, but a much higher expenditure would be required for women to meet their iron
RDA, as can be seen in Table 7.

On average, the lowest expenditure quintile is consuming the recommended

allowances of protein and vitamin A; otherwise, diets are generally deficient in other

nutrients.  By contrast, the diets of the highest expenditure group would appear to be only

seriously deficient in riboflavin.  However, these average figures mask a good deal of

variation around these means.

MICRONUTRIENT FOOD SOURCES

In drawing conclusions as to the effects of changes in prices and incomes on demand

for iron, vitamin A, and vitamin C, it is important to establish which foods or food groups

provide specific nutrients.  In particular, it is important to see the extent to which nutrient

sources are concentrated in particular foods.  It has already been seen in Table 2 that calorie

consumption comes primarily from rice and corn, although additional calories at the margin

are provided by nonstaple foods as income increases.

Table 4 shows that sources of iron are well-distributed among the seven food groups.

Meats and fish account for two-thirds of the marginal increase in iron intakes as income

increases.  The "other staples" and "cooking ingredients" food categories provide the

cheapest sources of iron in the diet; two pesos per capita per day would be required to meet

recommended average daily allowances of iron if consumption were concentrated in these

two food groups.   It will be argued below7
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Table 4—Food sources for iron and iron prices by expenditure quintile and food group

Quintile 5
       Expenditure Quintile         Minus

1 2 3 4 5 All Quintile 1

Milligrams of iron per adult equivalent per day

Rice 0.53 0.85 1.02 0.93 2.14 1.09 +1.61
Corn 2.31 2.23 2.08 1.98 0.97 1.91 -1.34
Other staples 0.68 0.75 0.91 1.07 1.24 0.93 +0.56
Meat, fish 1.17 1.47 1.69 2.25 3.66 2.04 +2.49
Vegetables 1.16 1.20 1.40 1.39 1.35 1.30 +0.19
Fruits, snacks 0.17 0.30 0.27 0.37 0.37 0.30 +0.20
Cooking ingredients 0.63 0.67 0.74 0.70 0.54 0.65 -0.09

All 6.64 7.47 8.11 8.69 10.27 8.24 +3.63

Percent of RDA 66.0 75.0 81.0 87.0 103.0 82.0a

Milligrams of iron per peso

Rice 1.87 1.86 1.72 1.75 1.70 1.76
Corn 1.89 1.83 1.85 1.86 1.79 1.85
Other staples 5.14 4.94 5.33 4.57 3.77 4.67
Meat, fish 2.15 1.63 1.86 1.47 1.52 1.70
Vegetables 4.09 3.95 3.77 3.61 3.38 3.75
Fruits, snacks 2.36 2.28 2.10 1.60 1.21 1.80
Cooking ingredients 5.36 4.15 3.83 2.68 1.80 3.51

All 2.15 2.01 2.00 1.79 1.62 1.91

Source: International Food Policy Research Institute-Research Institute for  Mindanao
Culture Survey, 1984/85.

 RDA is 10 milligrams.a
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 One specific food, horse radish tree leaves (malunggay leaves in the local8

language), provides just under 40 percent of total vitamin A intakes.

that this dispersion insulates iron intakes from fluctuations due to changes in prices of

specific foods or food groups.

By contrast, as shown in Table 5, sources of vitamin A are relatively concentrated.

Vegetables provide 70 percent of vitamin A and meats and fish provide most of the

remaining 30 percent, although meat and fish provide more than 50 percent of the marginal

increase in vitamin A as incomes increase.   Vitamin A is relatively inexpensive in the sense8

that 57 centavos worth of vegetables typically eaten by the lowest expenditure quintile will

provide the recommended daily allowance.

Table 6 provides information on sources and costs of vitamin C.  The pattern is very

similar to vitamin A in the sense that the recommended daily allowance of vitamin C is

obtained relatively inexpensively if sweet potatoes and/or cassava are eaten in significant

amounts.  Vegetables provide one-half of the vitamin C consumed and almost all of the

marginal increase in intakes as income increases.  Vitamin C differs from vitamin A in that

the "other staples" food category is an important source of vitamin C,  while meat  and fish

are not  important sources  of vitamin C.   Six specific foods (again dominated by horse

radish tree leaves) provide about one-half of vitamin C intakes.



14

Table 5—Food sources for vitamin A and vitamin A prices by expenditure quintile and
food group

Quintile 5
        Expenditure Quintile          Minus

1 2 3 4 5 All Quintile 1

International Units of vitamin A per adult equivalent per day

Rice 0 1 1 0 0 1 +  0
Corn 10 6 0 0 2 4 -  8
Other staples 143 55 246 135 258 167 +115
Meat, fish 1,010 752 949 1,569 1,733 1,202 +723
Vegetables 3,481 3,620 4,607 3,966 4,047 3,945 +566
Fruits, snacks 121 392 229 144 124 202 +  3
Cooking ingredients 26 28 42 29 36 32 + 10

All 4,792 4,855 6,073 5,844 6,200 5,553 +1,408

Percent of RDA 106 108 135 130 138 123a

International Units of vitamin A per peso

Rice 3 3 1 1 0 1
Corn 4 3 0 0 1 2
Other staples 871 273 866 465 406 561
Meat, fish 445 443 418 481 363 428
Vegetables 7,898 7,007 7,459 6,119 5,310 6,728
Fruits, snacks 892 863 737 569 322 624
Cooking ingredients 107 111 118 85 68 97

All 921 815 895 783 635 810

Source: International Food Policy Research Institute-Research Institute for Mindanao
Culture Survey, 1984/85.

 RDA is 4,500 international units.a
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Table 6—Food sources for vitamin C and vitamin C prices by expenditure quintile and
food group

Quintile 5
        Expenditure Quintile          Minus

1 2 3 4 5 All Quintile 1

Milligrams of vitamin C per adult equivalent per day

Rice 0.0 0.0 0.0 0.0 0.0 0.0 + 0.0
Corn 1.4 1.1 0.8 1.1 0.3 0.9 - 1.1
Other staples 22.6 16.5 27.1 20.6 22.8 21.9 + 0.2
Meat, fish 2.4 1.2 1.6 5.1 3.5 2.8 + 1.1
Vegetables 30.3 35.6 39.7 39.5 42.3 37.5 +12.0
Fruits, snacks 9.3 9.7 8.6 11.4 9.1 9.6 - 0.2
Cooking ingredients 0.0 0.0 0.0 0.1 0.0 0.0 + 0.0

All 66.0 64.1 77.9 77.9 78.1 72.8 +12.1

Percent of RDA 88 85 104 104 104 97a

Milligrams of vitamin C per peso

Rice 0.0 0.0 0.0 0.0 0.0 0.0
Corn 0.7 0.7 0.7 0.8 0.4 0.7
Other staples 129.2 88.2 98.2 62.6 49.2 81.1
Meat, fish 1.6 0.9 0.9 1.4 0.9 1.1
Vegetables 85.7 86.3 80.0 73.7 68.9 78.7
Fruits, snacks 84.1 50.8 61.5 39.7 22.6 46.8
Cooking ingredients 0.0 0.0 0.0 0.1 0.0 0.0

All 15.9 13.2 13.5 11.5 9.5 12.7

Source:  International Food Policy Research Institute-Research
         Institute for Mindanao Culture survey, 1984/85.

 RDA is 75 milligrams.a
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INTRAHOUSEHOLD DISTRIBUTION OF NUTRIENTS

As shown in Table 7, for all types of family members, there is a very consistent,

though small, increase in calorie adequacy ratios as household incomes increase.  For iron

as well, there is a consistent increase in iron intakes for all types of household members

across expenditure quintiles.  The percentage increases are much larger for iron than for

calories.

A distinguishing feature for iron, however, is that adequacy ratios for females are much

lower than for males.  Males and females eat approximately the same levels of iron; however,

iron requirements for women are considerably higher (about 80 percent higher, according to

published Philippine standards) than for men.

Relative to calories and iron, adequacy ratios for vitamin A and vitamin C are

reasonably equal across types of household members, although parents consume more

vitamin A relative to requirements than do their children.  Preschooler vitamin A intakes

appear to be strongly correlated with income, while there is no clear association (positive or

negative) between intakes of children from the ages of 6 to 19 years of age and income.  For

vitamin C, with the possible exception of mothers, there is no clear association between

intakes and increases in income for a specific type of household member.

VARIATION IN NUTRIENT CONSUMPTION ACROSS SURVEY ROUNDS

The rather startling pattern of nutrient consumption by survey round shown in Table

8 relates less to the seasonality of intakes as to a trend decline across the two 
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Table 7—Calorie, iron, vitamin A, and vitamin C adequacy levels by type of household
member

Expenditure Ages 6-12 Ages 13-19
Quintile Preschoolers Boys Girls Boys Girls Mothers Fathers

Calorie adequacy ratios
1 0.70 0.72 0.71 0.76 0.79 0.96 0.97
2 0.77 0.74 0.73 0.76 0.80 1.03 1.05
3 0.75 0.79 0.79 0.76 0.88 1.10 1.07
4 0.78 0.76 0.77 0.79 0.89 1.09 1.08
5 0.84 0.89 0.88 0.84 0.94 1.16 1.13

All 0.77 0.78 0.77 0.78 0.86 1.07 1.06

Iron adequacy ratios
1 0.65 0.75 0.70 0.68 0.43 0.53 1.10
2 0.78 0.84 0.65 0.69 0.49 0.57 1.24
3 0.77 0.86 0.80 0.80 0.56 0.62 1.34
4 0.86 0.88 0.84 0.80 0.54 0.66 1.47
5 1.07 1.24 1.03 0.89 0.60 0.76 1.67

All 0.81 0.91 0.78 0.77 0.53 0.63 1.37

Vitamin A adequacy ratios
1 0.97 1.14 1.02 1.18 0.94 1.17 1.29
2 1.06 0.89 0.92 0.88 0.72 1.13 1.48
3 1.14 1.27 1.16 0.99 0.84 1.49 1.68
4 1.33 1.23 0.92 1.09 0.95 1.37 1.63
5 1.49 1.28 1.19 0.87 0.98 1.52 1.53

All 1.18 1.16 1.03 1.00 0.89 1.33 1.53

Vitamin C adequacy ratios
1 0.87 0.89 0.95 0.72 0.96 0.85 1.09
2 0.87 0.80 0.73 0.81 0.81 0.84 1.08
3 0.98 0.82 0.98 0.72 0.61 1.06 1.29
4 1.08 0.89 0.70 0.93 1.14 1.06 1.27
5 0.91 1.12 0.78 0.81 0.76 1.11 1.19

All 0.94 0.90 0.84 0.80 0.86 0.98 1.19

Source: International Food Policy Research Institute-Research Institute for Mindanao
Culture survey, 1984/85.
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Table 8—Household calorie, iron, vitamin A, and vitamin C adequacy levels and percent
of households below 80 percent of requirements by survey round

Survey
Round Calories Iron Vitamin A Vitamin C

Adequacy ratios

1 0.99 1.00 1.95 1.46
2 0.89 0.79 1.24 0.94
3 0.85 0.78 1.03 0.96
4 0.88 0.73 0.71 0.53

All 0.91 0.82 1.23 0.97

Percent of households below 80 percent of requirements

1 25 42 39 44
2 40 61 59 60
3 47 65 72 72
4 36 69 72 80

All 37 59 60 64

Source: International Food Policy Research Institute-Research Institute for Mindanao
Culture survey, 1984/85.
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crop years (surveys were conducted four months apart).  Calorie intakes behave as might be

expected a priori.  Percent of households below 80 percent of requirements is lowest during

the first and fourth rounds, coinciding with the corn harvest and lowest corn prices.  Average

calorie adequacy ratios show no apparent seasonal association; calorie intakes fell somewhat

during the second through fourth round surveys, which, in part, could be associated with a

10-15 percent decline in incomes and food expenditures.

Iron adequacy ratios show a similar pattern as for calories with two important

differences.  First, there is a greater decline in iron intakes in the second through fourth round

surveys as compared with the decline in calories; one would expect nonstaple food

expenditures (which are rich sources of iron) to decline more rapidly than staple food

expenditures as income falls.  Second, the trend increase in percent of households whose iron

intakes are below 80 percent of requirements continues into the fourth round for iron, instead

of reversing itself as is the case for calories.

Finally, Table 8 shows that vitamin A and vitamin C intakes in the fourth round are

only one-third the intakes of these micronutrients in the first round!  It is the green, leafy

vegetables that provide the bulk of the vitamin A from vegetable sources.  Prices of green,

leafy vegetables, which are more expensive than other types of vegetables, increased

substantially between the first and fourth survey rounds.  Up to three-fourths of consumption

of green leafy vegetables comes from own-production.  It is unclear the extent to which the

decline in consumption is due to declining production (for example, due to poor weather

leading to higher prices), or due to the sale of a higher percentage of home production of

green, leafy vegetables, given more favorable market prices.



20

CONCLUSIONS AS TO APPROPRIATE NUTRITION INTERVENTIONS

The essential difference between demand for calories and demand for micronutrients

is that consumers consciously take care to minimize fluctuations in calorie consumption, but

are unaware of fluctuations in their consumption of micronutrients.  Thus, despite the fact

that calorie consumption is concentrated in two foods (corn and rice), consumers react to

increases in prices of these staples, either by switching to other calorie-dense staples or

reducing expenditures for nonstaples and nonfoods to protect (to a large extent if not

completely) acceptable levels of calorie consumption.  Staple grains are an important source

of iron, but not of vitamin A and vitamin C.  Therefore, even at low-income levels, a

minimal amount of iron is consumed (albeit not the most bioavailable form of iron).

Despite the fact that consumers are likely unaware of their iron consumption, iron

consumption is also relatively immune to food price fluctuations because iron sources are so

diverse, and because staples provide significant amounts of iron.  Nonstaple foods are

important sources of iron.  Because nonstaple food income elasticities are high, iron income

elasticities are high.  Calorie income elasticities are also positive because of the high

propensities for nonstaple foods.  However, calorie-income elasticities are much lower than

iron-income elasticities, due to the fact that nonstaples are low-density calorie sources

(nonstaples being high-density iron sources).

Demand behavior for vitamin A and vitamin C is fundamentally different from iron

because (1) intakes for these two nutrients are concentrated in relatively few foods, primarily

vegetables, and (2) vegetables have low-income elasticities, being relatively inexpensive

sources of variety in the diet (although, in the case of vitamin A, high-income elasticity meats
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are an important secondary source of vitamin A), and (3) staple grains have virtually none

of these vitamins.  Because of this concentration and because consumers are unaware of their

vitamin intakes, intakes may fluctuate widely with prices, even though it is possible to satisfy

daily requirements relatively inexpensively.

Programs to educate consumers about the importance of meeting recommended daily

allowances of vitamin A and vitamin C and about commonly eaten sources of these nutrients,

then, would seem to have the potential for improving intakes.  For this Philippine population,

because so much vitamin A and vitamin C comes from own-production, extension programs

to promote growing green, leafy vegetables not only would provide households with a ready

supply of these nutrients (unless they sell additional production), but increased production

could bring the local price down.

By contrast, it is much more difficult to see how these types of education and extension

programs could be effective in increasing iron intakes, if only because sources of iron are so

diverse in the diet and, on average, these sources of iron are expensive.  While the estimated

iron-income elasticity is relatively high (suggesting that policies/programs that increase

income may solve the problem without resort to health/nutrition interventions), iron

adequacy ratios for low-income groups are quite low.  A 320 percent increase in income (an

absolute increase in income of only $180 per capita) from lowest expenditure to highest

expenditure quintile moves the average adequacy ratio from 0.66 to 1.03.  However, these

household averages mask large differences in requirements between males and females; even

at high income levels (for this sample of households), iron intakes of females are inadequate

(see Table 7).  If future increases in national aggregate income will not be disproportionately
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directed to the poor, then the problem of low iron intakes will take many decades to solve

through income alone.

Fortification and/or supplementation interventions may be the best policies for solving

the low iron intake problem in the short-run, particularly for women and young children, but

plant breeding offers a much lower-cost, more easily sustainable long-run solution as

discussed below.

3. PLANT NUTRITION AND MINERAL-DENSE SEEDS

PREVIOUS CGIAR EXPERIENCE WITH BREEDING FOR DIETARY
QUALITY

There is previous experience within the CGIAR in breeding for nutritional

characteristics.  In the early 1970s, a major breeding program was begun at the International

Maize and Wheat Improvement Center (CIMMYT) to produce a high-quality protein (lysine)

maize.  At the time, conventional wisdom among nutritionists was that quality protein was

a key limiting nutrient to better nutrition in developing countries.

The historical record of this breeding program is reviewed by Tripp (1990), who

considers the overall effort to have been a major misallocation of resources.  The primary

problem was that the original genetic material that contained high-lysine was low-yielding.

It took some time to develop varieties that were both high-lysine and high-yielding.

However, the high-lysine, high-yielding varieties never equalled the performance of the best-

yielding, highest-profit maize varieties, so that farmer adoption was a major constraint.

Moreover, nutritionists have long since concluded that quality protein is not a key limiting
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 It probably did not help matters that the subject was broached by an economist (the9

author) with little knowledge of plant physiology and plant breeding and no formal
training in human nutrition.

nutrient to better nutrition, so that the impetus to further breeding for nutritional objectives

has been lost.

Therefore, when the idea of breeding for micronutrient content was first broached with

individual scientists within the CGIAR in early 1993, the proposal was generally met with

skepticism, although with a few exceptions.  Notwithstanding the fact that there was virtually

no institutional knowledge of genotype variation in micronutrient content of crop varieties

developed by the CGIAR Centers, the presumption among those CGIAR scientists contacted

was either that there again would be a trade-off between plant yield and nutritional value, or,

at best, that there would be no correlation with yield and that adding an additional breeding

objective (nutritional quality) would slow down the overriding breeding objective of higher

and more stable crop yields.9

However, this attitude among a core of CGIAR plant breeders had changed

dramatically by late 1993 upon learning about research undertaken by Robin Graham and

others to improve plant nutrition by breeding for crops with improved efficiency in the

uptake of minerals from "deficient" soils and which loaded high amounts of these minerals

into plant seeds.  This work was aimed primarily at improving the productivity of crop

production in developed countries (Australia, in the case of Robin Graham's research; the

soils in Australia are among the most mineral "deficient" in the world).
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With regard to the potential of this strategy for improving human nutrition, some long-

standing collaboration had been ongoing between Robin Graham and Ross Welch and others

at the Plant, Soil, and Nutrition Laboratory (run by USDA-ARS and located on the Cornell

University campus), again primarily motivated by a concern for improved mineral intakes

in developed countries (the United States in the case of the PSNL).  From the point of view

of the Waite-PSNL collaboration, the IFPRI-CGIAR project became the occasion for the

possible application of this work to the much more serious mineral deficiency problems

found in developing countries.  From the point of view of the CGIAR Centers, the Waite-

PSNL collaboration represents a wealth of scientific information previously untapped for

possibly improving the nutrition of CGIAR-released crop varieties, with possible spinoff

benefits for human nutrition.

AGRONOMIC ADVANTAGES OF MINERAL-DENSE SEEDS

What follows is a summary of the main points made in a keynote paper presented by

Robin Graham and Ross Welch at an organizational workshop held last January 10-12 in

Annapolis, Maryland, U.S.A., outlining the reasons to expect positive impacts on plant yields

of crop varieties that are efficient in the uptake of mineral micronutrients from soils and that

load high amounts of these minerals into seeds.  Readers are referred to that paper for

descriptions of studies and experiments undertaken to support the conclusions cited.

1. A low amount of a trace mineral in a "deficient" soil is not the problem, but rather
the key to better plant growth is making more of the trace mineral that is already in
the soil "available" to the plant.
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A soil is said to be deficient in a nutrient when addition of fertilizer containing that

nutrient produces better growth.  However, the amount of a mineral micronutrient added to

a soil needed to produce better growth is usually small compared to the total amount of that

mineral found in the soil by complete analysis.  It may be concluded that only a small part

of the nutrient in the soil is "available" to plants.  An alternative view, therefore, is that there

is a genetic deficiency in the plant, rather than a deficiency in the soil.

Tolerance to micronutrient-deficient soils, termed micronutrient efficiency, is a genetic

trait of a genotype or phenotype that causes it to be better adapted to, or yields more in, a

micronutrient deficient soil than can an average cultivar of the species (Graham 1984).

Growing zinc-efficient plants on zinc-deficient soils, for example, represents a strategy of

"tailoring the plant to fit the soil" in contrast with the alternative strategy of "tailoring the soil

to fit the plant" (terminology according to Foy [1983]).

Nearly all micronutrient efficiency traits so far studied arise from a superior ability to

extract the limiting micronutrient from the soil, rather than a capacity to survive on less of

that micronutrient.  Rye is an example of a highly nutrient-efficient crop for which few of

the notoriously deficient soils of South Australia is low enough in nutrients to limit its

production.

It is well understood that depletion of soil nitrogen takes only a few years if there is

no replacement.  Thus, it is pointless to breed for greater tolerance to nitrogen-deficient soils.

By contrast for mineral micronutrients, depletion may take hundreds or thousands of years,

or may likely never occur at all, owing to various inadvertent additions and other processes

(for example, minerals carried in windblown dust [Graham 1991]).  It is logical, then, to
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concentrate breeding efforts toward producing micronutrient-efficient varieties for minerals

that are required in low amounts, for which soil availability is low, but for which there are

large reserves in the soil.

2. Micronutrient-deficient soils are widespread throughout developing countries.

Iron is the fifth most abundant element in the earth's crust, but the fraction of soil iron

that may be in soluble forms suitable for absorption by plants may be only 10  of total soil-13

iron.  Thus, depletion of soil iron is never an issue, but a matter of the amount of chemical

attack in the soil to dissolve iron that each plant genotype can mount.

Small grain cereals (for example, wheat and rye) have a highly-efficient mechanism

for solubilizing and extracting iron from the soil.  In contrast, upland rice, maize, sorghum,

and grain legumes are, on the whole, very sensitive to iron deficiency that is widespread

(Katyal and Vlek 1985).

Paddy rice is a special case, where the soil is flooded for much of the growing season.

The low oxygen status in the soil leads to more of the soil iron becoming soluble and uptake

of iron into the paddy rice crop is quite high.  When such soils become acidic as a result of

use of nitrogen fertilizer, the solubility increases dramatically and toxic levels are found in

the rice plant.  Nevertheless, little of the foliar iron ends up in the grain of modern cultivars.

In this case, iron is already in the plants in large amounts and the breeding objective is

phloem translocation efficiency.

Zinc deficiency is probably the most widespread micronutrient deficiency in cereals.

Sillanpää (1990) found that 49 percent of a global sample of 190 soils in 25 countries were



27

low in zinc.  Unlike other micronutrients, it is a common feature of both cold and warm

climates, drained and flooded soils, acid and alkaline soils, and both heavy and light soils.

3. Efficiency in the uptake of mineral micronutrients from the soil is associated with
disease resistance in plants and so decreased use of fungicides.

Good nutritional balance is as important to disease resistance in plants as it is in

humans.  Micronutrient deficiency in plants greatly increases their susceptibility to diseases,

especially fungal root diseases of the major food crops.  The picture emerging from

physiological studies of roots spanning four decades is that the elements phosphorus, zinc,

boron, calcium, and manganese are all required in the external environment of the root for

membrane function and cell integrity.  In particular, phosphorus and zinc deficiencies in the

external environment promote leaking of cell contents such as sugars, amides, and amino

acids, which are chematoxic stimuli to pathogenic organisms.  In the case of zinc, a high

internal zinc content did not prevent leakiness due to a deficiency of zinc external to the

membrane.

It appears that micronutrient deficiency predisposes the plant to infection, rather than

the infection through its effect on root pruning causing the deficiency (Graham and Rovira

1984; Sparrow and Graham 1988; Thongbai et al. 1993). Breeding for micronutrient

efficiency can confer resistance to root diseases that had previously been unattainable.  This

means a lower dependence on fungicides.

4. Micronutrient-efficient varieties grow deeper roots in mineral deficient soils and so
are better able to tap subsoil water and minerals.

When topsoil dries, roots in the dry soil zone (which are the easiest to fertilize) are

largely deactivated and the plant must rely on deeper roots for further nutrition.  Roots of
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plant genotypes that are efficient in mobilizing surrounding, external minerals, not only are

more disease resistant, but are better able to penetrate deficient subsoils and so make use of

the moisture and minerals contained in subsoils.  This reduces the need for fertilizers and

irrigation.

5. Micronutrient-dense seeds are associated with greater seedling vigor that, in turn,
is associated with higher plant yield.

An important function of the seed is to supply the young seedling with minerals until

it has developed a root system large enough to take over this role, but in nutrient poor soils,

seed reserves may be insufficient to last while the extra roots are developed to compensate

for the low mineral supply.  The result is a transient and critical period of deficiency when

the seedling is particularly vulnerable.  Pathogens and weeds may gain an advantage not

otherwise given, so that the plants never regain lost potential.

6. There is substantial genetic variability in the efficiency of uptake of mineral
micronutrients from deficient soils and in nutrient loading into seeds; micronutrient
efficiency is controlled by major, single gene inheritance.

The concentration and content of mineral micronutrients in seeds are the result of

transport via living tissues (the phloem) from vegetative parts of the plant.  Thus, seed

density depends on both the micronutrient density of vegetative tissues and on the efficiency

of the transport process itself.  Both can be under genetic control, but there is considerable

homeostasis built into the transport process so that even where the soil and vegetative plant

are high in micronutrients, the levels in the seed are always relatively low.  An average view

of genetic variation in micronutrient density is probably of the order of a factor of three,

while their vegetative parts may vary perhaps 100 times more than that.
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By far the most extensive survey of efficiency factors was carried out at the

International Rice Research Institute by Ponnamperuma (1982).  Over a period of 10 years,

some 80,000 lines from the world collection were screened for types tolerant of a number of

soil stresses, including micronutrient deficiencies.  Tolerant types gave a yield advantage of

about two tons per hectare under any of seven different soil limitations.  Ponnamperuma

noted that zinc deficiency was widespread in wet rice and iron deficiency in dryland rice.

Linkage of zinc efficiency to other efficiency traits (for example, manganese) is poor,

suggesting independent mechanisms and genetic control not linked to gross root system

geometry.  Zinc-efficient genotypes absorb more zinc from deficient soils, produce more dry

matter and more grain yield, but do not necessarily have the highest zinc concentrations in

tissue or grain.  Although high grain zinc concentration also appears to be under genetic

control, it is not tightly linked to agronomic zinc efficiency traits and may have to be selected

for independently.

4. PLANT BREEDING AND BIOAVAILABILITY

Table 4 shows that the two basic staples, rice and corn, provide approximately 40

percent of the total iron intake for the Philippine population studied.  Thus, if the presently

low iron content of food staples could be increased by a factor of say 3.5 (say from 12 to 42

parts per million), this would double iron intakes.  However, would this double the amount

of bioavailable iron?

FAO/WHO recommends that people who obtain less than 10 percent of their calories

from animal foods (this applies to the surveyed Philippine population as shown in Table 2)
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 The suggested RDA for healthy, menstruating females is 28 milligrams per day,10

and for healthy, adult males, is 9 milligrams per day (as quoted from Graham and Welch
1994).

need more iron because perhaps only 5 percent of total intake is absorbed.   While doubling10

iron intakes would not allow the surveyed Philippine females to attain this RDA, particularly

at very low income levels, there is no reason to think that the degree of absorption of

additional iron would be lower than the average rate of absorption, unless the level of phytin

in the grain increases as iron is increased.  Thus, bioavailable iron could also double, which

should be of substantial benefit.

Phytin, being the primary storage form of phosphorus in most mature seeds and grains,

is an important compound required for early seed germination and seedling growth (Welch

1986).  Phytin plays an important role in determining mineral reserves of seeds and, thus,

contributes to the viability and vigor of the seedling produced (Welch 1986, 1993).  Selecting

for seed and grain crops with substantially lower phytin content could have an unacceptable

effect on production, especially in regions of the world having soils of low phosphorus status

and/or poor micronutrient fertility (Graham and Welch 1994).

Such attempts to significantly lower the antinutrient content of seeds and grains

requires a major shift in seed or grain composition.  Because most of the antinutrients known

to occur in seeds and grains are major organic constituents of these organs, they may play

additional, but yet unrecognized, beneficial roles in plant growth and human health.

Therefore, a breeding strategy of attempting to increase iron bioavailability by reducing

antinutrient content is not recommended (Graham and Welch 1994).
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Some reports show that certain amino acids (such as methionine, cysteine, and lysine)

enhance iron and/or zinc bioavailability.  These amino acids occur in many staple foods, but

their concentrations are lower than those found in meat products.  It may not be necessary

to substantially increase the concentration of these amino acids in plant foods to have a

positive effect on iron and zinc bioavailability in humans.  Iron and zinc occur only in

micromolar amounts in plant foods, so only micromolar increases in the amounts of these

amino acids may be required to counteract the negative effects of antinutrients on iron and

zinc bioavailability.  These amino acids are essential nutrients for plants as well as for

humans, so relatively small increases of their concentrations in plant tissues should not have

adverse consequences on plant growth.  The optimal breeding strategy from the point of view

of bioavailability may be to increase levels of promotor compounds (Graham and Welch

1994).

5.  POST WORKSHOP REVIEW OF ACTIVITIES ON THE
AGRICULTURAL TECHNOLOGY SIDE OF THE PROJECT

Screening for promising germplasm will commence soon.  Three Centers are involved

and five crops:  The International Rice Research Institute (IRRI) in the Philippines (rice), the

International Center for Improvement of Maize and Wheat (CIMMYT) in Mexico (corn and

wheat), and the International Center for Tropical Agriculture (CIAT) in Colombia (beans and

cassava).  The organizational workshop held last January was the first opportunity for plant

breeders, plant nutritionists, human nutritionists, and economists (from inside and outside

the CGIAR) to get together to discuss the viability of this approach.  A great deal of
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 Several USDA-ARS scientists took part in the workshop, with heavy participation11

from the PSNL.

enthusiasm was generated at the meeting for this strategy (in part, for reasons already

discussed above).

For example, a CIMMYT wheat breeder based in Turkey, where soils are particularly

zinc-deficient, went to Australia in 1993 to learn about ongoing plant research there, where

growing conditions and constraints to improved productivity are similar to those in Turkey.

He gave a presentation at the workshop in which he estimated that, if the Australian zinc-

dense seed varieties were adapted to growing conditions in Turkey, Turkish wheat farmers

would save $100 million annually in reduced seeding rates alone (seeding rates could be

reduced from an average of 250 to 150 kilograms per hectare on 5 million hectares; a ton of

wheat sells for about US$200 on the world market).  This does not count the benefit to yield,

or the potential benefit of improved zinc status in humans.

Draft proposals were discussed to undertake a coordinated research project over the

next five years for the five crops mentioned above, with specific activities identified to be

undertaken in five locations—the three CGIAR Centers, IRRI, CIMMYT, and CIAT, the

Waite Agricultural Research Institute in Adelaide, Australia, and the Plant, Soil, and

Nutrition Laboratory (PSNL) in Ithaca, New York.   It was generally agreed that this plant11

breeding strategy could be successful only through such a global network involving close

cooperation between Waite, PSNL, the CGIAR Centers, and developing country national

agricultural research institutions.  The CGIAR does not have the requisite know-how or

equipment (certainly in the area of bioavailability and, it turns out, in the area of screening



33

 This included bioavailability studies to be conducted at PSNL, although these12

studies did not involve the use of human subjects, which is quite expensive.

material for trace minerals) for some of the more "upstream" research that needs to be

undertaken.  The CGIAR has an obvious comparative advantage in terms of (1) the amount

of germplasm available for screening, (2) undertaking the task of incorporating promising

micronutrient-dense characteristics into existing elite lines through breeding, and (3)

dissemination of the nutritionally-improved elite material to a large number of countries.

While a formal review of finalized proposals has yet to be undertaken by six members of the

project advisory committee (representing several scientific disciplines) who attended the

workshop, they were generally enthusiastic about the plant improvement approach.

Thus, very significant progress has been made in terms of (1) putting much of the

requisite network of people and institutions in touch with one another, (2) obtaining

consensus among an interdisciplinary group of distinguished scientists that this research

strategy looks promising in terms of its scientific feasibility and potential for improving

human nutrition in developing countries, and (3) obtaining agreement on specific activities

that scientists and institutions must undertake in coordination to make this happen.

What is lacking now is medium- to long-run funding to proceed with the full proposed

research agenda over the next five years.  Draft proposals amounting to US$5 million were

discussed at the workshop.   The Office of Health and Nutrition of USAID has committed12

US$1 million for this work to be spent by the CGIAR Centers in collaboration with

developing-country agricultural research institutions.
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 Just as for human nutrition, the importance of micronutrients for plant nutrition13

and the specific mechanisms involved are much better understood today than 10-15 years
ago.  Indeed, this existing base of scientific knowledge can be thought of as a prerequisite
(a 10-15 year first step now completed, although there is much still to be learned), which
will inform and accelerate the proposed plant breeding work.  Similarly, putting the
network of institutions and scientists in place and coming to agreement on a work plan
(which will commence this August) has been an 18-month process, a second step that is
also now completed.

In this sense, then, implementation of the plant breeding strategy has not only
already begun, it is mid-way in the overall process.  The 6-10 years left for what is widely
regarded as a "long-run" strategy to come to fruition may be compared with the time
involved to implement "short-run" strategies, such as large-scale nutrition education,
fortification, or supplementation programs.  Even for these "immediate impact" types of
projects, planning, obtaining approval for funding, training, and other logistical
arrangements may take a number of years (although usually fewer than six) before an
initial nutrition impact is made on a target population.

TIMING AND COSTS RELATIVE TO ALTERNATIVE SUPPLEMENTATION
AND FORTIFICATION STRATEGIES

Because a plant breeding strategy is sometimes dismissed as being too expensive and

taking too long, it is perhaps worthwhile to provide some perspective on costs and on the lag

between initial plant breeding activities and adoption of any new technologies that are

developed.  With respect to the timing issue, plant breeders associated with the project

estimate that, if the genetic inheritance is relatively simple as argued by Graham and Welch

(1994), improved varieties could be developed within four years.  This time could double if

genetic inheritance turns out to be unexpectedly complex and linked to undesirable traits.

In either case, two to three years need to be added for national government agricultural

research programs to test the new varieties before their release.  Thus, an optimistic estimate

is that six years would be required before nutritionally-improved varieties would begin to be

produced by farmers in developing countries.13
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 All monetary figures quoted are in U.S. dollars.14

 Again, this in no way implies that resources spent on supplementation and15

fortification are poor investments.  The benefits may be quite high.

Turning to costs, as pointed out in the introduction, a drawback of supplementation

and fortification programs is that, by not addressing the underlying causes of low

micronutrient intakes, they inherently involve recurrent annual expenditures.  Levin et al.

(1993) estimate the lower-bound cost of iron supplementation at $2.65 per person per year,

when all administrative costs are taken into account.   A lower-bound estimate for iron14

fortification is 10 cents per person per year.  Consider a populous country, such as India,

where as many as 28 million pregnant women may be anemic in any given year out of a total

population of 880 million.  These figures imply that treating one-half of the anemic pregnant

women in any one year through a well-targeted supplementation program would cost $37

million per year.  A fortification program reaching one-half of the population would cost $44

million per year.  In view of the fact that these cost figures are recurrent annual costs for one

country, it is not difficult to understand that the one time costs proposed for plant breeding

are low indeed, in view of the potential impact that such a strategy can have on micronutrient

intakes.15

To be sure, there is no guarantee that the $5 million price tag suggested above for plant

breeding over a five-year period will be successful within that period of time, nor does it

count costs of adapting any elite lines that are developed to local conditions in specific

countries.  One can imagine that there will be unforeseen problems and costs associated with

plant breeding not mentioned here.  Therapeutic doses of iron from supplementation and
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fortification programs may be higher than the additional iron likely to be added to food

staples through plant breeding.

Nevertheless, whatever refinements are necessary to these comparative cost estimates,

there is no arguing with the fact that the base, fixed costs of plant breeding are sufficiently

low, that cost considerations are overwhelmingly on the side of a plant breeding strategy as

compared with supplementation and fortification.

6. BEYOND THE END-OF-DECADE GOALS

Because of the comparatively long lead times involved in bringing the results of plant

breeding research to bear on the mineral deficiency problems in humans, and even if the

necessary resources are found to implement this strategy in a proper way, unfortunately these

efforts will not contribute to meeting the mid-decade and end-of-decade goals for reducing

micronutrient malnutrition set out in the World Declaration on Nutrition and endorsed by

158 countries at the International Congress on Nutrition.  However, the timing of the IFPRI-

CGIAR project is such that the mineral-dense seed technologies would come "on-line" just

after the major push to meet the end-of-decade goals through higher-cost strategies has run

its course.

While plant breeding will not eliminate the need for supplementation, fortification, and

nutrition education programs in the future, this strategy does hold promise for significantly

reducing expenditures required for these higher-cost, short-run programs by significantly

reducing the number of people requiring treatment.  It would seem prudent to invest now in
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 In which case, the benefits to farmers in terms of reduced input costs and higher16

yields will justify any research costs, quite apart from any direct benefits for human
nutrition.

a plant breeding strategy to sustain the gains made by the end of the decade and to maintain

momentum for further reductions in iron and other mineral deficiencies.

In closing, the key issues are not those of cost, or whether plant breeders eventually

will be successful in developing micronutrient dense seeds if the modest resources required

are found to develop them.  Rather the two key issues are: (1) will the agronomic advantages

of the mineral-dense seeds be sufficiently strong that they will be widely adopted by farmers

in developing countries?;  and (2) will the additional nutrients contained in the seeds be of16

a sufficient magnitude and sufficiently bioavailable so as to have an appreciable impact on

micronutrient status?  As outlined in this paper, there is much scientific evidence to be

optimistic, even excited, on the first count.  There are good reasons to be optimistic on the

second count as well.
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