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Abstract 

Our paper looks at how price volatility in the Brazilian ethanol industry changes 
over time and across markets. Demand and supply forces in the energy and food 
markets are likely to ensure that crude oil, ethanol and feedstock prices co-move 
in the long-run. Hence, when assessing price volatility changes and spillovers in 
the ethanol industry, one should also pay attention to the notion of cointegration. 
Until recently, the methods proposed to estimate cointegration relationships, have 
not explicitly considered time varying volatility in the data. Seo (2007) suggests an 
estimator of the cointegration vector that explicitly models conditional 
heteroskedasticity. More specifically, he proposes a maximum likelihood estimator 
that estimates the error correction model and the multivariate GARCH process 
jointly. We follow this proposal. 

 

 World ethanol production is dominated by the US and Brazil. In 2006 worldwide 
production totaled 13,489 million gallons, with the US and Brazil producing, respectively, a 36 
and a 33% of this quantity. Although both countries produce a conspicuous part of worldwide 
ethanol, their industries are not equally developed: while the Brazilian market is starting to 

Keywords: volatility, ethanol, cointegration 

 

Introduction 

Ethanol is currently the major liquid biofuel produced around the world. Recent increases in 
worldwide ethanol demand and production can be partially attributed to international crude oil 
prices reaching historically high levels. This has created an incentive to use alternative energy 
sources and reduce the dependence on fossil fuels. Apart from high energy prices and their 
consequences, policy makers and society at large are also concerned about the relevant 
volatility in crude oil prices that may cause price spikes that are likely to harm the economy.  

 Highly volatile crude oil prices reduce crude oil competitiveness and represent a further 
incentive to adopt alternative energy sources (Vedenov et al. 2006). Since currently ethanol is 
mainly produced from food crops, the upward shift in ethanol demand has also increased 
social and political concerns on the effects of this shift on both food price levels and volatility. 

 While a few studies have econometrically assessed average price relationships within 
the Brazilian and North American ethanol industries (Balcombe and Rapsomanikis 2008, Serra 
et al. 2008), no previous published paper addresses the transmission of volatility within this 
industry. Volatility in oil prices, for example, may spill over ethanol markets which in turn may 
induce volatility into the feedstock market.  

 Our paper looks at how volatility in the Brazilian ethanol industry changes over time 
and across markets. Understanding volatility transmission over time and across markets is 
important for both market participants, who will adjust their investment and hedging decisions 
accordingly, as well as for policy makers who are more concerned about the macroeconomic 
and social welfare consequences of price links. 
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transform into a mature industry, the US industry is still in a more infant stage. We draw from 
the Brazilian experience to shed light on the issues raised above.  

 Modeling volatility in time series has received much attention in the economics and 
econometrics literature since the introduction of the Autoregressive Conditional 
Heteroskedasticity (ARCH) models in Engle’s (1982) seminal paper and their generalized 
version (GARCH) by Bollerslev (1986). The literature has also attempted at understanding 
volatility spillovers across different markets by making use of multivariate GARCH models 
(MGARCH). While explicitly modeling conditional heteroskedasticity, ARCH-type models do 
not explicitly estimate the long-run relationship between the prices being studied. 

 Demand and supply forces in the energy and food markets are likely to ensure that 
crude oil, ethanol and feedstock prices co-move in the long-run. Hence, when assessing price 
volatility changes and spillovers in the ethanol industry, one should also pay attention to the 
notion of cointegration introduced by Engle and Granger (1987) to capture the long-run or 
equilibrium relationships among different time series.  

 Until recently, the methods proposed to estimate cointegration relationships, have not 
explicitly considered time varying volatility in the data. Seo (2007) suggests an estimator of the 
cointegration vector that explicitly models conditional heteroskedasticity. More specifically, he 
proposes a maximum likelihood estimator that estimates the error correction model and the 
multivariate GARCH process jointly. We follow this proposal.  

 To the best of our knowledge, Seo’s (2007) methodological approach has not yet been 
empirically implemented. Hence, our paper contributes to previous literature by studying 
volatility interactions and cointegration relationships in biofuels markets by making use of a 
new methodological approach. Although average price relationships have been assessed in this 
industry, no attempt has been made to explicitly model conditional heteroskedasticity in the 
data. 

 

The Brazilian ethanol industry  

The ethanol industry in Brazil was initially promoted through government intervention as a 
response to the petroleum shortage caused by the 1973 oil crisis (Goldemberg 2006). 
Aggressive support measures aiming at stimulating both the demand and supply of ethanol and 
increase the share of domestically produced fuel in the transportation sector were provided in 
the framework of the Proálcool program. The relevance of sugarcane production in Brazil and 
the low sugar prices registered during the 1970s oil crisis, recommended developing a 
sugarcane-based ethanol industry. In 2005 more than half of Brazil’s sugarcane output was 
being devoted to ethanol production (Perkins and Barros 2006). 

 Apart from governmental support, the sugar-based Brazilian ethanol industry has also 
benefited from large amounts of land available for sugarcane cultivation, investments in new 
production facilities, and various technological developments. The latter have improved the 
processing of sugarcane into ethanol and have increased the industry flexibility to adapt to 
changes in relative market prices: a large number of Brazilian ethanol plants operate on a large 
scale and are dual, i.e., they can easily switch from ethanol to sugar production depending on 
the predominant economic conditions (Tokgoz and Elobeid 2006).  
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 Technological progress has also improved flexibility on the demand side, mainly 
through the introduction in 2003 of flex-fuel vehicles (FFVs) that can run on any ethanol-
gasoline blend without affecting automotive performance. Since their introduction, the sales of 
FFVs have increased dramatically. By the end of 2005, they represented more than 70% of 
passenger car sales (Perkins and Barros 2006). Success of FFVs is partially due to the legacy of 
the Proálcool program that provided Brazil with a sound infrastructure for ethanol handling 
and distribution. Nowadays virtually all of Brazil’s gas service stations have ethanol pumps.  

 The Proálcool program was eliminated in the 1990s, but a combination of market 
regulation and tax incentives was still maintained. Transition to full liberalization took place 
between 1996 and 2000. Nowadays no direct control over ethanol production and trade exists, 
though several demand boosting incentives are still applied. An official blending ratio requires 
transport fuel to have 20-25% ethanol content, taxes on FFVs are lower than those on 
gasoline-powered vehicles and ethanol benefits from a favorable tax treatment at the pump 
relative to gasoline. 

 Technical change in the ethanol and automobile industry has increased efficiency and 
lowered ethanol costs below the regional supply costs of petrol (OECD 2006, Hamelinck and 
Faaij 2006). Compared to other ethanol producing countries, Brazil is estimated to have the 
lowest production costs (OECD 2006, Martines-Filho et al. 2006). These developments have 
led ethanol to hold a larger market share than gasoline in the Brazilian transportation sector.  

 Recent increases in worldwide crude oil demand have stretched global crude oil 
production capacity near to its limits, resulting in the recent increases in crude oil prices. These 
have further improved ethanol competitiveness within the fuels market and have increased the 
amount of sugarcane diverted to ethanol production. In spite of more sugarcane being devoted 
to fuel production, demand increases have tightened the market causing important ethanol 
price increases.  

 Tightened markets are more likely to suffer from increased price volatilities because of 
their reduced flexibility in supply response. It is thus interesting to assess volatility changes and 
spillovers in the Brazilian ethanol market. Since we expect feedstock, crude oil and ethanol 
prices to co-move in the long-run, our analysis will also asses cointegration relationships. 

 

Methodological approach 

Most price time series possess common characteristics that must be considered for a sound 
econometric analysis of price relationships (Myers 1994). Two of these characteristics are 
especially relevant to our empirical application. First, commodity prices are usually highly 
volatile and the volatility varies over time. Second, price series may share a tendency to move 
together over time.  

 Since the introduction of ARCH models by Engle (1982) and their generalized version 
(GARCH) by Bollerslev (1986), univariate volatility modeling has been an important research 
topic. More recently, multivariate GARCH (MGARCH) models have gained relevance as 
interest in understanding volatility spillovers across different markets has increased (Bollerslev 
et al. 1988, Engle and Kroner 1995). 

 Co-movements in commodity price series can result from the existence of an 
equilibrium relationship between individual price series and have been formalized in the 
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econometrics literature through the concept of cointegration (Engle and Granger 1987). 
Several statistical methods for the analysis of cointegrated price systems have been devised in 
the literature. Until recently however, estimates of the cointegrating vector have not explicitly 
modeled conditional heteroskedasticity. Filling this gap in the literature, Seo (2007) develops a 
maximum likelihood estimator of the cointegrating vector that estimates the error correction 
model and the multivariate GARCH process jointly.  

 Consider a p -dimensional vector of cointegrated prices tP . Assume that the 
cointegration rank is known and is equal to r . Further, assume the data are generated by the 
following error correction model (ECM): 

 
'

1
1

l
r

t t i t i t
i

I
P P P uα

β − −
=

 
∆ = + Γ ∆ + 

 
∑

 (1) 

 

where α  is the p r×  adjustment matrix representing the speed of adjustment of each price to 
deviations from the long-run equilibrium relationship and β  is a ( )p r r− ×  cointegrating 

matrix. The cointegrating matrix is normalized with repect to the first r  elements of tP . As a 

result, the cointegration relationship can be expressed as: ( ) 1 2't t tw P Pβ β= + , where 1tP  is r -

dimensional and 2tP  is ( )p r− -dimensional. 

 Vector tu  is assumed to be a vector-valued Martingale difference sequence with 

( ) 0t t -1E u =F  and ( )'
t t t -1 tE u u = ΩF , where t -1F  is the σ -field generated by t iP−  for 

0,1,2,...i =  Under the hypothesis that (0, )t t -1 tu N ΩF  the log-likelihood function  of 
model (1) is given by: 

 

( ) ( )1

1

n

n t
t

n lθ θ−

=

= ∑L  (2) 

 

where 

( ) ( ) ( ) ( ) ( )' 10.5log 0.5t t t t tl u uθ θ θ θ θ−= − Ω − Ω . The ML estimator n̂θ  can be defined as: 

 

( )ˆ arg maxn nθ θ= L  (3) 

 

In order to allow for both time-varying volatility and volatility spillovers across different 
commodities, we define matrix Ωt  following the Baba-Engle-Kraft-Kroner (BEKK) GARCH 
specification (Engle and Kroner 1995): 
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1 1 1' ' ' 't t t tCC A u u A B B− − −Ω = + + Ω  (4) 

 

where C , A , and B  are p p×  parameter matrices and C  is lower triangular. Restrictions for 
the identification of the parameters in the BEKK model proposed by Engle and Kroner (1995) 
are imposed. The BEKK model is covariance stationary if the eigenvalues of A A B B⊗ + ⊗ , 
where ⊗ denotes the Kronecker product of two matrices, are less than one in modulus. 

 As is well known, parameters in matrices C , A , and B  cannot be interpreted on an 
individual basis. Instead, the nonlinear parameter functions in the conditional variance and 
covariance equations need to be derived and interpreted. In a 2-dimensional model for 

example, matrices C , A , and B  can be expressed as 11

21 22

0c
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c c
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 

, 11 12

21 22
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=  
 
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21 22
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B
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=  
 

, and the conditional variance-covariance matrix can be written as follows: 
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+ 2 2
1 21 2 1
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11 12 1 1 11 22 12 21 1 1 2 1 21 22 2 1 12 1 1 12 22 1 1 2 1 22 2 1

0
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t t t t t t t t
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a a u a a a a u u a a u a u a a u u a u

− −
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 + + + + + 

(5) 

 

 Parameters multiplying 1ijth − , , 1, 2i j = , indicate direct and indirect volatility 

transmission between prices, and parameters representing 1itu −  and 1 1 2 1t tu u− −   show how price 
volatility is affected by market shocks. Results derived from model estimation are presented in 
the following section.  

 

Results 

Our empirical analysis uses weekly international crude oil prices and Brazilian ethanol and 
sugar prices. Prices are expressed in USD and observed from July 14, 2000 to February 29, 
2008. Information on Brazilian ethanol and sugar prices was obtained from the Center for 
Advanced Studies on Applied Economics (2008) database, while international crude oil prices 
were derived from the Energy Information Administration (2008) dataset. Figure 1 plots the 
price series divided by their own mean.  

 Logarithmic transformations of the price series are used in the empirical 
implementation.  A preliminary analysis of the prices is conducted in order to assess their time 
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series properties. Standard augmented Dickey and Fuller (1979), KPSS (Kwiatkowski et al. 
1992) and Perron (1997) tests confirm the presence of a unit root in all price series.   

Our analysis is of a pair-wise nature.  Since, as will be shown below, our results 
suggest a casual chain between the three prices running from oil to ethanol and finally to the 
sugar market, two pairs of prices: oil-ethanol (model 1) and ethanol-sugar (model 2), are 
considered. 

 Engle and Granger (1987) and Johansen (1988) cointegration tests provide evidence 
that the pairs of prices are cointegrated, with a cointegration rank 1r = . Results derived from 
the joint estimation of the error correction model and the multivariate GARCH process are 
presented in table 1 for the crude oil-ethanol pair of prices (model 1) and in table 2 for the 
ethanol-sugar pair (model 2). Tables 3 and 4 present the conditional variance and covariance 
equations for models 1 and 2 respectively. The covariance stationary condition is checked for 
both models and all eigenvalues are found to be less than one in modulus (see tables 1 and 2). 
Further, the standardized residuals of the models are examined for autocorrelation by using the 
multivariate Portmanteau test (Bauwens et al. 2005). Results indicate that both models are 
correctly specified (see tables 1 and 2). 

 Model 1 estimation results (see table 1) include the parameters of the cointegration 
relationship ( β ). These parameters indicate that ethanol and crude oil prices are positively 
related in the long-run. This is compatible with ethanol tax incentives and recent crude oil 
price increases that have made ethanol a competitive substitute for gasoline. The α  
parameters suggest that while ethanol prices adjust to disequilibriums from the long-run parity, 
crude oil prices can be considered weakly exogenous.  

 Because individual coefficients in the GARCH parameterization cannot be directly 
interpreted, we draw inferences from the nonlinear parameter functions in the conditional 
variance equations (see table 3). Results indicate that volatility in the ethanol price ( 22th ) is 
directly affected by its own volatility ( 22 1th − ) and by the volatility in the crude oil price ( 11 1th − ). 
Higher levels of conditional volatility in the past are associated to higher current conditional 
volatility. Since the coefficient of the term 12 1th −  is statistically significant, there is an indirect 
volatility transmission from crude oil to ethanol through the covariance term. Results also 
indicate that ethanol price volatility is directly and indirectly affected by shocks originating in 
either the oil or the ethanol markets (estimated coefficients on 2

1 1tu − , 2
2 1tu −  and 1 1 2 1t tu u− −  are all 

statistically significant).  

 The behavior of crude oil prices differs from the one displayed by ethanol prices. 
While volatility in crude oil price ( 11th ) depends on its own lagged volatility ( 11 1th − ), it is only 
indirectly related to the ethanol price volatility through the covariance term ( 12th ). Further, 
crude oil price volatility is independent on crude oil and ethanol market shocks. The fact that 
most parameters in the crude oil conditional variance equation are not statistically significant is 
not surprising, given that oil prices are weakly exogenous and thus are not determined by 
ethanol prices. 

 To better understand volatility spillovers between crude oil and ethanol markets, we 
simulate the ethanol volatility response to a shock to the crude oil market (figure 2). The value 
of the oil price series shock is set to 1 positive standard deviation of the series and the 
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response of the conditional variances is simulated. The difference between the predicted 
ethanol variance with and without the shock is represented in figure 2.  An increase in crude oil 
prices increases ethanol price volatility. The volatility response increases during the first four 
weeks following the shock to decrease thereafter and disappear after about 14 weeks.  

 Model 2 assesses price links between ethanol and sugar prices. Cointegration 
parameters ( β ) suggest that ethanol and sugar prices are positively related (see table 2). Hence, 
increases in ethanol prices are followed by increases in the feedstock price. α  parameters 
suggest that ethanol prices are weakly exogenous to sugar prices, while sugar prices are found 
to respond to deviations from the long-run parity. These results together with findings from 
model 1 suggest a casual chain running from crude oil to ethanol and finally to the sugar 
market. 

 In table 4 we present the conditional variance-covariance equations for ethanol and 
sugar. Results indicate that sugar volatility increases with its own lagged variance. Sugar 
volatility is also influenced by the ethanol price volatility but only indirectly through the 
covariance term. This involves that while ethanol markets are able to induce increases in 
average sugar prices, they are less capable to transmit volatility to sugar markets. The volatility 
of ethanol prices is influenced by innovations occurring in ethanol markets and by the 
covariance term. Hence, and as is the case for sugar prices, only indirect volatility spillover 
effects are allowed. 

 In figure 3 we represent the result of simulating the sugar volatility response to a shock 
to the ethanol market. The value of the series-specific shock is set to 1 positive standard 
deviation of the series and the response of the conditional variances is simulated. As can be 
seen, an increase in ethanol prices increases the volatility of sugar prices though, as noted, only 
indirectly through the covariance term The volatility shock increases during the first 6 weeks 
and decreases thereafter disappearing after about 35 weeks.  

 In figures 4 and 5 estimated volatility (Engle 2001) for ethanol and sugar prices, the 
endogenous variables in models 1 and 2 respectively, are presented. As it can be seen, the 
models predict especially high volatility in these markets during the period 2002-2004. During 
this period, world crude oil markets experienced several changes that led to increased price 
levels and volatility. A key factor was probably the increase in crude oil demand, which was 
especially relevant in China. On the supply side, growth in production fell short of meeting 
increasing world needs. Both strong demand and insufficient supply tightened petroleum 
markets increasing price levels and volatility.  

 As it can be seen by comparing figures 1 and 4, the high volatility period coincides with 
a change in the crude oil prices trend from negative to positive. The change in crude oil prices 
trend brought about changes in the initially declining trends for ethanol and sugar prices and 
increased market volatility.  

 Apart from the economic changes, this period was also influenced by technological 
advances, most notably the introduction of FFVs by the automotive industry and the positive 
consumer response to the new product. Market adjustments to the new developments may 
also explain the high variances registered during the period. Consistently with ethanol price 
volatility, sugar prices are found to be highly volatile during the 2002-2004 period. The result is 
not surprising since ethanol prices are found to influence sugar price volatility through the 
covariance term 12 1th − . 
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Concluding remarks 

We assess volatility spillovers in Brazilian ethanol markets by using Seo’s (2007) maximum 
likelihood estimator that estimates the error correction model and the multivariate GARCH 
process jointly. To the best of our knowledge, Seo’s (2007) methodological approach has not 
yet been empirically implemented. We use weekly international crude oil prices and Brazilian 
ethanol and sugar prices observed from July 2000 to February 2008. A pairwise analysis is 
carried out. 

 Results derived from the empirical analysis suggest a casual chain running from crude 
oil to ethanol and finally to the sugar market. An increase in crude oil price levels increases 
ethanol prices, which in turn causes sugar price levels to grow.  

 With regards to volatility spillovers, results suggest a direct and an indirect volatility 
transmission from crude oil to ethanol through the lagged crude oil variance and covariance 
terms. Conversely, sugar price volatility is only influenced by the ethanol price volatility 
indirectly through the covariance term. Predicted volatility for ethanol and sugar shows 
especially high volatility levels during 2002-2004 coinciding with a period of tightening crude 
oil markets and a change in the crude oil price trend.  

 Hence, our results suggest that crude oil prices not only influence ethanol price levels, 
but also their volatility. Increased volatility in crude oil markets results in increased volatility in 
ethanol markets. Ethanol prices, on the other hand, influence sugar price levels and an increase 
in their volatility levels also impacts, though less strongly, on sugar markets. 
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Figure 1. Price series 

 
 

Figure 2. Ethanol volatility response to 1 positive standard deviation shock in the crude oil 
market 
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Figure 3. Sugar volatility response to 1 positive standard deviation shock in the ethanol market
   

 
 

Figure 4. Predicted ethanol volatility 
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Figure 5. Predicted sugar volatility 
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Table 1. Crude oil ( 1P )– ethanol ( 2P ) model results 

Error correction model estimation 

Cointegration relationship:    
** **

2 1-2.860 +0.490
       (0.063) (0.017)
P P=

 

Short-run dynamics parameters: 

( )1 1 1 1 21 111 112 211 212

2 2 1 2 22 121 122 221 222

t t t
t

t t t

P P P
w

P P P
α γ γ γ γ

β
α γ γ γ γ

− −

− −

∆ ∆ ∆          
= + +          ∆ ∆ ∆          

 

Dependant variable 
1P  2P  

iα  -0.004 

(0.008) 

-0.025** 

(0.005) 

11iγ  0.248** 

(0.044) 

0.046 

(0.052) 

12iγ  -0.029 

(0.031) 

0.523** 

(0.051) 

21iγ  -0.023 

(0.042) 

-0.088* 

(0.047) 

22iγ  -0.025 

(0.0370) 

-0.035 

(0.044) 
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Table 1. Crude oil ( 1P )– ethanol ( 2P ) model results (continued) 

GARCH model parameters: 11

21 22

0c
C

c c
 

=  
 

, 11 12

21 22

a a
A

a a
 

=  
 

, and 11 12

21 22

b b
B

b b
 

=  
 

 

1ic  0.0217** 

(1.576E-6) 

 

2ic  0.030** 

(0.001) 

9.807E-3** 

(2.296E-6) 

1ia  0.000 

(6.682E-5) 

-0.138** 

(0.026) 

2ia  -0.060 

(0.060) 

0.610** 

(0.030) 

1ib  0.277** 

(1.045E-3) 

-0.365** 

(0.017) 

2ib  -0.105** 

(0.031) 

0.675** 

(0.015) 

Eigenvalues of 
A A B B⊗ + ⊗  

0.935         0.163         0.140         0.039 

Portmanteau test (third order 
autocorrelation) 

1.365 
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Table 2. Sugar ( 1P )– ethanol ( 2P ) model results 

Error correction model estimation 

Cointegration relationship:    
** **

2 1-5.553 +1.856
       (1.318) (0.565)
P P=

 

Short-run dynamics parameters: 

( )1 1 1 1 21 111 112 211 212

2 2 1 2 22 121 122 221 222

t t t
t

t t t

P P P
w

P P P
α γ γ γ γ

β
α γ γ γ γ

− −

− −

∆ ∆ ∆          
= + +          ∆ ∆ ∆          

 

Dependant variable 
1P  2P  

iα  0.030* 

(0.016) 

0.002 

(0.014) 

11iγ  0.597** 

(0.084) 

0.0512 

(0.072) 

12iγ  0.026 

(0.090) 

0.581** 

 (0.095) 

21iγ  -0.162* 

(0.096) 

0.080 

(0.094) 

22iγ  0.012 

(0.079) 

-0.100 

(0.086) 
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Table 2. Sugar ( 1P )– ethanol ( 2P ) model results (continued) 

GARCH model parameters: 11

21 22

0c
C

c c
 

=  
 

, 11 12

21 22

a a
A

a a
 

=  
 

, and 11 12

21 22

b b
B

b b
 

=  
 

 

1ic  6.623E-3** 

(8.440E-6) 

 

2ic  -0.005 

(0.004) 

0.010** 

(7.659E-6) 

1ia  0.350** 

(0.012) 

-0.229* 

(0.137) 

2ia  -0.030 

(0.109) 

0.767** 

(0.124) 

1ib  0.657** 

(0.029) 

0.333* 

(0.178) 

2ib  0.281** 

(0.141) 

0.524** 

(0.167) 

Eigenvalues of 
A A B B⊗ + ⊗  

0.987         0.715         0.512         0.415 

Portmanteau test (third order 
autocorrelation) 

1.881 
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Table 3. Conditional variance and covariance equations. Crude oil ( 1P )– ethanol ( 2P ) model  

11th =  4.701E-4** + 0.077** 11 1th − - 0.202** 12 1th − + 0.010 22 1th − + 0.000 2
1 1tu − - 0.000 1 1 2 1t tu u− − + 3.572E-3 2

2 1tu −  

22th =  9.753E-4** + 0.134** 11 1th − - 0.494** 12 1th − + 0.456** 22 1th − + 0.019** 2
1 1tu − - 0.169** 1 1 2 1t tu u− − + 0.372** 2

2 1tu −  

12th =  6.428E-4** - 0.101** 11 1th −  + 0.225** 12 1th −  - 0.071** 22 1th − - 0.000 2
1 1tu − + 8.278E-3 1 1 2 1t tu u− −  -0.036 2

2 1tu −  

 

Table 4. Conditional variance and covariance equations. Sugar ( 1P )– ethanol ( 2P ) model  

11th =  4.386E-5 + 0.431* 11 1th − + 0.438* 12 1th − + 0.080 22 1th − + 0.122 2
1 1tu − - 0.160 1 1 2 1t tu u− − + 9.179E-4 2

2 1tu −  

22th =  1.248E-4** + 0.111 11 1th − + 0.349** 12 1th − + 0.275 22 1th − + 0.052 2
1 1tu − - 0.351 1 1 2 1t tu u− − + 0.588** 2

2 1tu −  

12th =  -3.046E-5 + 0.219* 11 1th −  + 0.438** 12 1th −  + 0.147* 22 1th − - 0.080 2
1 1tu − + 0.275** 1 1 2 1t tu u− − - 0.023 2

2 1tu −  

 


