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Empirical Analysis of Land-use Change and Soil Carbon 

Sequestration Cost in China 

Man Li, JunJie Wu, Xiangzheng Deng 

This project examines the driving forces behind the land-use change and evaluates the 

effects of land-use transition on soil organic carbon density and sequestration cost in 

China. It contributes to the literature in three aspects. First, it applies a discrete choice 

method to model multiple land-use options with a unique set of high-quality data. 

Second, it conducts a comprehensive analysis of biophysical characteristics and changes 

in soil carbon storage caused by land-use change. Third, it examines the economic 

efficiency of alternative land use policies as instruments for carbon sequestration in 

China. 

Key words: carbon sequestration, land-use, soil organic carbon density, China 

Increased concern over global climate change has brought great attention to China’s 

carbon dioxide emissions. From 1991 to 2004 China doubled its carbon dioxide 

emissions due to the increased energy consumption (Marland et al. 2007).  In 2006, 

China surpassed the United States to become the largest emitter of carbon dioxide in the 

world, releasing 6.2 billion tons of carbon dioxide into the atmosphere each year. The 

emission affects China as well as countries. For example, due to the greenhouse effect, 

China has witnessed many negative environmental impacts, including changes in planting 

seasons for some crops, shrinkage of inland lakes and tundra, and increases in the 
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intensity of drought and flood.   

Increasing energy demand, driven by fast economic development and unprecedented 

urbanization, makes it a limited strategy to rely on energy-based abatement alone. As a 

supplement, biological carbon sequestration has gained more attention due to its 

forward-looking, multi-benefits for sustainable economic development, environmental 

conservation, and food security. Biological sequestration involves managing land in ways 

that enhance the natural absorption of atmospheric carbon by vegetation and soil. 

With the total land area of 932.7 million hectares, China, like the United States and 

Canada, has a large potential for soil carbon sequestration. China has witnessed a 

remarkable land-use conversion over the past two decades, which has changed the 

storage of soil carbon significantly.  According to a recent study, China losses 1.95 

percent of soil organic carbon in its cropland annually, and the largest losses take place in 

the northeastern regions, which include the most fertile soils in the country (Tang et al., 

2006). Therefore, understanding the relationship between land-use change and soil 

carbon sequestration becomes an urgent issue. 

This paper evaluates the impacts of land-use change on China’s soil organic carbon 

(hereafter SOC) density and estimates sequestration costs under four land policy 

scenarios. To achieve these objectives, we first develop an econometric model of discrete 

land-use choice among six alternatives: farmland, grassland, forestland, water area, urban 

area, and unused land. The expected utilities are modeled in terms of characteristics of 
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individuals and alternatives, which is a combination of multinomial and conditional 

logistic formulations. We then develop a biometric model to assess the regional pattern of 

SOC density in China. The biometric model includes four types of variables – climate, 

soil physical and chemical properties, land-use category, and regional dummy. This 

approach can easily be applied to a large region and thus overcomes the limitation of a 

detailed site-specific, field-level process model. Finally, by combining the econometric 

and biometric models, we are able to use a revealed-preference approach to estimate 

sequestration cost (Stavins 1999). 

The data come from three sources. The Chinese Academy of Science (CAS) provided 

data on land use, soil property, and socioeconomic variables. CAS compiled the land use 

panel data (1988, 1995, and 2000) based on the US Landsat TM/ETM images with a 

spatial resolution of 30 by 30 meters. Geophysical cross-sectional variables come from a 

geographical information system (GIS) database at a 1 by 1 square kilometer level. 

Socioeconomic variables are available at the county-level (with a few exceptions) from 

various editions of statistical yearbooks of China. In the current version of the paper, we 

conduct a case study on Huang-Huai-Hai Plain, which includes 9 

provinces/provincial-level metropolis and 421 counties.  

The paper makes several contributions to the literature. First, it analyzes multiple 

land-use options in China with a discrete choice model. Previous literature on land use in 

China mainly focuses on aggregate changes at the county level or above. To the best of 
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our knowledge, no one has assessed land allocation among multiple uses with a discrete 

choice approach in the literature. This method allows us to model land use at a very 

disaggregated scale, which is necessary for analyzing the environmental impacts of land 

use changes.  Second, it considers economic efficiency and involves some 

socioeconomic variables in the model. In contrast, previous studies of China’s carbon 

sequestration typically develop biophysical and biochemical models. Third, it examines 

the economic efficiency of alternative land use policies such as urban development 

control and farmland protection as instruments for carbon sequestration in China. Most 

previous studies have been limited to the cost analysis of afforestation policies. 

Economic efficiency is a major criterion for evaluating the feasibility of alternative 

carbon sequestration strategies. However, previous literature of carbon sequestration in 

China typically involves biophysical and biochemical modeling without taking 

socioeconomic factors into account. With the databases of China’s National Forest 

Resource Inventory (1949-1998) and China’s Second National Soil Survey (1979-1985), 

many Chinese scholars have sought to assess the spatial pattern and change of carbon 

storage in forest and soil in China over the last decade. The land areas covered in 

previous studies include forestland (Fang et al. 2001), cropland/farmland (Tang et al. 

2006; Zhang et al. 2006), and all types of lands (Wang et al. 2003; Wang et al. 2004; Wu 

et al. 2003; Yang et al. 2007). Huang and Sun (2006) conduct a nice survey on the 

changes in topsoil carbon of China’s croplands over the last two decades by selecting 132 
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representative articles from literature databases published since 1993. Internationally, 

Canadian and Chinese collaborators execute a four-year (2002-2006) project of carbon 

sequestration in China’s forest ecosystems. The achievements of the project are published 

in a special issue of Journal of Environmental Management (2007). Three 

biochemical/biophysical models are widely applied to the estimation of carbon storage: 

Denitrification-Decomposition (DNDC), Integrated Terrestrial Ecosystem C-budget 

(InTEC), and the Bemmelen index (0.58) equation. A few cost-benefit analyses of 

afforestation include early work by Xu (1995) and recent efforts by Wang et al. (2007) 

and Zhou et al. (2007) in the Canadian-Chinese collaborative project.  

Researchers have been analyzing the sequestration costs for almost two decades in 

the United States and European countries. Initial studies generally address the topics of 

measuring forest sequestration costs (Adams et al. 1993; Alig et al. 1997; Lubowski et al. 

2006; Parks and Hardie 1995; Plantinga et al. 1999; Stavins 1999). Richards and Stokes 

(2004) conducted a comprehensive review of the literature on this subject and pointed out 

there were three approaches to modeling opportunity cost of foregone land use: 

bottom-up engineering studies, the sectoral optimization approach, and the 

revealed-preference econometric method. Subsequent efforts involve the assessments of 

economic potential for agricultural soil carbon sequestration such as conservation tillage 

adoption (Pautsch et al. 2001; Antle and Diagana 2003; Capalbo et al. 2004; Feng et al. 

2006; Antle et al. 2007). After adjusting for the variation among the studies, it is reported 
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that in the United States, afforestation can sequester 250 to 500 million Mg C (Megagram 

of carbon) per year at a price range of 10 to 150 dollars per Mg C, whereas conservation 

tillage may generate 0.25 to 6.2 million Mg C in soil per year at a cost range of 50 to 270 

dollars per Mg C. The cost estimates of conservation tillage are sensitive to the choice of 

baseline and the spatial heterogeneity of the area. 

The organization of this paper is as follows. The next two sections describe the 

econometric and the biometric modeling structures. Then we report the estimation results 

and carry out an analysis. Section five estimates sequestration costs through a series of 

simulations and discusses policy implications. The final section contains some 

concluding comments. 

An Econometric Model of Land-Use Change 

Consider a risk-neutral landholder making land use choice decisions. The choice set 

contains six elements: farmland, grassland, forestland, water area, urban area, and unused 

land. Assuming that urban development is irreversible, that is, urban area will never be 

converted into other categories of land use, we are interested in land transitions from five 

starting land-use groups (farmland, grassland, forestland, water area, and unused land). 

We perform an empirical analysis by combining McFadden (1973)’s conditional 

logistic formulation and traditional multinomial logistic method. The difference between 

them lies in model specification, where the multinomial approach specifies the expected 

utility in terms of the characteristics of individuals while McFadden’s method specifies it 
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as a function of the attributes of alternatives. Land-use decision is a relatively 

complicated process thus the econometric model in this study involves both site-specific 

and choice-specific variables. 

Specially, let subscript i  be land plot index, n  denote county, t  represent time 

period, k  and l  be initial and final land use, respectively. Landowner’s utility from 

converting land use k  to land use l  is specified as | | |itl k itl k itl kU V ε= + , where |itl kV  is 

the observable component and |itl kε  is the unobserved type I extreme value error.  

( ) ( )|1        ,itl k it ntl lk lk it ntl lkV V µ ′= = + +z x γ z x β  

where itz  is a vector of site-specific variables and ntlx  is a vector of 

alternative-specific regressors. x  denotes socioeconomic variables and z  is a vector of 

a site’s natural attributes such as land quality and slope. We index x  by n  since the 

most disaggregated form of socioeconomic variables is often at the county level. We 

interpret lkµ  as land conversion coefficient, which partly captures the conversion costs 

from use k  to alternative l .  

The absolute magnitude of coefficient in logistic model has no economic 

interpretation. Hence we set the initial land-use k  as the reference within each of five 

categories and normalize 0kkµ =  and lk =γ 0 , which will avoids redundant parameters.  
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Therefore the probability of converting plot i  from land-use k  to land-use l  at 

period 1t +  is given by equation (2). The logarithm of odds of choosing l  over k  can 

be written as 

( ) 1 |
| |

1 |

3        log it l k
itl k itk k lk lk it ntl lk ntk kk

it k k

P
V V

P
µ+

+

′ ′= − = + + −γ z x β x β  

We estimate the parameters with maximum likelihood method using SAS version 9.2. 

Biometric Soil Organic Carbon Model 

The dynamics of SOC flow are a complex process. Previous studies suggest that the 

balance of carbon inputs from plant production and outputs controls SOC storage through 

a decomposition process (Jobbágy and Jackson 2000; Parton et al. 1993; Schlesinger 

1977). The diagram of SOC flow in Century model (Parton et al. 1993) demonstrates the 

joint effects of soil temperature, moisture, and texture, which control the decomposition 

rates of SOC in various carbon pools. For example, soil temperature and soil moisture 

influence the decomposition rates at an inverted-U pattern with a heavy left-tail. By 

contrast, the effects of soil texture are much more complicated. Sandy soils tend to have 

higher decomposition rates of active carbon pool and more carbon loss due to microbial 

respiration, whereas an increase in clay content tends to decrease the fraction of carbon 

flows from slow carbon pool into passive carbon pool and raise the fraction of flows from 

active carbon pool into passive carbon pool. Studies also show that SOC density is 

negatively correlated with soil bulk density (Wang et al. 2004; Wu et al. 2003; Yang et al. 

2007).  
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In contrast to biophysical/biochemical carbon models applied in previous literature, 

we use a statistical method to describe the relationship of SOC density and four types of 

variables – climate, soil property, land use, and regional dummy – as shown in equation 

(4). Yang et al. (2007) find that such variables can explain 84 percent of the variations in 

SOC storage in China. Specially, we use a humidity index (defined as 

 
  10 annual precipitation

mean annual temperaturehumity index +≡ ) to replace precipitation and temperature as a proxy 

for the climate variable. This substitution avoids significant correlation between mean 

annual temperature and annual precipitation. Soil variables include soil PH value, soil 

bulk density, and content of soil loam, clay, and sand. To be consistent with the six 

categories of land-use choice in the econometric model, we partition land use into 

farmland, forestland, grassland, water area, urban area, and unused land. Finally, we use 

regional dummies to capture the unobserved characteristics that vary across regions of 

China. 

( )
( )

4
, , ,

, , , , , ,
climate soil property landuse

SOC f climate soil property region landuse

f humidity index soil PH soil loam soil sand soil clay bulk density landuse dummy

=

=
������� ����������������������� �

 

       

                    ,
region

regional dummy
 
 
 
 

������ �������
 

    To guarantee the robustness of the model, we apply several statistic techniques to 

validate and test the specification of equation (4). There are three alternative criteria used 

for model selection: a) corrected Akaike’s Information Criterion (AICc), b) Bayesian 

Information Criterion (BIC), and c) 5-fold Cross-Validation criterion (CV Press). AICc 

and BIC are penalized criteria, measuring the tradeoff between bias and variance (loosely, 
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complexity and precision) in model construction. Specifically, ( ) ( )2 1

21 log pSSE
n n pAICc +

− −= + +  

and ( ) ( ) 22 ˆlog 2 2 2 ,SSE n
n SSEBIC n p q q q σ= + + − = , where n  is the number of observations, 

p  is the number of parameters (including intercept), and SSE is sum of squares error. 

These two criteria indicate that a complex model (i.e., with more number of parameters) 

would be penalized. CV Press is a technique for assessing how the results of a statistical 

analysis will generalize to an independent dataset. For example, in a 5-fold cross 

validation, the sample is randomly partitioned into 5 subsamples. Of the 5 subsamples, a 

single subsample is retained as a validation dataset and the remaining 4 subsamples are 

used for estimation. Predicted residual sum of square (Press) is calculated by fitting the 

model estimated from four subsamples with the data from single validation subsample. 

The CV process is then repeated 5 times with each of the 5 subsamples are used for 

validation. By averaging the 5 Press’s, we obtain a single estimation as a criterion for 

model selection. The advantage of this method is that all observations are used for both 

estimation and validation, and each observation is used for validation exactly once. 

Under a procedure of random sampling without replacement, we start with 

partitioning the whole data into two subsets: one is named as the training dataset, 

composed of 75% of observations in the whole sample to select specification and to 

estimate model; the other is called the test dataset, which contains 25% of total 

observations and is used for validation. Then we assign a candidate biometric model that 

is specified as a quadratic polynomial of all quantitative regressors. A competing model is 
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composed of a subset of parameters in the candidate model. Given the training dataset, 

we use a stepwise procedure to rank all possible competing models according three 

criteria (AICc, BIC, and CV Press) in turn, with the one having the lowest values being 

the best. Next we use the test dataset to examine the robustness of model prediction by 

calculating the average sum of square error (ASE). The idea is similar to that behind 

cross validation process. However, CV press is a criterion for model selection, while here 

we use the test dataset for model validation. Finally we compare the ASE from the test 

dataset with the ASE the training dataset. If the former is less than or close to the latter, 

the model is robust and can generalize to an independent dataset. 

The model selection results are very consistent under the three alternative criteria. 

All parameters are selected into the model. In addition, this model is robust for prediction. 

The ASE’s of the training and test datasets are quite close, equaling 0.03938 and 0.03967 

respectively (Three criteria selects a same model, so their ASE’s are same). 

Data 

Case Study Area: Huang-Huai-Hai Plain 

This study will cover the whole country. For the time being, we apply an analysis on a 

random sample from Huang-Huai-Hai Plain, which includes 9 provinces/provincial-level 

metropolis and 421 counties. We will keep working on the other regions and will finish 

the complete analysis soon. Huang-Huai-Hai Plain is located in low reaches of the Yellow, 

Huai, and Hai rivers within an area of 350 × 103 km2
, with 18.67 million ha of farmland 
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under cultivation. As a highly productive agricultural area, the Huang-Huai-Hai is often 

referred to as China's breadbasket (Shi, 2003). Soil texture in the region ranges from 

sandy loam to loamy clay, and soil pH generally ranges between 7.4 and 8.6. This is one 

of the most important agricultural regions in China (Yang and Janssen, 1997).  

 

Figure 1. Location map of the soil profile in the Huang-Huai-Hai Plain 

Data Description 

The data come from three sources and are provided by the Chinese Academy of Science 

(CAS). Land-use data are from a unique database (Liu et al., 2003; Deng et al., 2006), 

which was developed based on the US Landsat TM/ETM images with a spatial resolution 

of 30 by 30 meters. The database includes time-series data for the late 1980s, the 

mid-1990s, and the late 1990s. This study uses 1988, 1995, and 2000 to denote the three 

time periods. There are 25 land use/cover classes. We group them into six land use 

categories – farmland, forestland, grassland, water area, urban area, and unused land. 

Table 1a reports the frequencies and the percentages of six land-use classes for three 
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periods. Farmland is a major component of the land base, accounting for 70.2% of the 

total land of the case study area in the initial year 1988. Urban is the second largest 

land-use category in the sample region. The land areas of forestland, grassland, water 

area, and unused land are relatively small. The share of farmland declined to 69.1% in 

2000. The share of unused land decreases by 25%. In contrast, the share of urban area 

increased from 12.3% to 13.5% from 1988 to 2000. 

Table 1a. Summary Statistics of Land-use categories     

Land-use category 
1988 1995 2000 

Freq Percent Freq Percent Freq Percent 

Farmland 311170 0.702 303126 0.684 306618 0.691 

Forestland 28805 0.065 36362 0.082 29084 0.066 

Grassland 31356 0.071 27570 0.062 30834 0.070 

Water area 13746 0.031 14157 0.032 14125 0.032 

Urban area 54749 0.123 57810 0.130 60027 0.135 

Unused land 3644 0.008 4437 0.010 2759 0.006 

Observations 443470 443462 443447 

Data on geophysical variables come from a GIS database that includes all parameters 

of soil properties used in the biometric SOC model. The variables of soil attribute include 

SOC content, soil PH value, soil bulk density, soil loam, sand, and clay content. 

Information on the properties of soil is from the CAS data center. Originally collected by 

a special nationwide research and documentation project (the Second Round of China’s 

National Soil Survey) organized by the State Council and run by a consortium of 

universities, research institutes and soils extension centers. By using a conventional 

Kriging algorithm (Kravchenko and Bullock 1999), we are able to interpolate the soil 

information into surface data to get more disaggregated information on the property of 
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the soil over space for each pixel. 

The database also contains three variables used in the econometric land-use change 

model, i.e., land productivity, terrain slope, and highway density. Land productivity was 

included here was to measure the pixel-specific agricultural productivity (Deng et al, 

2006), was introduced and used in our studies. The original values of the land 

productivity were estimated by the research team from Institute of Geographical Sciences 

and Natural Resources Research, Chinese Academy of Sciences (CAS) by using the 

standalone software, Estimation System for the Agricultural Productivity (ESAP). The 

terrain slope variable, which measures the nature of the terrain of each county, are 

generated from China’s digital elevation model data set that are part of the basic CAS 

data base. Based on a digital map of transportation networks in the mid-1990s, we 

measure Highway density as the total length of all highways in a county divided by the 

land area of the county. All of the geophysical variables are cross-sectional data at a 1 by 

1 square kilometer level. The summary statistics of the geophysical variables is given in 

Table 1b. 

Additionally, we use two climate variables, mean annual temperature and mean 

annual precipitation as proxies for soil temperature and soil moisture. The data for 

measuring precipitation (measured in millimeters per year) and temperature (measured in 

accumulated degrees centigrade per year) are from the CAS data center but were initially 

collected and organized by the Meteorological Observation Bureau of China. For use in 
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our study, we take the point data from the climate stations in our case study and 

interpolate them into surface data using an approach called the thin plate smoothing 

spline method (Hartkamp et al. 1999). 

Table 1b. Summary Statistics of Geophysical Variables   

Variable Level Mean Std Dev 
SOC Model       

  SOC density (g/m2) 1 km2 2.23 0.62 

  Mean annual temperature (degree 

Celsius) 

1 km2 12.79 1.52 

  Annual precipitation (mm) 1 km2 652.82 134.39 

  Soil PH 1 km2 6.56 0.74 

  Bulk density (g/cm3) 1 km2 137.53 3.50 

  Soil loam content (%) 1 km2 30.68 5.67 

  Soil sand content (%) 1 km2 59.15 9.84 

  Soil clay content (%) 1 km2 19.85 3.47 

  Percentage of inland 1 km2 29.72 n/a 

  Percentage of north coastal 1 km2 28.98 n/a 

  Percentage of middle coastal 1 km2 41.31 n/a 

Land-use Model      

  Land productivity (kg/km2) 1 km2 78.45 39.95 

  Terrain slope (degree) 1 km2 0.85 1.95 

  Highway density (km/km2) county 0.06 0.06 

From various versions of statistical yearbooks of China, we collected the 

socioeconomic data, mainly for years 1988, 1995, and 2000. Most of the socioeconomic 

data are at the county-level. Data in value terms are measured at the 2000 real yuan (in 

RMB ¥ 104). Table 1c reports the summary statistics of these time-series variables. 

Table 1c. Summary Statistics of Time-series Variables     

Variable Level 
1988-2000 

Mean Std Dev 

Value-added of farming (¥10000 /year) province 41964.20 23312.22 

Value-added of forestry (¥10000/year) province 2056.01 1238.67 

Value-added of animal-husbandry (¥10000/year) province 15060.02 7514.62 
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Agricultural investment (¥10000/km2/year) county 0.20 1.37 

Percentage of farmland converted to urban county 0.13 0.05 

Forest investment (¥10000year) province 3158.08 1890.09 

Afforetation project (1=yes, 0=no) n/a 0.22 0.41 

Net industry output (¥10000/km2/year) county 926.69 6455.16 

GDP per capita (¥10000 per person) county 0.36 0.18 

Average annual change in GDP (¥10000) province 27449.35 23655.67 

Std dev of annual change in GDP (¥10000) county 169.60 57.90 

Share of urban area county 0.12 0.06 

Nonrural population density (people per km2) county 0.54 0.94 

Ideally, we should use land rents to evaluate net returns on alternative land use. 

However, land in China is either state-owned (urban area) or collectively owned (rural 

area). Local governments, on behalf of the state, control all categories of land-use 

transitions. Therefore, the actual land rents do not exist in China. Furthermore, policy 

preference may guide a land-use pattern and dominate economic incentives even if there 

is an appropriate measure of land rents. Consequently, in addition to economic values, 

socioeconomic variables include some measures for policy factors. 

The urban land rents merit a comment. In their influential article, Capozza and 

Helsley (1990) propose a structure of equilibrium land rent under uncertain 

circumstances. It provides a guideline for us to construct landholder’s utility from urban 

use. Except for minor alterations, the theoretical urban land rent in this paper is identical 

to that in the stochastic monocentric urban model of Capozza and Helsley (1990). In 

particular, the average rent of urban area is given by 2
r g u

k rR R rC λ τ
λ

∗−= + + + , where kR  

denotes pre-conversion land rent, r  is the discount rate, C  is one-time conversion cost, 

τ  represents the commuting cost of unit distance, and ( )u t∗  is the distance from urban 
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boundary to the central business district. Specially, r g
r
λ

λ
−  represents option value, which 

is a premium of irreversible urbanization arising from future uncertainty. λ  is the 

defined as ( )1 22 2

2

2g r gσ

σ
λ + −

≡  and g  and 2σ  are, respectively, the drift and the variance 

of Brownian motion rents. Option value will postpone a transition decision to urban area 

and an increase in uncertainty (2σ ) will result in a further delay since 

( ) ( )2 0r g
r
λ

λ σ−∂ ∂ > .  

We use net industry output per square kilometer to proxy for the basic part of urban 

land rents ( kR rC+ ). The option value (r g
r
λ

λ
− ) is approximated by a function of average 

annual change in GDP and the standard deviation of annual change in GDP. We use the 

share of urban area and highway density in a county to evaluate the value of accessibility 

( 2
uτ ∗

). As two supplements, we use gross domestic product (GDP) per capita and 

non-rural population density to capture the level of economic development and urban 

land capacity, respectively. Due to the large amount of missing observations of land-use 

area, we do not directly use the area share of urban land in a county to measure the share 

of urban area. By contrast, we use a county-level percentage of observations of urban 

land in the sample to proxy for the land area share. Specifically, we perform three 

separate simple linear regressions on observations in three periods, with a regressand of 

the land area share and a regressor of the percentage of observations. We hope the fit line 

to be a 45 degree line through the origin. This measurement is very robust with a range of 

R-square’s is from 0.97 to 0.98. Intercept and slope estimates are close to zero and one, 
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respectively.  

Based on the idea of augmented investment resulting in higher output, we use 

agricultural investment per square kilometer as proxies for rents of farmland. However, 

there are no appropriate measurements for land rents on forestland. So we employ a 

continuous variable of aggregate provincial forest investment and a dummy variable of 

natural forests protection project to examine the impact of afforestation policy on 

land-use change. We also use aggregate value-added of farm, forestry and 

animal-husbandry at a province-level as a gross measurement for return on farmland, 

forestland, and grassland. 

The Basic Farmland Protection Regulation established in 1994 deserves some 

comments. The regulation aims at protecting cultivated land by prohibiting conversions 

of farmland to nonagricultural uses. It requires governments at the county-level or above 

to designate a basic farmland protection zone in every village or township. The same 

amount of farmland lost must be replaced by new farmland somewhere else if there was 

an inevitable land conversion within a protection zone. This requirement is also called 

“dynamic balance”. To capture this policy’s influence on transition from non-farmland to 

farmland, we define a variable of percentage of urbanized farmland conditional on being 

in initial farmland use (i.e., divide the observed number of urban land parcels which were 

initially farmland in a county by the total observed amount of farmland parcels of that 

county in the starting period). This variable enters forestland, grassland, water area, and 
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unused land model as a covariate. The idea behind constructing this variable is that, if 

“dynamic balance” has impacts on land transition from non-farmland to farmland, an 

increase in the percentage of urbanized farmland will raise the probability of 

non-farmland converted to farmland.  

Estimation and Results 

Parameters of separate models are estimated conditional on each of five starting land-use. 

We employ two versions of econometric model by constructing data in two ways. First, 

we drop variables in 1995 and conduct a cross-sectional analysis. Second, we estimate 

the model using panel data with two time intervals 1988-1995 and 1995-2000. The 

second model of panel data also involves fixed-time effects to capture the unobserved 

time-dependent errors. The estimation results of two models are quite close, even though 

most of the fixed-time effects are statistically significant. Minor differences lie in that the 

goodness-of-fit of cross-sectional model is slightly lower than that of panel data model 

when beginning with farmland, and a bit higher if starting with forestland, grassland, and 

water area. In terms of initial unused land, panel data model performs better than 

cross-sectional model, indicating that there might be some unobservable time-dependent 

factors influencing the transition probability of unused land.  

We will interpret estimation results and estimate costs of carbon sequestration based 

on the cross-sectional model for two reasons: 1) it may avoid a server econometric 

problem of error correlation over time, 2) unused land only accounts for less than 1 
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percent of the total land base, which is not of our major concern. To save space, we only 

present the results of cross-sectional model (1988-2000). 

Table 2 shows the frequency and probability of land transitions from 1988 to 2000. 

Urban expansion is a remarkable phenomenon and farmland, as the largest component of 

land base, is the main source of urbanization. There is 13.2 percent of farmland converted 

to urban area from 1988 to 2000, accounting for 93.7 percent of the total urbanized land 

parcels. In contrast, urban expansion from non-farmland is negligible. Meanwhile, 

forestland, grassland, water area, and unused land are converted to farmland in a 

percentage of range between 19.0 and 46.8. Land transitions between forest and grass, as 

well as land changes from unused land to water area, also account for a relatively large 

percent of their respective initial land-use area. 

Table 2. Land Transitions from 1988 to 2000 
    Final land-use 

Initial 

land-use 

Farm Forest Grass Water Urban Unused 

1988-2000 1988-2000 1988-2000 1988-2000 1988-2000 1988-2000 

Farm 
Freq 200962 4123 7017 4365 33158 896 

Prob 0.802 0.017 0.028 0.017 0.132 0.004 

Forest 
Freq 4371 14331 3496 283 500 30 

Prob 0.190 0.623 0.152 0.012 0.022 0.001 

Grass 
Freq 6623 4234 13236 454 760 79 

Prob 0.261 0.167 0.521 0.018 0.030 0.003 

Water 
Freq 4771 245 392 3964 743 74 

Prob 0.468 0.024 0.039 0.389 0.073 0.007 

Unused 
Freq 996 55 118 628 233 818 

Prob 0.350 0.019 0.041 0.221 0.082 0.287 

Table 3 reports the estimation results for five classes of initial land-use. It indicates 

an accessible McFadden’s likelihood ratio indices (LRI) for the models starting with 
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farmland and with forestland, which fit variations in land transition by 63.71% and 

50.26%, respectively. By contrast, McFadden’s LRI’s are relatively low for the remaining 

three models (initially used as grassland, water area, and unused land). Insufficient 

covariates are a suspectable reason for the low indices. Despite that, this model can 

explain well on probability of urban expansion and conversion to farmland, which are 

two main transitions of land-use in the sample region over 1988-2000. 

Table 3. Coefficient Estimates for the Econometric Land-use Change Model  

Initial Land-use Farmland Forestland Grassland Water area Unused land 

Parameter Coefficient Estimates 

Farm Intercept n/a -1.2448*** -1.1038*** -0.9064*** 0.4961 

Land prod n/a 0.0275*** 0.0178*** 0.0143*** 0.0217*** 

Terrain slope n/a -0.3597*** -0.2433*** 0.4289*** -0.3727** 

Value-added 0.0000** -0.0000*** 0.0000*** -0.0000 0.0000*** 

Value-added*Land prod -0.0000*** -0.0000 -0.0000*** 0.0000 -0.0000** 

Log(agri inv ) 0.0076 -0.0225 -0.0049 -0.0615*** -0.2674*** 

Log(agri inv)*Land prod -0.0000 0.0006* 0.0004 0.0007** 0.0011 

% of farm to urban n/a 1.8947** 2.8843*** 2.712** -45.5231*** 

(% of farm to urban)^2 n/a -6.7948*** -11.5495*** -10.0875** 176.3782*** 

Forest Intercept -2.8087*** n/a -1.2914*** -3.2965*** -2.3713** 

Land prod -0.0161*** n/a -0.0085*** -0.0024 0.0040 

Terrain slope 0.8256*** n/a 0.3300*** 1.1931*** 1.6771*** 

Value-added -0.0000 -0.0004*** 0.0001 -0.0000 0.0001 

Value-added*Land prod 0.0000 0.0000*** 0.0000 0.0000 -0.0000 

Forest inv -0.0002*** -0.00002 -0.0001*** -0.0000 -0.0008** 

Forest inv*terrain slope -0.0000 -0.0000** -0.0000*** -0.0000 0.0000 

Afforest proj(0-1 indicator) -0.2014*** 0.1900** 0.0481 0.3708* 1.7232*** 

Afforest proj*terrain slope -0.0357** -0.0137 -0.1356*** -0.1996** 0.0246 

Grass Intercept -2.4612*** -0.7396*** n/a -2.3083*** -2.7742*** 

Land prod -0.0196*** -0.0044*** n/a -0.0070** -0.0038 

Terrain slope 0.7541*** -0.1240*** n/a 1.0923*** 1.3685*** 

Value-added -0.0000*** -0.0001*** 0.0000 -0.0000** 0.0000 

Value-added*Land prod 0.0000* 0.0000*** -0.0000 0.0000 0.0000 

Water Intercept -2.6657*** -3.2129*** -2.0342*** n/a 0.0867 

Land prod -0.0139*** 0.0109*** -0.0024 n/a -0.0057*** 
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Terrain slope -0.1816*** -0.5535*** -0.6032*** n/a -2.4208*** 

Urban Intercept -2.3884*** -3.7900*** -3.9661*** -2.8172*** -0.4540 

Land prod -0.0036*** 0.0211*** 0.0008 0.0126*** -0.0105*** 

Terrain slope -0.1368*** -0.5510*** -0.4078*** 0.3222*** 0.4245* 

Log(value-added) 0.0906*** 0.0114 0.0582 -0.0663 -0.7616*** 

GDP per capita -0.8707*** -0.9118 1.0585* -1.3308** 3.4384** 

(GDP per capita)^2 0.3247*** 1.0422* -0.6771 1.0557** -1.8127 

Ave change in GDP 0.0000*** -0.0000*** -0.0000 0.0000 -0.0000*** 

Std dev of change in GDP -0.0011*** -0.0018** 0.0003 0.0002 0.0042** 

Share of urban area 5.3337*** 9.151*** 11.3836*** 5.4702*** 11.1822*** 

Highway density -0.0860 0.7409 3.5149*** 0.5017 1.7424 

Nonrural pop density 0.0188 0.5661 0.2871* 0.2731 2.9210*** 

(Nonrural pop density)^2 -0.0028 -0.4701 -0.0171* -0.0212* -0.1819*** 

Unused Intercept -3.9288*** -5.5999*** -3.9534*** -3.4310*** n/a 

Land prod -0.0178*** 0.0136** 0.0013 -0.0096*** n/a 

Terrain slope -0.3730*** -0.5393*** -0.5927*** -0.8097* n/a 

Number of observations 250611 23011 25386 10189 2848 

McFadden's LRI 0.6371  0.5026 0.4021 0.3982 0.2845 

Note: *, **, and *** indicate statistical significance at 10, 5, and 1% levels, respectively. 

In general, almost all of site-specific variables are statistically significant at 1% level 

or less. As anticipated, lands with higher productivity tend to be converted to farmland 

and urban area and lands with higher slope are more likely to be changed into forestland. 

The conversion coefficient estimates (intercept) are negative and statistically significant, 

which is in line with the expected economic interpretation.  

Most of explanatory variables for urban expansion are significant and have the 

expected signs. For instance, an increase in net industry output will accelerate lands 

converted to urban. The negative and statistically significant sign of standard deviation of 

change in GDP provides an evidence for option value proposed by Capozza and Helsley 

(1990), i.e, increased uncertainty will delay an irreversible urbanization. The influence of 

share of urban area on urban expansion deserves more concerns, which is statistically 
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significant at 1% level for all of five initial alternatives. In this sense, a highly urbanized 

area tends to requisition more lands from the remaining five classes of non-urban land. In 

contrast to the share of urban area, highway density is not significant except for initial 

grassland. Non-rural population exhibit an inverted-U curve and statistically significant 

for initial unused land use, but marginal significant or insignificant for other cases. These 

results indicate that land conversion from different initial use to urban area is sensitive to 

different components of the theoretical urban land rents. 

We report own-return elasticity of land-use choice in table 4 by selecting some 

representative variables. Elasticity is defined as a percentage change in the probability of 

choosing the final land-use conditional on being in the initial use, for a 1% change in the 

variable to the final use. We evaluate elasticity at the means of data. Generally, the signs 

of value-associated own-return elasticity are unstable, while the signs of policy-related 

elasticity are consistent. For example, the elasticity with respect to agricultural 

investment is positive given initial use in farmland and grassland. Forestland is 

insensitive to forest investment. Except for unused land, all other lands respond to the 

percentage of land parcels converted from farm to urban as anticipated.  

Table 4. Own-return Elasticity of Land-use Choice 

Initial 

land-use 

Final land-use 

Farm  Forest  Grass  Urban 

log(AgrI) A-value Prob  forestI A-value  A-value  log(Ind) Std gdp Urban Highway Pop 

Farm 0.002  -0.006  n/a   -0.509  0.016   -0.032   0.485  -0.163  0.599  -0.005  0.009  

Forest -0.016  -0.335  0.020   -0.061  -0.174   -0.567   0.079  -0.265  0.759  0.028  0.307  

Grass 0.020  0.144  0.051   -0.606  0.153   0.014   0.395  0.050  0.765  0.134  0.140  

Water -0.022  -0.061  0.011   -0.132  0.090   -0.252   -0.389  0.038  0.605  0.027  0.138  

Unused -0.399  0.599  -0.599   -2.409  0.178   0.435   -3.106  0.567  0.846  0.084  2.381  
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Soil Organic Carbon Model 

The SOC density is sensitive to geophysical location. Therefore we split the plain into 

three regions (inland, north, and south) in the following analysis1. Table 5 reports 

coefficient estimates of the biometric SOC model. The results indicate good fit of the 

model. Specially, it can explain 89.78 percent of variation in SOC density. Within 99 

parameters, only 7 ones are not statistically significant at a 5% level or above. We 

examine the signs of climate and soil variables with a linear model, which allows us 

purging the disturbance from the square and interaction terms in the quadratic 

specification. The signs of variables are generally as expected. For example, SOC density 

increases in humidity index and decreases in soil sand and soil clay content in most 

regions. An increase in soil PH value and soil bulk density also cause a reduction of SOC 

density. In summary, the estimated signs of climate and soil parameters are robustly in 

line with the scientific rationale proposed by pedological and ecological literature.  

The coefficient estimates of land-use categories are of our interest. As shown in 

Table 2, the marginal effects of land-use change on SOC density exhibit great spatial 

heterogeneity. Farmland has a similar SOC density to urban area, where the density is a 

bit higher than that of farmland in the north region and slightly lower in the other two. 

Deforestation generally lowers SOC density in the sample region except for converting 

                                                             
1 Inland region includes Shanxi and Henan provinces. North area contains Beijing city, Tianjian city, and Hebei and 

Liaoning provinces. South region is composed of Jiangsu, Anhui, and Shandong provines.  
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forestland to grassland in the inland area. In the north coastal region, land converted from 

forest to farm and grass suffers losses 0.084 and 0.089 gram C per square meter, 

respectively. In the inland region, land transition from forest to farm loses 0.237 gram C 

per square meter. By contrast, the distribution of SOC density in grassland varies greatly 

across regions. It is high in the inland region and is very low in the north area.  

Table 5. Coefficient Estimates for the Biometric SOC Model       

  Qquadratic Model Linear Model 

  Inland North South Inland North South 

Variables Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient 

Intercept 35.7000*** -45.7537*** 6.5938*** 4.0113*** 2.1006*** 0.8809*** 

Farmland 0.0323* 0.1407*** -0.0066 0.0492* 0.3430*** -0.0948*** 

Forestland 0.2696*** 0.2245*** 0.0459*** 0.26835*** 0.6870*** -0.0890*** 

Grassland 0.2756*** 0.1351*** 0.0287*** 0.4124*** 0.5789*** -0.0858*** 

Water area 0.0666*** 0.1474*** -0.0023 0.0623** 0.3421*** -0.1152*** 

Urban area 0.0214 0.1616*** -0.0096* 0.0305 0.3735*** -0.0891*** 

Humidity index -0.0801*** 0.2537*** -0.3259*** 0.0083*** 0.0247*** -0.0049*** 

Soil PH value 0.6611*** -5.4712*** 0.1466*** -0.0277*** 0.1744*** -0.0638*** 

Soil loam 0.05496*** -0.3037*** -0.06115*** -0.0098*** 0.0047*** 0.0154*** 

Soil sand 0.3268*** -0.2276*** 0.1385*** -0.0015*** 0.0269*** -0.0075*** 

Soil clay -1.5410*** -0.0660** -0.4167*** -0.0618*** 0.1254*** -0.0061*** 

Soil bulk density -0.3661*** 1.0770*** 0.0090*** -0.0029*** -0.0405*** 0.0126*** 

(Humidity index)^2 0.0026*** -0.0019*** 0.0022***    

(Soil PH value)^2 0.0029*** 0.0320*** -0.0043***    

(Soil loam)^2 -0.0029*** -0.0036*** 0.0006***    

(Soil sand)^2 0.0007*** -0.0003*** -0.0003***    

(Soil clay)^2 -0.0003*** 0.0014*** -0.0016***    

(Soil bulk density)^2 0.0008*** -0.0053*** 0.0002***    

Humidity index*soil PH value -0.0150*** 0.0035*** -0.0085***    

Humidity index*soil loam 0.0009*** -0.0024*** -0.0002***    

Humidity index*soil sand 0.0035*** 0.0065*** 0.0014***    

Humidity index*soil clay -0.0007*** -0.0044*** 0.0080***    

Humidity index*soil bulk density -0.0013*** -0.0030*** -0.0000    

Soil PH value*soil loam 0.0105*** 0.0093*** -0.0027***    

Soil PH value*soil sand -0.0034*** 0.0081*** -0.0036***    

Soil PH value*soil clay -0.0030*** -0.0036*** 0.0053***    
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Soil PH value*soil bulk density -0.0023*** 0.0324*** 0.0021***    

Soil loam*soil sand -0.0013*** -0.0016*** -0.0000    

Soil loam*soil clay 0.0010*** 0.0005*** 0.0011***    

Soil loam*soil bulk density 0.0004*** 0.0044*** 0.0003***    

Soil sand*soil clay -0.0050*** -0.0015*** 0.0016***    

Soil sand*soil bulk density -0.0024*** 0.0010*** -0.0012***    

Soil clay*soil bulk density 0.0130*** 0.0022*** 0.0004***    

Observations 71929 95151 163953 71929 95151 163953 

Total number of observations 331033 331033 

R-Square 0.898  0.789  

Note: *, **, and *** indicate statistical significance at 10, 5, and 1% levels, respectively.     

Simulation 

We estimate carbon sequestration costs with several policy simulations at a 1 by 1 square 

kilometer level. To be specific, we predict land transition probability with the results of 

econometric model. The total land area can be normalized to one because each of 

land-use observations is gathered at the same level (1 by 1 square kilometer). After 

weighted by the percentage of land-use observations in the starting period, we are able to 

use the predicted probability directly to estimate carbon storage and carbon flows based 

on the coefficient estimates of three separate biometric models. One distinguished feature 

of this simulation is that it estimates the cost curves by involving all categories of land 

rather than only concerning forestland. We use agricultural investment as a measure for 

cost and evaluate impacts of two land policies – the Basic Farmland Protection 

Regulation (hereafter regulation) and urban expansion control – on SOC density change.   

The procedure is as follows. First, we take data in 2000 as a baseline, predicting 

land-use change and the associated SOC storage change. Then we generate the first 
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scenario by ranging RMB ¥50/km2 increments of agricultural investment on farmland 

from RMB ¥0/km2 to RMB ¥1000/km2. We assess the effects of the “dynamic balance” 

policy in the regulation under scenario 2. In particular, based on scenario 1, we modified 

the land-use choice model by setting the coefficient of percentage of urbanized farmland 

to be zero. Therefore this scenario is a package of agricultural investment augment and 

farmland policy. With a similar strategy we examine the effectiveness of urban 

development control policy under scenario 3 and scenario 4, under which e restrict urban 

expansion 20% off and 30% off the baseline, respectively. These two scenarios are a 

combination of agricultural investment increment and urban land policy.  

Figure 2 demonstrates the marginal costs of soil carbon sequestration under scenario 

1. The cost curves exhibit great spatial variations in three regions. An increment of 

agricultural investment on farmland increases SOC storage in inland and south regions. 

By contrast, increased agricultural investment results in a reduction of SOC density. 

Besides, the marginal sequestration cost in south area is much higher than that in inland 

region. For example, an increase in agricultural investment by RMB ¥400/km2 tends to 

sequester 0.0003 tons of SOC in south region, while the same amount investment in 

inland area sequesters 0.0017 tons. 

It is not difficult to understand why an increment of agricultural investment 

decreases SOC storage in the north part. Increased agricultural investment does augment 

the farmland areas in all three regions as shown in figure 5, which presents a comparison 
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of land area percent for farmland, forestland, and urbanland with an extra RMB¥1000 

agricultural investment. However, in north region, SOC density of farmland is lower than 

that of urbanland, which produces a downward slope of marginal cost curve in the north 

region. In this sense, it is more efficient to target at inland area for soil carbon 

sequestration.  We will extend the simulation to three policy scenarios based on this 

region.  

 
Figure 2. The marginal costs of soil carbon sequestration under scenario 1 in Huang-Huai-Hai Plain 

Figure 3a, 3b, and 3c suggest that a land policy package is much more cost-effective 

than economic incensives alone for soil carbon sequestration. Specifically, if there were 

no a requirement for “dynamic balance”, an extra thousand RMB ¥/km2 spent on 

agricultural investment can sequester 0.3794 tons carbon from atmosphere, in contrast to 

0.0034 tons carbon in the case with the requirement. Therefore “dynamic balance” 

exacerbates losses of SOC. A story can be told on farmland protection and urban 

expansion. In the past decades, China has experienced unprecedented urban expansion, 
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which is not only driven by fast economic growth, but by local governments. The large 

number of literature demonstrates that revenue from rural land requisition is an important 

fiscal source for local governments in China. In this circumstance, the regulation plays a 

real role in ensuring the amount of farmland rather than protecting farmland from 

converting to urban area. “Dynamic balance” thus becomes a guide for local governments 

to replace urbanized farmland with other lands. SOC densities of forestland, grassland, 

and water area are generally higher than that of farmland. Since SOC densities of 

farmland and urban area are very close, an expansion of urban to farmland results in 

carbon losses mainly from losses of forestland, grassland, and water area. 

 
Figure 3a. The marginal costs of soil carbon sequestration under scenario 2 in Inland region 

The story by no means indicates that farmland protection makes no sense. In contrast, 

we emphasize the effectiveness of a land policy. Under scenario 3 and 4, we analyze 

urban control policy package based on the baseline, i.e. increasing agricultural investment 

plus restricting urban expansion. In this case, an extra agricultural investment of one 
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thousand RMB ¥/km2 can sequester 0.2788 and 0.4144 tons carbon, respectively by 

bounding the share of urban area 20% off and 30% off the baseline. These results are 

comparable to that under scenario 2. Figure 5 reports a comparison of percentage of 

farmland, forestland, and urban land areas among the baseline and three scenarios. In 

particular, farmland area has the largest percent in scenario 4 and the least one in scenario 

2; the percentage of forest land area is the percentage of forest is highest in scenario 4 

and lowest under the baseline; while urban area share is largest under the baseline and 

lowest in scenario 4. 

 
Figure 3b. The marginal costs of soil carbon sequestration under scenario 3 in Inland region 
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Figure 3c. The marginal costs of soil carbon sequestration under scenario 4 in Inland region 

Given the relative positions of the cost curves, the results suggest that soil carbon 

sequestration merits consideration by combining a policy of urban development control. 

This policy implication makes sense to the current situation in China. Urban expansion is 

not equivalent to urbanization. Vernon Henderson has described China’s urbanization as 

“too many city, too few people” in one of his recent reports. High-degree urban 

expansion, together with low-level urbanization will impair the sustainable development 

in China. In addition, either land policy or economic incentives should consider a spatial 

variation issue because the shape of cost curve is sensitive to geographical location. 
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Figure 5. The land area percent of farmland, forestland, and urban area with RMB¥ 1000 extra agricultural 

investment in Huang-Huai-Hai Plain 

Concluding Comments 

This paper evaluates the effects of land-use transition on soil carbon storage and 

sequestration costs in Huang-Huai-Hai Plain of China. We model land-use selection with 

a discrete choice method among six alternative options. We also conduct a cross-sectional 

analysis separately on SOC density of three regions. Fine-resolution data of land-use, soil 

property are employed. We estimate the marginal sequestration costs under several 

scenarios. A comparison is carried out among three regions, between economic incentives 

and policy, and within various land policies.  

In terms of marginal cost curves, the sign and magnitude of the slope are both 

sensitive to spatial location. An increment of agricultural investment can increase SOC 

density in inland and south area. However, the increment make SOC density in north area 
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declined. In addition, carbon sequestration in inland region is more cost-effective than 

that in south region. By making a comparison of change in land-use area and SOC 

storage under three land policy scenarios, we find that the policy of urban expansion 

control is more environmental friendly. 
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