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Introduction 

Mathematical programming models have been used widely for simulating decision making at 

farm level, regional level or sectoral level (Takayama and Judge 1971; McCarl and Spreen 1980; 

Hazell and Norton 1986). When costs and returns per unit production activity (input and output 

prices) and input requirements (production functions/relations) are assumed to be constant, 

producer’s resource allocation decisions can be modeled using linear programming. Due to its 

computational efficiency, linear programming has been used in numerous studies at farm level 

and regional level. At a more aggregate or sectoral level, the assumption of constant output and 

input prices may not be valid and price responsive demands and supply responses need to be 

incorporated. Various large-scale nonlinear (typically quadratic) programming models have been 

used for this purpose where market equilibrium prices and quantities are determined 

endogenously in a unifying framework by maximizing the sum of producers’ and consumers’ 

surplus (Takayama and Judge, 1971; McCarl and Spreen, 1980; Norton and Schiefer 1980). 

When working at a large scale regional level or sectoral level it is inevitable to use some 

sort of aggregation in the model and work with aggregate representative producers instead of 

numerous individual producers. There are two major reasons for this: 1) disaggregate data for 

individual producers, including resource availability, technology parameters (input uses per unit 

activity), and crop budgets may not be available; 2) incorporating the resource allocation 

decisions of all producers in a unified framework would lead to an unmanageably large 

programming model. To avoid computational difficulties and work with a smaller model that 

may serve the purposes of the original simulation model individual firms/decision makers need 

to be aggregated into a small number of firms each of which is assumed to be endowed with the 
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resources available to all firms that comprise the aggregate firm and utilize a production 

technology that characterizes the ‘average’ technology used by the individual firms. Various 

approaches have been used for this purpose, such as grouping of firms with similar 

characteristics (size, etc.) and averaging the data over those firms in the same geographical area.  

Whether the input and output prices are constant or determined endogenously, a common 

problem when using mathematical programming models for farm-level or sectoral analysis is the 

possibility of extreme specialization in supply responses. This is particularly crucial when 

working with aggregate representative producers since aggregation bias may distort the data and 

the decision space underlying the original decision problem. For instance, a region may be 

assigned a small subset (even just one) of all possible production activities in the model solution 

simply because the cost benefit parameters for the aggregate problem may make those activities 

the most profitable ones and resources owned by individual firms are assumed to be traded freely 

within the aggregate unit, which is unrealistic and therefore would not be allowed in the original 

formulation (before aggregation). Such extreme solutions may be dramatically different from the 

observed supply responses, therefore they would be useless for practical purposes. A widely used 

approach to prevent extreme specialization and obtain diversified solutions is to impose 

upper/lower bounds (flexibility constraints) in the model. However, this approach is usually 

based on subjective judgment and may not have a solid justification, therefore the validity of 

such bounds and the representativeness of the model solutions are often questioned. Another 

widely used approach to prevent extreme specialization is consideration of multi-output 

production activities (e.g. crop rotations) instead of simple (one output) production activities. 

This is consistent with reality since most producers prefer multi-output production alternatives 

because of agronomic reasons (such as pest problems and resulting yield losses) and also because 
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of hedging against market risks (price uncertainty). Therefore, unlike imposing bounds on 

planting decisions, this approach is justifiable and reflects the actual decision making behavior. 

Incorporating multi-output planting decisions allows expanding the production of any given crop 

only by simultaneous expansion of other crops included in the rotation practices that appear in 

the optimal solution, therefore the possibility of extreme specialization will be reduced if not 

totally eliminated. However, this may not be an ultimate solution the problem. Due to data 

inaccuracies and aggregation bias, still unrealistic crop patterns may come up (which may not be 

as extreme as the solutions that could be obtained otherwise –i.e. without rotation activities) if 

the model selects a set of most profitable rotation practices that may not reflect the observed 

behavior. Altering the flexibility constraints (bounds) or composition of the rotation activities 

considered in the aggregate model may result in dramatically different solutions than that would 

be obtained by aggregating the true optimum solutions of the individual firm models.  

Responding to the needs described above, McCarl (1982) introduced the ‘historical crop-

mix approach’ as a methodological alternative in programming models of supply response. 

Instead of detailed micro-level data, this approach relies on historical observations of farmers’ 

aggregate responses, which can be easily obtained from publicly available statistics (such as 

NASS) and other data sources. Assuming that the ‘feasible’ solutions must lie within the convex 

hull (weighted averages) of historical planting decisions the model finds the best combination of 

those solutions that optimizes the objective function under the prevailing market conditions that 

may be different from the market conditions that have led to the observed responses. This is done 

by imposing a constraint which restricts the solution to that range and determining optimal 

values of the weights assigned to individual crop mixes which are treated as endogenous 

variables.  
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The historical crop mix approach described above has a theoretical foundation related to 

linear programming. The optimum solutions of linear programs (e.g. crop production decisions at 

firm level) occur at corner solutions (extreme points). Önal and McCarl (1989, 1991) show that 

the optimum solutions of an aggregate linear program including all firms as independent decision 

makers are in a one-to-one correspondence with the optimum solutions of the individual firm 

models. More precisely, the aggregate solution (an extreme point of the aggregate model –

assuming linear constraints) is formed by stacking the optimum solutions (extreme points) of the 

firm level models. Thus, an observed historical crop pattern (mix) reflects the aggregates of the 

optimum responses of individual farms if we assume that farmers make their resource allocation 

decisions in an optimization framework. Another important theoretical result in linear 

programming is that a weighted average (convex combination) of two optimal solutions is again 

optimal. Therefore, the observed crop mixes can be considered as corner solutions of the 

decision space of the aggregate producer and an optimum solution would be a convex 

combination of those extreme points. This eliminates the need for full information about micro-

level input/output data and extreme points of the firm problems. Rather, we only need a set of 

observed aggregate supply responses, namely historical crop mixes that characterize the decision 

space of the aggregate producer. The model assigns a non-negative weight variable to each 

historical crop mix that will be determined endogenously. Once the weight variables are 

determined the optimal aggregate supply response will be determined as a weighted sum of the 

corresponding historical mixes. Therefore, this approach is computationally simple, incorporates 

easily available data, and replaces subjective planting flexibility constraints with a constraint set 

that is theoretically justified. This approach can also be combined with other modeling 

approaches aiming at limited flexibility, such as crop rotation activities. For a detailed theoretical 
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discussion see Önal and McCarl (1991). Several empirical applications have employed the 

historical crop mix approach in various contexts (e.g., Adams et al. 1985; Schneider and McCarl 

2005; Butt et al. 2005). 

Shortcoming of historical mixes 

Under ‘normal’ market conditions the set of historical crop mixes would be adequate to produce 

satisfactory results with a mathematical programming model. When production possibilities are 

expected to fall far outside the historical ranges, however, we may encounter a problem that is 

opposite of extreme specialization, namely the historical crop mixes may become too restrictive. 

Since, by construct, the optimal responses obtained from the model have to be within the 

historical ranges they would not allow large deviations from the observed supply responses, but 

such deviations might occur under market conditions that are very different from the past market 

conditions due to a supply or demand shift. The unprecedented increase in US ethanol 

production from corn is a typical example of this and it is in fact the main motivation of the 

present paper.  In the past decade the crop acreage trends have been altered dramatically, both at 

regional and national levels, as a result of the substantial shift in corn demand driven by the 

demand for fuel ethanol. This trend is likely to continue in the next decade given the ambitious 

Renewable Fuels Standards (RFS) and biofuels production targets (mandates) stated by the 

Energy Independence and Security Act (EISA) of 2007. Annual ethanol production in the US 

increased from about 1.6 billion gallons in 2000 to 6.5 billion gallons in 2007 (RFA). This 

increased the competition between energy crops and commercial row crops on existing 

agricultural lands beyond expectations and resulted in dramatic price volatility, which was 

particularly noteworthy in the past few years. The EISA targets a 36-billion gallon ethanol 

production capacity by 2022, of which 15 billion will be corn ethanol and the remaining 21 
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billion will be comprised by advanced biofuels, mostly cellulosic ethanol derived from crop 

residues (corn stover, wheat straw), woody biomass and perennial grasses (Figure 1). This will 

further increase the competition between energy crops and commercial row crops on existing 

agricultural lands, and may also increase the pressure on degraded or marginal lands and lands 

set aside for conservation (CRP lands). The recent economic crisis and reduced oil prices have 

slowed down the expansion in ethanol production capacity and some ethanol plants have 

curtailed or entirely halted their operations, but if implemented the renewable energy policy 

would reverse the recent developments and put the ethanol industry back on track and stimulate 

further expansion. Consequently, producers’ acreage responses and crop pattern are likely to be 

dramatically different from the observed patterns, thus the historically observed crop mixes 

would be inadequate and too restrictive when simulating supply responses influenced by 

bioenergy demands and the prospect of planting bioenergy crops on a substantial amount of land. 

In this paper we introduce a method to address this issue by expanding the crop mixes 

synthetically based on historical data.  

Synthetic crop mixes 

The restrictiveness of the historical crop mix approach has been acknowledged by other 

researchers also. To address this issue, historical mixes are appended by crop mixes that have 

been generated either by using expert opinion or by using an auxiliary farm level model that 

allows increased planting flexibility (as in Adams et al., 1985). This paper introduces an 

alternative approach for enlarging the set of historical mixes in a systematic way relying again on 

historically observed supply responses.  
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 The method proposed here is quite simple and practical. Suppose using historical 

acreages and market prices a set of own and cross price acreage elasticities are estimated.  We 

generate ‘hypothetical’ or ‘synthetic’ those mixes by considering prospective market conditions 

(commodity prices). By systematically varying the commodity prices, we generate a number of 

new ‘columns’ (vectors of crop acreages) each representing the supply response under a given 

hypothetical price vector. Specifically, we consider n crops and assume that the acreage response 

of an aggregate producer (representative farmer at regional or sectoral level) is a function of the 

vec tor of prices of all crops, including the own price and the prices of competitor crops. Using 

the estimated acreage response elasticities, we can express this functional relationship by: 

)ln()ln( j
Ij

iji PA ∑
∈

= ε , for Ii∈  

 where I is the set of crops; Iji ∈, ; iA denotes the acreage of crop i ; jP denotes the price of crop 

j ; and ijε denotes the elasticity of acreage of crop i with respect to the price of crop j. We then 

consider N arbitrarily specified probable crop price vectors, denoted by ,..,Nnni 1 ,)( =℘ . By 

plugging each of these N prospective price vectors into the above equation, we determine N 

‘hypothetical’ or ‘synthetic’ acreage responses denoted by ,..,Nnni 1 ,)( =S . These mixes are 

appended to a set of observed mixes denoted by .1 ,)( ,..MmA mi = The supply response (crop 

pattern) is then restricted to be a weighted average (convex combination) of the mixes in the 

resulting set ,..Mm,..,NnA nimi 1 ,1 },)(,){( ==S . Since the elasticities are assumed to be 

estimated using historical acreage responses to price variations this approach is ‘objective’ and 

relies on the observed behavior of producers rather than ‘subjective’ judgment of experts.   
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 In the next section we explain how the synthetic mixes are used in a prototype price 

endogenous model along with the historical mixes to determine the market equilibrium. We then 

present an empirical application of the proposed approach to determine the acreage responses 

that are consistent with the ethanol mandates and the derived demand for corn under the RFS 

standards. We compare the results of the model with and without incorporating the synthetic 

mixes to demonstrate the merits of the proposed method. 

Supply responses under unusual market conditions 

In this section we present the empirical results of a price endogenous mathematical programming 

model that utilizes the expanded crop mix approach described above and determines the market 

equilibrium and acreage responses under market conditions that are substantially different from 

the market conditions observed in the past.  We also determine the market equilibrium without 

employing synthetic mixes and using only the historical crop mixes and compare the empirical 

results of the model obtained with both approaches to illustrate the merits of using synthetic 

mixes.  

 Given the scope of the paper, we present only a simplified version of the actual 

mathematical programming model used in the analysis and illustrate the use of expanded crop 

mixes. Suppose the demand function for crop Ii∈ is given by )( iii qfp = , where ii qp  , denote 

the price and consumption of crop i . Let iQ denote the equilibrium demand level; 

ikii ayc , , denote the cost, crop yield and use of input k per unit acreage of crop i; and kb denote 

the availability of input k.  The model below determines the market equilibrium endogenously: 
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where the weights  nm βλ  and  are to be determined by the mathematical program as endogenous 

variables. This restricts the acreage responses generated by the model to a weighted average of 

historical and synthetic crop mixes, thus prevents extreme crop specialization and allows some 

flexibility beyond the observed acreage responses but within the limits of the synthetic mixes.  

When only the historical mixes are to be used, the nβ variables and the summation terms 

involving those variables are eliminated.  

 In the actual implementation of the model, whose results are reported below, we 

consider annual and perennial bioenergy crops, a multiperiod planning horizon and dynamic 

relationships, various tillage practices and rotation activities for producing individual crops, 

multiple regions and regional crop mixes (both historical and sytnthetic). We used the Illinois 

data and incorporated the RFS mandates by assuming a proportional share for Illinois in the total 

ethanol production (both corn and cellulosic ethanol) based on the State’s share in the current 

ethanol production. The purpose here is to demonstrate the merits of the synthetic mixes rather 

than providing an indepth analysis of the biofuel mandates. 
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 Table 1 displays some of the key results obtained from the model with and without 

incorporating synthetic crop mixes (in the latter case the model uses the historical mixes only). 

As can be seen in the table, incorporating synthetic mixes has a significant impact on the acreage 

of two major crops, corn and soybeans, produced in Illinois. While corn acreage in year-16 is 

underestimated only slightly, 3.4%, in the case when synthetic mixes are not included in the 

model, the impact on soybean acreage is somewhat larger, 6.3%. These results may be 

considered insignificant, but it should be noted that the limited rotation practices in Illinois (50-

50 corn soybeans) play a significant role. Applications to other regions may show dramatic 

effects on crop pattern. At national level the impacts on supply responses and market prices may 

be more pronounced than the results reported here. 

Table 1: Selected results of the model with and without expanded crop mixes (for Illinois) 

Historical crop mixes only Historical and synthetic mixes 
Year-1 Year-10 Year-16 Year-1 Year-10 Year-16 

Corn acreage (1000 acres) 11,530 12,714 11,906 11,556 13,026 12,312
Soybean acreage (1000 10,145 8,415 7,019 10,073 8,201 6,581 
Biomass acreage (1000 - 710 3,153 - 589 3,123 
Corn price ($/bu) 4.70 5.81 6.24 4.70 5.72 6.09 
Soybean price ($/bu) 10.57 10.91 11.19 10.58 10.98 11.35 
Corn consumption (mil.bu) 1,382 921 811 1,385 957 852 
Corn use for ethanol (mil. 464 1,071 1,071 464 1,071 1,071 
Soybean consumption 454 367 313 451 355 285 
 

Conclusions 

This paper presented an extension of the crop mix approach introduced by McCarl (1982) by 

incorporating synthetic mixes generated by acreage elasticities (estimated by using historically 

observed data) and prospective crop prices that may prevail under market conditions that differ 

significantly from the past. Empirical results of a price endogenous mathematical programming 
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model show that incorporating synthetic mixes reduces the inflexibility of using historical crop 

mixes alone.  
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Figure 1: Biofuels production in the US and EISA Mandates. 
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Figure 2: Competition for land between corn and soybeans 
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Figure 3: Trend in corn prices  


