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It has been argued that climate change, especially recent global warming, has influenced 

the agricultural productivity.  Its impact on average agricultural productivity and its 

variability has been documented in a large body of literature. Economists have also been 

interested in evaluating the returns to research in agriculture as a means of both 

understanding returns and as a backup for research advocacy processes. Recently the rate 

of return as measured through a total factor productivity approach has been falling. 

Pardey et al. (2007) have speculated this may be due to altered resources allocations and 

unfavorable weather conditions. 

One explanation for the unfavorable weather component may be the early onset of 

climate change and if this persists is both another manifestation of societal sensitivity to 

climate change and an area where adaptation investments may be needed as climate 

change proceeds. 

This article studies how climate change affects the impacts of public agricultural 

research investments on agricultural productivity. The proposed hypothesis is that current 

changing climatic variables are reducing the effect of public research investments on 

agricultural productivity. As a result, we should expect higher volumes of research 

investment, adapting to projected climatic conditions, in order to maintain the current 

rates of return of agricultural research. 

The article is organized as follows: first we show a review of previous efforts in 

the determination of U.S. state agricultural productivity; second, we describe the data 

used in this study; then we discuss several estimation issues that arise because of the data 

structure, namely the non stationarity of the series, and the proposed methods to account 
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for it; the next section discusses estimation results. We finalize this article with some 

concluding remarks. 

Public investment in Ag. Research 

Agricultural total factor productivity (TFP) can be defined as the ability or efficiency to 

produce agricultural outputs with a given amount of inputs such as labor, capital and 

materials. It is usually measured as the ratio of product per unit of equivalent input. One 

widely accepted assumption is that efficiency in production can be enhanced through 

more public and/or private investments in agricultural research. Besides, it is believed 

that some exogenous factors, such as climate, can alter in some ways (positively or 

negatively) the ability to produce more agricultural outcomes with a given amount of 

inputs and research investments.  

Huffman and Evenson (2006a) found that both public agricultural research and 

agricultural extension have positive and significative impacts on state agricultural 

productivity. In their article, they describe the structure of public agricultural funding, 

noting that State Agricultural Experiment Stations (SAES) account for 60% of U.S. 

public agricultural research, with SAES funding being originated from different sources, 

making that funding relatively diversified. From a SAES viewpoint, funding comes in 

two ways: Formula funds, which are recurring and allocated among the states; and 

Grants, which are allocated after a reduced selected number of proposals have been 

accepted, with no guarantee of continuation after the initial grant period. Using a pooled 

cross-section time-series model of agricultural productivity, they showed that public 

agricultural research funds have a different impact depending on the source: 
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programmatic funding, including federal formula funds, has a larger impact on state 

agricultural productivity than federal grant and contract funding. They also found that 

reallocating funds from formula funding to grant funding lowers agricultural 

productivity.   

Huffman and Evenson (2006a) obtained their results using an econometric model 

which related state agricultural total factor productivity (TFP) as a function of state 

public agricultural research capital, private agricultural research capital, and public 

agricultural extension capital. Since this article objective is to test for the effect of climate 

change over the return of public investment on agricultural TFP, we additionally included 

climatic variables into the aforementioned model, such as temperature, precipitation, and 

intensity of precipitation. All these variables are explained with more detail in the next 

section. 

Data 

We used annual observations for the 48 contiguous United States to form a cross-section 

time-series structure spanning from 1970 to 1999, obtaining 1,440 observations. 

Although climatic data is available for more periods, we used that time span in order to 

match with the agricultural TFP and research data used in Huffman and Evenson (2006a). 

They use state data on state agricultural TFP, public agricultural research capital (RPUB), 

share of SAES budget coming from federal formula funds (SFF), share of SAES budget 

from federal grants and contracts (GR), stock of public extension capital (EXT), public 

agricultural research spill-in stock
1
 (RPUBSPILL), private agricultural research capital 

(RPRI), and regional dummies which group the states according to the Farm Production 
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regions defined by the Economic Research Service (ERS) of the United States 

Department of Agriculture (USDA). All the monetary variables are expressed in constant 

dollars using the Huffman and Evenson (2006b) research price index.  

One distinctive feature of agricultural research expenditure’s impact is that it 

follows a trapezoidal pattern: first, there is a gestation period of two years, during which 

the effects of research are negligible; second, impacts are assumed to be positive and 

increasing, lasting about seven years; then, impacts reach a maturity constant level during 

six years; and finally, there is a constant decline of the impact which eventually reach 

zero value after twenty years. This feature was incorporated in the way Huffman and 

Evenson (2006a) constructed the agricultural research expenditures variable. For more 

details about how other agricultural research and TFP related variables were constructed 

or their original source, see Huffman and Evenson (2006a, table 3).  

State-level climate data was obtained from the National Oceanic and Atmospheric 

Administration (NOAA) website. We took information on mean annual temperature (F) 

and total yearly precipitation (inches), which are the most common climatic variables 

considered in these kinds of studies. We also constructed a measure of the intensity of 

yearly rain precipitation, defined as the ratio of total precipitations from the month with 

the highest amount of precipitation to the yearly total.  This measure can range by 

construction from 1/12 (uniformly intense during the year) to 1 (one month gets all yearly 

rain). 
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We also tried to use more climatic variables in order to account for the effect of a 

more volatile climate or dryness severity over agricultural TFP. Those variables, such as 

standard deviation of temperature and precipitation, and the Palmer Drought Severity 

Index, resulted to be not significant in our model. 

Finally, a linear trend was included in the model to incorporate the effect of 

exogenous or non observable technological progress. All the variables in the model are 

expressed in natural logarithms, so the coefficients can be interpreted as elasticities of 

TFP with respect to each explanatory variable. 

Estimation methods 

Baltagi (2008) affirms that the focus of panel data econometrics has shifted toward the 

study of macro panel with large N (number of individuals) and large T (number of 

periods. This type of model raises estimation issues such as non-stationarity, spurious 

regressions and cointegration.  

The model we want to estimate relies heavily on the assumption that the related 

variables are stationary. Granger and Newbold (1974) showed that deterministic and 

stochastic trends in the series can induce spurious correlation between variables; as a 

result we can obtain correlations between variables that are increasing for different 

reasons and in increments that are uncorrelated (Banerjee et al., 1993). 

A simple approach to correct this problem was to include a linear trend as a 

explanatory variable. However, spurious correlation can still be present after controlling 

for a linear time trend. Phillips (1986) stated that t-statistics for the time trend are 
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generally inflated, when the other variables are not stationary, making us wrongly believe 

that a trend is significative when it is not. 

Panel Unit Root Tests 

To avoid this kind of problems we must test for stationarity of the variables. The way to 

test for non-stationarity is through a unit root test. Traditional unit root tests used to deal 

with testing one temporal series at a time. However, testing for unit roots in a panel 

structure as a whole is a relative new procedure with more complicated asymptotic 

properties that depend deeply on the assumed structure of the data to be tested. We have 

performed several tests to check the robustness of our results to different specifications 

and hypotheses.  

Levin, Lin and Chu (2002) suggest a more powerful panel unit root test than 

performing individual unit root tests for each cross section. The null hypothesis is that 

each individual time series contains a unit root against the alternative that each time 

series is stationary. The structure to be tested has the following form, similar to an 

Augmented Dickey-Fuller (ADF) test but into a panel framework: 

(1) , 1 ,

1

, 1, 2, 3
ip

it i i t iL i t L mi mt it

L

y y y d m    



        

where  y  is the variable to be tested
2
 for unit root,   is the lag operator, ip  is the lag 

order, which is allowed to vary across cross sections and is determined into the test 

procedure, these terms are included to take into account heterogeneous serial correlation 

across cross sectional units; mtd  can take three values depending on the model 
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specification: td1 ={empty set}, td 2 ={1} including an individual constant and td3 ={1, t} 

including an individual constant and an individual linear trend;   is an error term, and 

miiLi  ,,  are parameters to be estimated. The null hypothesis of unit root is 

0:0   iH  for all i while the alternative is 0:1  iH  for all i. Levin, Lin and 

Chu (2002) showed that the estimator 

t  is asymptotically distributed as )1,0(N . 

As stated before, LLC test is restrictive in the sense that it requires   to be 

homogeneous across individuals. Im, Pesaran and Shin (2003) permit a heterogeneous 

coefficient on 1, tiy , proposing an alternative testing procedure that averages the 

individual unit root test statistics. The estimated model is also the one given in equation 

(1). However, the null hypothesis is that each series in the panel has unit root, 

0:0  iH  and the alternative hypothesis states that some individual series have 

unit roots while some are stationary, which can be expressed as 0:1 iH   for i = 1 , 

2,…, N and 0i  for i = N + 1,…,N. 

The IPS t  statistic, is defined as the average of all the N individual ADF 

statistics: 

(2) 
1

1
i

N

i

t t
N




   

where 
i

t  is the individual ADF t-statistic that tests 0:0 iH  . Im et al. (2003) show 

that when the lag order is non zero for some cross sections, and after a proper 

standardization of t , the resulting estimator, IPSt  is distributed as )1,0(N .
3
 Using Monte 
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Carlo experiments, they show that if we select a large enough lag order for the ADF 

regressions, the small sample properties of IPS test outperform those from LLC test. 

However, Im, Pesaran and Shin (2003) found that both LLC and IPS tests present 

important size distortions when either N is small or N is relatively large with respect to T. 

 Besides the popular LLC and IPS tests, we performed three more sophisticated 

panel unit root test which try to correct some flaws that the former tests could present. 

They are: the Breitung (2000) test, which shows a higher power than LLC or IPS tests 

when they are compared in Monte Carlo experiments; the Maddala and Wu (1999) Fisher 

type test, which can be applied using ADF or Phillips-Perron (PP) versions of the unit 

root tests for each cross section, and is also found to be superior to the IPS test. Finally, 

we performed a residual-based Lagrange multiplier (LM) test developed by Hadri (2000), 

in which the null hypothesis is that all individual series do not have a unit root against the 

alternative of a unit root in the panel.  

Panel Cointegration Tests 

In the conventional time series case, cointegration refers to the idea that for a set of 

variables that are individually I(1), some linear combination of these variables can be 

described as stationary, say I(0). The vector of slope coefficients that gives this stationary 

combination is referred to as the cointegrating vector, which is generally not unique, and 

need to be normalize in some way. The following set of tests do not address issues of 

normalization or questions regarding the particular number of cointegrating relationships, 

but instead they are interested in the simple null hypothesis of no cointegration versus 

cointegration.  
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One obvious way to perform such kind of test is to take the residuals from a panel 

regression involving I(1) variables, and apply any of the aforementioned panel unit root 

test to those residuals. However, there are more sophisticated tests available which have 

more power, and deal with some particular structural issues that panels can exhibit. 

Kao (1999) proposed DF and ADF tests of unit root for the residuals ite  as a test 

for the null of no cointegration. The DF test is applied to the fixed effect residuals using 

this specification: 

(3) , 1
ˆ ˆ
it i t ite e v   . 

We are going to use for this article two versions of the test which assume strong 

exogeneity of the regressors, those are: 

(4) 
ˆ( 1) 3

10.2

NT N
DF

  
  

and 

(5) 1.25 1.875tDF t N   

where ̂  and t  are the estimated parameter of equation (3) and its t-statistic, 

respectively. The asymptotic distribution of the tests converges to a standard normal 

distribution )1,0(N  by sequential limit theory. 

Other tests we performed were: the Pedroni (1999) panel cointegration tests, 

which allow a considerable degree of heterogeneity and endogenous regressors. Indeed, 

an important feature of these tests is that they allow not only the dynamics and fixed 
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effects to differ across members of the panel, but also that they allow the cointegrating 

vector to differ across members under the alternative hypothesis. These tests are applied 

over the regression residuals from the hypothesized cointegrating regression. In the most 

general case, this may take the form: 

(6) 1 1it i i i it Mi Mit ity t x x e          

where M  refers to the number of regression variables. Notice that this structure allows 

heterogeneity for the panel individuals at different levels: individual effects ( i ), 

individual linear trends ( i ), and regressor coefficients ( mi ). Pedroni (1997) derives the 

asymptotic distributions and explores the small sample performances of seven different 

statistics that combine several model specifications.  

Finally, we performed a new family of tests by Westerlund (2007), which are 

based on structural rather than residual dynamics. These structural kind of test does not 

impose any common factor restriction,
4
 which is a main reason associated to loss of 

power for residual-based cointegration tests. The tests are based on the estimation of the 

following error correction equation: 

(7) 1 1

1 0

( )
i ip p

it i t i it i it ij it j ij it j it

j j

y d y x y x e       

 

            

where y is the dependent variable, x  is a vector of independent variables, ),1(  tdt  is 

the set of deterministic components, and   is the first difference operator. Westerlund 
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(2007) states that if 0i , then there is error correction, which implies that ity  and itx  

are cointegrated, whereas if 0i , there is no error correction and no cointegration.  

Panel Error Correction Model 

There is a tight connection between cointegration and error correction model (ECM) in 

the sense that ECM is consistent only if the implied variables are cointegrated. The same 

assumption that we make to produce cointegration implies (and is implied by) the 

existence of an ECM. This result is known as the Granger representation theorem, 

explained in Hamilton (1994). 

Taking the more complicated framework of a multivariate and heterogeneous 

panel model, the error correction equation can be expressed as: 

(8) 
1 1

1

1 0

( )
p q

it i it i it ij it j ij it j i it

j j

y y X y X     
 



  

 

            

where the parameter i  is the error-correcting speed of adjustment term. It is expected 

that 0i , in which case there is evidence of cointegration. This means that the 

variables show a return to a long-run equilibrium. The vector i   represent the long-run 

relationship between the variables, and the other estimated parameters ),( ijij   

characterize the short-run dynamics of the implied variables. 

Pesaran, Shin and Smith ( 1999) proposed a Pooled Mean group (PMG) estimator 

that combines both pooling and averaging: the estimator allows the intercept, short-run 

coefficients, and error variances to differ across the individuals but constrains the long-
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run coefficients to be equal across individuals. Since equation (8) is non linear in the 

parameters, they developed a maximum likelihood method to estimate the parameters.  

The estimators can be computed using the usual Newton-Rapson algorithm, which needs 

first and second derivatives of the likelihood function, or an iterative “back substitution” 

algorithm which requires only first derivative computations. See more details in Pesaran, 

Shin and Smith (1999). 

Empirical Results 

Huffman and Evenson (2006a) uses state level data on state agricultural TFP, public 

agricultural research capital (RPUB), share of SAES budget coming from federal formula 

funds (SFF), share of SAES budget from federal grants and contracts (GR), stock of 

public extension capital (EXT), public agricultural research spill-in
5
 stock 

(RPUBSPILL), private agricultural research capital (RPRI), and regional dummies which 

group the states according to the Farm Production regions defined by the Economic 

Research Service (ERS) of the United States Department of Agriculture (USDA).  

The Huffman and Evenson (2006a) version of the econometric model for 

agricultural TFP is 

(9) 

2

1 2 3 4

2

5 6 7

8 9 10

ln ln [ln ] [ln ]( )

[ln ] [ln ]( )

ln

ilt ilt ilt ilt ilt ilt

ilt ilt ilt ilt ilt

ilt ilt l ilt

TFP RPUB RPUB SFF RPUB SFF

RPUB GR RPUB GR RPUBSPILL

EXT RPRI trend u

   

  

   

   

  

    

 

where the sub-index l represent the Farm production regions mentioned before. Those 

regions are: Northeast, Southeast, Central, North Plains, South Plains, Mountains, and 
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Pacific. Huffman and Evenson (2006a) claim that since agricultural research capital is 

derived using thirty five years of data, SFF and GR were lagged twelve years, hence they 

are placed at the mid-point of the total lag length. 

This model is expressed in a double-logarithmic functional form such that the 

estimated coefficient i  represents the elasticity of TFP with respect to any variable of 

interest (RPUBSPILL, EXT, RPRI). According to Huffman and Evenson (2006a) the 

funding shares (SFF and GR) are multiplied with the public agricultural research capital 

(RPUB) with the intention of making the elasticity of TFP with respect to RPUB a 

variable that depends on the funding composition: 

2

65

2

432 )()()ln(/)ln( GRGRSFFSFFRPUBTFP   ;  

in the same way the effect on TFP of a one percentage change in SFF (or GR) is not 

constant and it can include nonlinear impacts of funding composition: 

RPUBSFFSFFTFP ln)2()ln(/)ln( 43    

RPUBGRGRTFP ln)2()ln(/)ln( 65   . 

The estimation method that Huffman and Evenson (2006a) used is the Prais-

Winsten estimator defined in Beck and Katz (1995) and Greene (2003), which fits linear 

cross-sectional time-series models when the disturbances are not assumed to be 

independent and identically distributed (i.i.d.). Instead, in their estimations the errors are 

allowed to be heteroskedastic and contemporaneously correlated across panels. 

Additionally, that estimator may allow the disturbances to be autocorrelated within the 
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panel. Their results are displayed in the columns 1 and 2 of Table 1 for comparison 

purposes with our findings.  

 One limitation to that estimation method is that it does not consider the case when 

the implied variables are not stationary. However, the first exercise we performed was to 

ignore any non stationarity issue, and use the same estimation methodology including our 

climatic variables into the model.  

The estimations of the Huffman and Evenson model with climatic variables are 

reported in columns 3 and 4 of Table 1. The natural logarithm of temperature was 

multiplied by the regional dummies to take into account differentiated effects of 

temperature in each region. We believe a priori that a higher temperature can be harmful 

in some regions located in the south, while it can be beneficial in more northern latitudes. 

Total Precipitation and Precipitation Intensity were reported with no region interactions 

because we believe that those variables do not have a behavior similar to temperature.
6
   

One interesting result is the effect of the original research capital variables after 

controlling for climatic variables. Comparing our results with those from Huffman and 

Evenson (2006a), we find that the terms RPUB x SFF, RPUB x SFF
2
, and RPUB x GR

2
 

are not significative anymore. The elasticity of TFP to Public research capital (RPUB) is 

reduced a 36% from 0.139 to 0.089,
7
 the elasticity of TFP to Public Extension Capital 

(EXT) is reduced a 30% from 0.110 to 0.077, the effect of Public Research Capital Spill-

in from near states (RPUBSPILL) becomes not significative after controlling for climatic 

variables, and the elasticity effect of Private Agricultural Research Capital (RPRI) which 
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was negative but not significative before, now becomes significatively positive with a 

value of 0.044. 

Regarding the regional dummies individual effects, we obtain that taking the 

Central region as benchmark, the Southeast and Pacific regions show a lower level, while 

the Southern Plains exhibit a higher level of Agricultural TFP, after controlling for all the 

other explanatory variables. This is evidence of the existence of unobservable effects that 

affect the agricultural productivity at different degrees in each region. 

The main climatic variables effect are related to Total Yearly Precipitation, which 

has a positive effect over Agricultural TFP, with an associated elasticity of 0.069, while 

the effect of Precipitation Intensity, expressed as fewer but stronger storms is negative, 

showing an elasticity with a magnitude of -0.046. These results are consistent with our a 

priori conjectures. Meanwhile, we find statistical evidence that supports the idea of 

differentiated effects of temperature over regional TFP. In particular, we find that for the 

Southeast and Pacific regions the statistical effect of higher temperature over factor 

productivity is positive, while it is negative for the Southern Plains. There is no 

conclusive evidence with respect to the other regions. Finally, we find evidence of a 

positive linear trend in the Agricultural TFP. 

Those results can be questionable if the included variables are non stationary. 

Table 2 shows the results of several panel unit root tests we performed. We used two 

different tests specifications to validate the robustness of our findings: only with 

individual effects, or with individual effects and individual trends for each cross-section. 

The tests were applied to all the variables of the econometric model from Table 1, in 
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levels as well as to their first differences, to determine whether the tested variables are 

I(0) or I(1). Table 2 reports the test statistic, its significance level (p-value) and the 

number of observations implied by the test, which is a function of the number of lags 

chosen for the test.  

One interested finding is that for some variables we can find contradictory results, 

one kind of test indicates that the variable is stationary while other test can suggest that it 

is not. For other variables, the tests are more conclusive, and almost all of them report the 

same qualitative result. Whenever we find inconsistent results for all the tests, we choose 

the result which is obtained in more cases, or with fewer contradictions. 

The first evaluated variable is TFP
8
. For all the tests for which the null hypothesis 

is the existence of unit root, it is not rejected. For the variable in levels the significance 

values are very close to one. After differencing the variable, the null hypothesis of unit 

root is rejected for all the tests. Meanwhile, if we apply the Hadri test to that variable, the 

null hypothesis of no unit root is rejected when applied to the levels, but it is not rejected 

at 5% of significance when applied to the first difference. If those tests are applied using 

an specification that includes individual linear trends, the results are contradictory in the 

sense that some tests suggest the existence of unit root while at the same time other tests 

indicate that unit root is rejected. The final conclusion for this variable is to be in favor of 

the results supporting the existence of a panel unit root. 

Using the specification with individual effects only, we can summarize our results 

in the following way. TFP is I(1), with no contradictory results for the tests in levels as 

wells as their first difference counterpart. RPUB is found to be I(1) with 4 contradictory 
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results out of a total of 12 tests (2 in levels, 2 in differences). RPUB x SFF is I(0), with 3 

contradictions in levels and no contradictions in first differences, RPUB x SFF
2
 is I(0) 

with only one contradiction in levels, RPUB x GR is I(1) with 2 contradictions in levels, 

the case of RPUB x GR
2
 gives us 3 contradictions in levels, but no contradictions in the 

first difference specification, we decide to consider this variables as I(1), EXT is 

considered as I(0) with 2 contradictions in levels and 1 in differences, RPUBSPILL is 

found to be I(1) with one contradictory result in levels and 2 in first differences. For 

RPRI the results show many contradictions, so it is difficult to determine a clear 

conclusion about this variable. It is apparently I(1) when the test is applied in levels (2 

contradictions), but after differencing the variable, the test results suggest we need one 

more differentiation to make it stationary. The climatic variables Temperature, 

Precipitation and Intensity show a stationary pattern. We find that all of them are 

stationary, finding two contradictory results for Temperature, and only one in the other 

climatic variables. 

The results abovementioned show us that some of the involved variables are in 

fact non stationary. One suggestion to deal with this problem would be to take first 

differences to the I(1) variables and estimate the econometric model in that manner. This 

is technically correct; however there is some statistical information that is lost in the 

differentiation process. We can still work with the non differenced variables if they hold 

the cointegration condition, and take advantage of a richer specification that incorporates 

both the long-run relation and the short-run dynamics, the Error Correction Model 

(ECM).  
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The panel cointegration test results are reported in Table 3. We first show the 

standard panel unit root tests applied to the estimated residuals of the pooled estimation 

including all the I(1) and I(0) variables from Table 1. Although those are not properly 

cointegration tests, several articles have used them to check for cointegration of I(1) 

variables.
9
 We report those results for comparative purposes. Our results are very 

consistent regardless the method we used: the panel unit root tests suggest that the 

estimated residuals are I(0) using a model with trend or without trend, with the only 

exception of the Hadri test. All the test statistics are significative, rejecting the null 

hypothesis of unit root. For the more formal panel cointegration tests, the results are very 

similar, rejecting the null hypothesis of no cointegration. All the 14 variants of Pedroni 

test report that the variables are cointegrated, with the exception of two cases: the panel 

v-stat for a model with individual effects, and the group rho-stat for a model with 

individual constants and trends; Kao cointegration tests are fully consistent with those 

findings. Westerlund Error-correction-based test yields mixed results: one “group” 

statistic suggest cointegration, and the other one does not, while one “panel” statistic 

implies cointegration, and the other one rejects it. Our conclusion is that the statistical 

evidence supporting cointegration is very strong. 

With the last results at hand, we estimated the TFP model using an ECM 

framework. As explained before, we assume homogeneous coefficients for the long-run 

equation and heterogeneous coefficients for the short-run dynamics coefficients. Table 1 

only reports the long-run coefficients in order to compare these results with the previous 



 20 

ones. Notice that given the structure of the estimation method, the regional dummies 

cannot be identified for estimation. 

Using the ECM framework, more variables become not significative which means 

that using a model without correcting for non stationarity can lead us to assign statistical 

effects to some variables, but those affects seems to be actually spurious. Using the same 

formulas aforementioned, the elasticity of Agricultural Total Factor Productivity (TFP) 

with respect to Public Agricultural research (RPUB) is now equal to 0.108, value that is 

in the midway between what we found with the previous two models (22% less than 

Model 1 result). Public Extension Capital (EXT) is now not significant, while Capital 

spill-in effects become positively significative, with a remarkable elasticity value of 

0.596, several times higher than the values obtained before. The sign of the effect of 

Private Research Capital is negative, as in Model 1 but it is now significant and its 

elasticity value is -0.134.  

Using this kind of model, the long-run relationship between temperature and TFP 

is statistically zero for all regions, with the exception of a negative effect for the 

Southeast. Concerning precipitation and its intensity, both variables are significant. 

Precipitation effect elasticity is 0.087, a value that is 25% greater than using Model 2. For 

precipitation intensity, we find that the associated elasticity is -0.053, which has the same 

sign as what is found on Model 2, but with a 15% higher magnitude than before. It is 

noticeable that when using an ECM there is no linear trend effect over Agricultural TFP. 
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Conclusions 

This article examines the impact of climate change on agricultural total factor 

productivity at the state level, after controlling for public agricultural research and 

climate change. This paper takes the previous result of Huffman and Evenson (2006) in 

which they establish whether federal formula or competitive grant funding of agricultural 

research has a greater impact on state agricultural productivity. We estimated a pooled 

cross-section time-series model of agricultural productivity fitted to annual data for forty-

eight contiguous states over 1970–1999, incorporating two new features: the inclusion of 

climatic variables such as temperature, amount and intensity of precipitation, and the 

evaluation and correction of problems due to non stationarity of some of the variables. 

We found that some of the variables involved are I(1), which means that their 

inclusion into the econometric model can lead to undesired properties on the panel 

estimations. We correct the problem testing the existing of cointegration among the non 

stationary variables, and the estimation of a Panel Error Correction Model (ECM). Our 

findings suggest that after controlling for climatic variables and non stationarity, the 

effect of Public Agricultural Research Capital over Total Factor Productivity is reduced.  
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Table 1.  Panel Estimates Model of Agricultural Productivity 

       

Dependent variable: ln (Ag. Total Factor Productivity) Model 1  Model 2  Model 3 

 Coefficient p_value   Coefficient p_value   Coefficient p_value  

ln (Public Ag. Research Capital) 0.1306 0.000  0.0919 0.000  0.1100 0.000 

ln (Public Ag. Research Capital) × SFFt−12 0.0354 0.095  0.0235 0.259  -0.0019 0.907 

ln (Public Ag. Research Capital) × (SFFt−12)
2 -0.0277 0.055  -0.0199 0.150  -0.0078 0.490 

ln (Public Ag. Research Capital) × GRt−12 -0.0345 0.003  -0.0302 0.007  -0.0239 0.010 

ln (Public Ag. Research Capital) × (GRt−12)
2 0.0403 0.089  0.0303 0.191  0.0254 0.373 

ln (Public Extension Capital) 0.1104 0.000  0.0770 0.000  -0.0115 0.487 

ln (Public Ag. Research Capital Spilling) 0.0348 0.036  0.0284 0.110  0.5959 0.000 

ln (Private Ag. Research Capital) -0.0010 0.986  0.1075 0.044  -0.1342 0.004 

D1 (Northeast = 1) 0.0530 0.270  -0.4321 0.587    

D2 (Southeast = 1) 0.0045 0.900  -5.9156 0.000    

D3 (Central = 1)         

D4 (Northern Plains = 1) 0.1937 0.000  -0.4545 0.592    

D5 (Southern Plains = 1) 0.0621 0.132  3.8236 0.012    

D6 (Mountains = 1) 0.1147 0.022  -0.4957 0.590    

D7 (Pacific = 1) 0.0573 0.211  -5.9601 0.000    

Trend 0.0109 0.000  0.0125 0.000  -0.0006 0.845 

ln (Temperature) × D1    0.1204 0.266  -0.3196 0.005 

ln (Temperature) × D2    1.4404 0.000  -0.2313 0.198 

ln (Temperature) × D3    -0.0063 0.975  -0.0606 0.611 

ln (Temperature) × D4    0.1664 0.499  -0.0199 0.892 

ln (Temperature) × D5    -0.9155 0.019  -0.4020 0.162 

ln (Temperature) × D6    0.1661 0.171  0.1491 0.325 

ln (Temperature) × D7    1.5448 0.000  -0.1189 0.728 

Total Precipitation    0.0693 0.003  0.0868 0.000 

Precipitation Intensity    -0.0459 0.001  -0.0530 0.000 

Intercept -3.4178 0.000  -3.5704 0.000    
Notes: Model 1 - Prais-Winsten regression, correlated panels corrected standard errors. See Huffman and Evenson 2006a for variable definitions. 

Model 2 - Prais-Winsten regression, correlated panels corrected standard errors, with climatic variables. 

Model 3: Long run equation using Pooled Mean Group Regression for non stationary heterogeneous panels, with climatic variables. 

Significative variables in bold. 
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Table 2. Panel Unit Root Test: Summary 

Sample: 1970 1999                

Cross Sections: 48                

                

 Individual effects  Individual effects & individual linear trends 

 Level  1st Difference  Level  1st Difference 

ltfp Statistic P-value Obs.  Statistic P-value Obs.  Statistic P-value Obs.  Statistic P-value Obs. 

Null: Unit root (assumes common unit root process)              

Levin, Lin & Chu t* 1.34 0.909 1329  -34.70 0.000 1307  -11.87 0.000 1367  -27.26 0.000 1297 

Breitung t-stat 2.70 0.997 1281  -25.87 0.000 1259  -1.28 0.100 1319  -24.60 0.000 1249 

                

Null: Unit root (assumes individual unit root process)              

Im, Pesaran and Shin W-stat  7.52 1.000 1329  -38.67 0.000 1307  -12.62 0.000 1367  -35.31 0.000 1297 

ADF - Fisher Chi-square 33.01 1.000 1329  1116.74 0.000 1307  343.84 0.000 1367  1023.92 0.000 1297 

PP - Fisher Chi-square 47.79 1.000 1392  1276.65 0.000 1344  619.49 0.000 1392  6263.40 0.000 1344 

                

Null: No unit root (assumes common unit root process)              

Hadri Z-stat 23.07 0.000 1440  1.52 0.065 1392  10.22 0.000 1440  13.45 0.000 1392 

                

lrpubs3                

Levin, Lin & Chu t* -8.34 0.000 1257  -7.14 0.000 1254  0.94 0.827 1265  -7.11 0.000 1256 

Breitung t-stat 1.57 0.941 1209  -1.59 0.056 1206  -8.01 0.000 1217  0.77 0.779 1208 

Im, Pesaran and Shin W-stat  0.10 0.542 1257  -6.18 0.000 1254  -7.39 0.000 1265  -3.67 0.000 1256 

ADF - Fisher Chi-square 162.77 0.000 1257  223.51 0.000 1254  331.37 0.000 1265  161.50 0.000 1256 

PP - Fisher Chi-square 82.17 0.842 1392  59.13 0.999 1344  89.34 0.671 1392  26.69 1.000 1344 

Hadri Z-stat 24.42 0.000 1440  12.65 0.000 1392  16.19 0.000 1440  16.50 0.000 1392 

                

lrpubsf                

Levin, Lin & Chu t* -1.40 0.080 1353  -30.05 0.000 1311  -3.94 0.000 1350  -19.26 0.000 1282 

Breitung t-stat -1.06 0.145 1305  -27.07 0.000 1263  -3.86 0.000 1302  -22.32 0.000 1234 

Im, Pesaran and Shin W-stat  -2.45 0.007 1353  -31.51 0.000 1311  -5.43 0.000 1350  -25.93 0.000 1282 

ADF - Fisher Chi-square 188.45 0.000 1353  899.42 0.000 1311  219.28 0.000 1350  710.57 0.000 1282 

PP - Fisher Chi-square 167.99 0.000 1392  1058.25 0.000 1344  207.52 0.000 1392  2951.56 0.000 1344 

Hadri Z-stat 17.07 0.000 1440  0.44 0.330 1392  9.38 0.000 1440  10.61 0.000 1392 
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lrpubsf2               

Levin, Lin & Chu t* -1.45 0.073 1354  -30.45 0.000 1310  -4.57 0.000 1356  -20.49 0.000 1286 

Breitung t-stat -1.58 0.057 1306  -27.92 0.000 1262  -3.73 0.000 1308  -22.73 0.000 1238 

Im, Pesaran and Shin W-stat  -2.85 0.002 1354  -32.11 0.000 1310  -5.89 0.000 1356  -26.64 0.000 1286 

ADF - Fisher Chi-square 198.55 0.000 1354  916.12 0.000 1310  220.73 0.000 1356  732.74 0.000 1286 

PP - Fisher Chi-square 188.98 0.000 1392  1065.98 0.000 1344  325.82 0.000 1392  3207.51 0.000 1344 

Hadri Z-stat 17.18 0.000 1440  0.31 0.379 1392  9.09 0.000 1440  8.42 0.000 1392 

                

lrpubgr                

Levin, Lin & Chu t* -0.63 0.265 1371  -31.09 0.000 1311  -2.38 0.009 1361  -24.26 0.000 1291 

Breitung t-stat -2.25 0.012 1323  -27.97 0.000 1263  1.50 0.933 1313  -20.47 0.000 1243 

Im, Pesaran and Shin W-stat  -0.45 0.326 1371  -31.48 0.000 1311  -2.38 0.009 1361  -27.85 0.000 1291 

ADF - Fisher Chi-square 113.15 0.112 1371  892.05 0.000 1311  147.41 0.001 1361  815.96 0.000 1291 

PP - Fisher Chi-square 129.06 0.014 1392  1012.61 0.000 1344  157.32 0.000 1392  2439.06 0.000 1344 

Hadri Z-stat 16.94 0.000 1440  -0.98 0.837 1392  8.60 0.000 1440  9.03 0.000 1392 

                

lrpubgr2                

Levin, Lin & Chu t* -1.13 0.130 1357  -27.40 0.000 1290  -2.60 0.005 1352  -19.72 0.000 1279 

Breitung t-stat -1.97 0.025 1309  -25.58 0.000 1242  0.41 0.658 1304  -18.68 0.000 1231 

Im, Pesaran and Shin W-stat  0.78 0.783 1357  -28.08 0.000 1290  -1.99 0.024 1352  -24.38 0.000 1279 

ADF - Fisher Chi-square 130.28 0.011 1357  820.82 0.000 1290  184.66 0.000 1352  725.68 0.000 1279 

PP - Fisher Chi-square 147.78 0.001 1392  1008.13 0.000 1344  189.45 0.000 1392  2870.66 0.000 1344 

Hadri Z-stat 16.96 0.000 1440  -1.07 0.858 1392  9.21 0.000 1440  10.44 0.000 1392 

                

lnextf                

Levin, Lin & Chu t* -8.57 0.000 1369  -27.70 0.000 1329  -7.52 0.000 1365  -23.74 0.000 1322 

Breitung t-stat -2.17 0.015 1321  -10.67 0.000 1281  -0.55 0.292 1317  -9.79 0.000 1274 

Im, Pesaran and Shin W-stat  -4.62 0.000 1369  -27.00 0.000 1329  -8.37 0.000 1365  -22.94 0.000 1322 

ADF - Fisher Chi-square 177.55 0.000 1369  759.59 0.000 1329  233.68 0.000 1365  593.47 0.000 1322 

PP - Fisher Chi-square 191.91 0.000 1392  848.49 0.000 1344  204.69 0.000 1392  1402.46 0.000 1344 

Hadri Z-stat 22.67 0.000 1440  2.26 0.012 1392  10.29 0.000 1440  9.55 0.000 1392 

                

lrspill3                

Levin, Lin & Chu t* -6.87 0.000 1288  -9.79 0.000 1281  11.88 1.000 1281  -10.96 0.000 1251 

Breitung t-stat 3.96 1.000 1240  -6.43 0.000 1233  -10.45 0.000 1233  -4.26 0.000 1203 

Im, Pesaran and Shin W-stat  3.03 0.999 1288  -7.01 0.000 1281  0.26 0.601 1281  -5.23 0.000 1251 
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ADF - Fisher Chi-square 82.51 0.835 1288  227.70 0.000 1281  146.68 0.001 1281  167.88 0.000 1251 

PP - Fisher Chi-square 78.04 0.910 1392  53.63 1.000 1344  65.76 0.992 1392  10.34 1.000 1344 

Hadri Z-stat 24.95 0.000 1440  7.81 0.000 1392  12.86 0.000 1440  17.15 0.000 1392 

                

lintst                

Levin, Lin & Chu t* -27.50 0.000 1338  -0.56 0.288 1296  -24.92 0.000 1344  -1.47 0.070 1293 

Breitung t-stat -26.01 0.000 1290  -2.53 0.006 1248  0.45 0.675 1296  -3.60 0.000 1245 

Im, Pesaran and Shin W-stat  -26.05 0.000 1338  0.75 0.774 1296  -25.92 0.000 1344  3.82 1.000 1293 

ADF - Fisher Chi-square 773.77 0.000 1338  56.42 1.000 1296  687.66 0.000 1344  32.68 1.000 1293 

PP - Fisher Chi-square 20.03 1.000 1392  33.92 1.000 1344  4.10 1.000 1392  15.56 1.000 1344 

Hadri Z-stat 3.86 0.000 1440  3.81 0.000 1392  9.97 0.000 1440  14.64 0.000 1392 

                

ltmp                

Levin, Lin & Chu t* -24.45 0.000 1373  -37.46 0.000 1290  -23.78 0.000 1356  -26.78 0.000 1281 

Breitung t-stat -22.90 0.000 1325  -28.86 0.000 1242  2.65 0.996 1308  -21.59 0.000 1233 

Im, Pesaran and Shin W-stat  -21.21 0.000 1373  -39.80 0.000 1290  -20.56 0.000 1356  -33.63 0.000 1281 

ADF - Fisher Chi-square 588.70 0.000 1373  1148.30 0.000 1290  533.85 0.000 1356  923.85 0.000 1281 

PP - Fisher Chi-square 589.13 0.000 1392  1371.55 0.000 1344  751.53 0.000 1392  11099.70 0.000 1344 

Hadri Z-stat 9.24 0.000 1440  5.74 0.000 1392  4.22 0.000 1440  30.64 0.000 1392 

                

lpcp                

Levin, Lin & Chu t* -30.46 0.000 1372  -38.71 0.000 1278  -26.37 0.000 1366  -29.06 0.000 1263 

Breitung t-stat -18.68 0.000 1324  -29.56 0.000 1230  -3.56 0.000 1318  -28.92 0.000 1215 

Im, Pesaran and Shin W-stat  -28.49 0.000 1372  -42.64 0.000 1278  -24.58 0.000 1366  -37.69 0.000 1263 

ADF - Fisher Chi-square 819.33 0.000 1372  1199.32 0.000 1278  656.17 0.000 1366  1230.26 0.000 1263 

PP - Fisher Chi-square 927.66 0.000 1392  1068.79 0.000 1344  1705.54 0.000 1392  11178.20 0.000 1344 

Hadri Z-stat 1.16 0.123 1440  1.90 0.029 1392  7.35 0.000 1440  17.67 0.000 1392 

                

lintens                

Levin, Lin & Chu t* -28.00 0.000 1385  -36.97 0.000 1303  -24.51 0.000 1377  -29.46 0.000 1297 

Breitung t-stat -19.79 0.000 1337  -19.78 0.000 1255  -7.43 0.000 1329  -19.44 0.000 1249 

Im, Pesaran and Shin W-stat  -28.65 0.000 1385  -45.08 0.000 1303  -26.71 0.000 1377  -40.49 0.000 1297 

ADF - Fisher Chi-square 816.33 0.000 1385  1251.93 0.000 1303  708.93 0.000 1377  1310.62 0.000 1297 

PP - Fisher Chi-square 849.33 0.000 1392  1251.86 0.000 1344  1007.49 0.000 1392  9078.77 0.000 1344 

Hadri Z-stat 2.61 0.005 1440  -0.34 0.632 1392  7.19 0.000 1440  11.01 0.000 1392 

** Probabilities for Fisher tests are computed using an asympotic Chi-square distribution. All other tests assume asymptotic normality. 
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Table 3. Cointegration Test: Summary 

        

Sample: 1970 1999        

Cross Sections: 48        

     

Panel unit root tests: Constant  Constant & Trend 

Residuals pooled estimation Statistic P-value Obs.  Statistic P-value Obs. 

Null: Unit root (assumes common unit root process)       

Levin, Lin & Chu t* -11.69 0.000 1380  -11.65 0.000 1378 

Breitung t-stat -7.06 0.000 1332  -6.93 0.000 1330 

Null: Unit root (assumes individual unit root process)       

Im, Pesaran and Shin W-stat  -13.34 0.000 1380  -12.24 0.000 1378 

ADF - Fisher Chi-square 377.10 0.000 1380  324.39 0.000 1378 

PP - Fisher Chi-square 406.35 0.000 1392  519.15 0.000 1392 

Null: No unit root (assumes common unit root process)       

Hadri Z-stat 7.82 0.000 1440  9.55 0.000 1440 

**Probabilities for Fisher tests are computed using an asympotic Chi-square distribution.  

**All other tests assume asymptotic normality.       

        

Pedroni cointegration tests Constant   Constant & Trend  

 Statistic P-value   Statistic P-value  

panel v-stat -0.82 0.205   -3.76 0.000  

panel rho-stat -4.60 0.000   -2.45 0.007  

panel pp-stat -20.10 0.000   -23.80 0.000  

panel adf-stat -9.88 0.000   -9.69 0.000  

        

group rho-stat -2.22 0.013   -0.03 0.489  

group pp-stat -22.28 0.000   -26.89 0.000  

group adf-stat -8.24 0.000   -9.12 0.000  

**All reported values are distributed N(0,1) under null of unit root or no cointegration.  

**Panel stats are unweighted by long run variances.      

        

Kao cointegration tests                  Constant   Constant & Trend  

 Statistic P-value   Statistic P-value  

DFrho -31.88 0.000   -33.94 0.000  

DFt -17.59 0.000   -18.64 0.000  

**Stats are distributed N(0,1) under null of no cointegration.     

        

Westerlund cointegration tests        

Lags: 1 - 2 Average AIC selected lag length: 1.98   

Leads: 0 - 1 Average AIC selected lead length: .96   

 Constant  Constant & Trend 

Statistic Value Z-value P-value  Value Z-value P-value 

Gt -4.06 -11.71 0.000  -4.23 -10.39 0.000 

Ga -0.24 11.50 1.000  -0.13 13.81 1.000 

Pt -22.25 -6.80 0.000  -25.95 -7.75 0.000 

Pa -2.56 6.16 1.000  -1.99 9.57 1.000 

**Z-values are distributed N(0,1) under null of no cointegration.     
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Endnotes 

                                                 
1
 The impact on a given state of direct public agricultural research undertaken by other states in an area. 

2
 According to the usual panel model nomenclature, for all this article the sub-index i = 1,…,N represents 

each cross section (state) and the sub-index t = 1,…,T represents each time period (year).  

3
 For details on the construction and the asymptotic properties of the test, see Im, Pesaran and Shin (2003). 

4
 Common factor restriction is the fact that residual-based tests require the long-run cointegrating vector for 

the variables in their levels being equal to the short-run adjustment process for the variables in their 

differences. 

5
 The impact on a given state of direct public agricultural research undertaken by other states in an area. 

6
 Not reported estimations with regional interaction for Precipitation and Intensity were performed with no 

satisfactory result, which supports our original idea. 

7
 Calculated using the elasticities equations evaluated at the sample means for SFF and GR. 

8
 All the variables evaluated are expressed in natural logarithms.  

9
 For example, Dinda and Coondoo (2006). 


