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Abstract

     Several studies have suggested that it may be efficient to reduce net greenhouse gas 

(GHG) emissions through carbon sequestration in forests or through reductions in 

deforestation (e.g., Sohngen & Mendelsohn, 2003; Tavoni et al., 2007; Kindermann et al., 

2008). These studies, however, are based on large-scale deterministic models of global land 

uses. As such, the modelers make numerous assumptions about parameters that could have 

important effects on the projected costs. For example, the model used by Sohngen and 

Mendelsohn (2003) and Tavoni et al. (2007) assumes that land supply elasticity is 0.25. 

Although there is some empirical support for this in the United States, land supply 

elasticity has not been estimated globally. It would be useful to assess the implications of 

uncertainty in this parameter on the global supply of carbon, particularly since carbon from 

the projected land use activities can have potentially large effects on the costs of economy-

wide carbon constraints. 

     This paper develops an uncertainty analysis of a number of important parameters in the 

global land use model of Sohngen and Mendelsohn (2003). Uncertainty analysis can assist 

policy decisions by providing information about the distribution of potential outcomes, and 

it can help identify factors that have the biggest impacts on uncertain outcomes. Sensitivity 

analysis, while useful, cannot express the results of model uncertainty due to the voluntary 

and discrete definition of the range of uncertainty relative to input parameters. 

Furthermore, sensitivity analysis cannot provide explanations about the relative 

relationships that exist among the possible combinations of input parameters since it 

analyzes the effects of change based on a single parameter for model results when the 



remaining parameters are fixed.

     This paper analyzes the effect of uncertainty in several key parameters on the marginal 

costs of carbon sequestration in forests. These parameters include the land supply elasticity, 

which governs the conversion of land from agriculture to forests and vice versa; parameters 

of the forest biomass yield function; parameters of the forest carbon density function; and 

parameters of the costs functions for accessing inaccessible land. Monte Carlo techniques 

are thus used to turn the global forest model with no probability (e.g., Sohngen & 

Mendelsohn, 2003; 2007) into a proper probability model through Latin hypercube 

sampling. 

     For this paper, we have restricted our analysis to consideration of probability 

distributions for only two of the parameters described above. Specifically, these are the 

parameters of the forest biomass yield function and the land supply elasticity. The 

importance index and the least square linearization are used to determine the relative 

contribution of input parameters to the model results. Five hundred model runs in one 

simulation were performed with covariability among the parameters. The Monte Carlo 

simulations indicated that most of the uncertainty in forest area in developed countries 

relates to uncertainty in parameters of the biomass function while in developing countries, 

where deforestation is more important (e.g., Brazil), the simulation showed the parameters 

of land supply elasticity to have the most important implications for carbon supply. These 

results are perhaps not too surprising but they do point to the need to empirically estimate 

land supply elasticities in regions like Brazil, where such estimates are not currently 

available in the literature. The results also provide information that can be used to estimate 

uncertainty intervals for carbon sequestration cost functions.



Introduction

Between 1970 and 2004, carbon dioxide (CO2) emissions increased about 80% 

from 21 to 38 gigatonnes (Gt). As of 2004, they accounted for 77% of total Green House 

Gas (GHG) emissions (IPCC 2007). Of the six GHGs identified by the Kyoto Protocol to 

the United Nations Framework Convention on Climate Change (UNFCCC), carbon dioxide 

received the most scrutiny. The biggest cause of such increases to GHG emissions is 

energy consumption by industry and transportation; however, one cannot afford to ignore 

the increase in carbon dioxide emissions from land-use change and deforestation. As of 

2004, the emission of GHGs due to forestland conversion accounted for about 17.4% of the 

total. Given these situations, the policy of carbon sequestration that uses forests appears to 

be a relatively low cost means of removing carbon dioxide from the atmosphere (US 

Environmental Protection Agency, 1995), and can be an effective long-term option for 

carbon abatement when combined with other policies (Sohngen & Mendelsohn 2007). The 

Kyoto Protocol even recognizes land use, land-use change, and forestry activities as a 

potential means for reducing GHGs in the atmosphere. Among those activities, those 

affiliated with forests include afforestation, reforestation and deforestation, activities that 

can be used to meet the emission reduction targets in developed countries (Annex I). Given 

the significance of forests as carbon sinks, there has been a great deal of research 

conducted on forest carbon sequestration. Some researchers point out critical aspects as 

being the inevitable existence of uncertainty in the process of modeling natural 



environments, such as forests, and the usefulness in policy decisions of providing 

appropriate information about descriptions of uncertainty as well as the causes of such 

uncertainty. For the most part, uncertainty anlaysis of carbon sequestration has only been 

conducted with ecological models to date. 

For example, Smith and Health (2001) analyzed the uncertainty of carbon budgets 

within forests located in the United States by using the forest carbon budget model, 

FORCARB. This model adds up carbon budgets estimated from various carbon pools, 

including above-ground portions of hardwood and softwood trees, understory species, 

forest floor and soil carbon, in an effort to measure the entire carbon budget. Several 

estimations are generally made to explain the relationship between those carbon pools and 

carbon budgets, and this process allows one to calculate each carbon pool’s budget. The 

FORCARB model consists of many parameters identified through these estimations. The 

authors analyzed the influence of model parameter uncertainties on overall model results 

by using the Monte Carlo simulation technique, and they employed the importance and 

contribution index to compare and analyze the relative effects of each parameter 

uncertainty on the model results. In addition, they examined covariability among the model 

parameters as well as the impacts of the distribution’s shape.

Verbeeck et al. (2006) analyzed NEE (net ecosystem exchange) for the Hesse forest 

in France by using the FORUG model. Like FORCARB, this model is comprised of many 

parameters that are intended to model CO2 and H2O conversions between the forest and air. 

The authors analyzed the uncertainty via the Monte Carlo technique and used the LSL 

(least square linearization) technique to analyze the relative contribution of each parameter 

to the uncertainty of all the model results. 



While regional studies such as the two analyses described above are useful, they are 

susceptible to some important flaws.  First, carbon policy is likely to be carried out globally 

and carbon credits are likely to be traded from country to country.  It is thus important to 

understand the potential supply of carbon credits in different regions, and it useful to assess 

how "certain" these supply functions may be (Richards & Stokes 2004; Sohngen & 

Mendelsohn 2007). Second, many regional analyses use static models (e.g., Lubowski et 

al., 2006) that do not account for the dynamics of forest carbon accumulation over time 

(e.g., Sohngen & Mendelsohn 2003Dynamic optimization models of land use do account 

for important dynamic adjustments within timber inventories, but these models have only 

been used with limited sensitivity analysis to date (Sohngen and Mendelsohn , 2007). 

Sensitivity analysis is helpful, but it does not provide a fully characterization of the 

potential uncertainties associated with carbon credits from forests, and it cannot be used to 

describe relative relationships that exist among the possible combinations of input 

parameters since it analyzes the effects of change based on a single parameter on model 

results when the remaining parameters are fixed.  As policy makers increasingly rely on 

these credits to hold down carbon prices (Tavoni et al., 2007), it will be useful to more 

carefully illustrate this uncertainty to them more carefully. 

This study extends earlier work of Sohngen and Mendelsohn (2007) by analyzing 

uncertainty in forest carbon sequestration. The objective of this study is twofold. First, we 

use the Monte Carlo analyses to analyze the effects of uncertainty in land-use change 

between agriculture and forestland as well as the uncertainty of forest yield, which were 

not dealt with in previous sensitivity analyses, on the uncertainty of carbon sequestration. 

The importance index and the least square linearization are used to determine the relative 



contribution of input parameters to the model results. Second, we estimate uncertainty 

intervals for carbon sequestration cost functions.

Definition of ‘Uncertainty’

One of the most fundamental and critical procedures in uncertainty analysis 

concerns the definition of ‘uncertainty’. Models used in uncertainty analysis generally rely 

on a definition of uncertainty that relates to the derivations of a model from reality, 

derivations which manifest themselves in the process of modeling a complex environment. 

Such uncertainty takes a variety of forms due to its variety of causes. The most basic cause 

of uncertainty happens when a mathematical model fails to express accurately a complex 

environment of reality. This kind of problem cannot be solved by simply setting a 

complicated model with which to explain the environment in more detail. In practice, it is 

nearly impossible to build a model that explains a natural environment perfectly. 

Furthermore, it is not feasible to gather accurate data for the many parameters used to 

implement such a model. Another source of uncertainty is that of the model parameters. 

Such uncertainty is divided into two types—that which comes from a lack-of-knowledge 

(Morgan & Henrion 1990; Smith & Heath 2001; Verbeeck at al 2006; Gottschalk at al. 

2007), and that which is associated with variability (Cullen & Frey 1999). In a 

deterministic model where a single value is used for each model parameter, only the results 

of that value are estimated. Thus, when the parameter value is not the optimal value for 

representing the system, it will provide estimates that differ from reality. Uncertainty that 

stems from lack-of-knowledge is similar to the deterministic model in that it assumes the 



existence of the optimal parameter value. At the same time, though, there is a difference 

between the two. The former assumes that there is too little information or knowledge to 

choose a single value and uses PDFs most often to quantify uncertainty about input 

parameter values. Meanwhile, the uncertainty associated with variability assumes that 

parameter values keep changing according to time or the situation, instead of assuming one 

single optimal parameter value. This study assums the existence of uncertainty derived 

from lack-of-knowledge, instead of uncertainty associated with variability. That is, it uses 

PDFs to quantify parameter uncertainty and takes no consideration of parameter changes 

according to time. 

One needs expected values and uncertainty ranges in order to quantify uncertainty 

using PDFs. When analyzing the influences of parameters on the model uncertainty, it is 

critical to apply the common criteria for ranges of uncertainty because the wider the range 

of uncertainty, the bigger the influence it has on the model results. For that purpose, we use 

the 95% confidence interval of each distribution, using expected values and standard 

deviation. We base the uncertainty ranges of forest yield on the estimation of parameters of 

yield function, using data from the Forest Inventory and the analysis program of the United 

States Forest Service. To operationalize these concepts, we refer to the econometric work 

of Choi al.(2006) for the elasticity of substitution between land uses.

Estimation in Forest Yield Function using Random Coefficient Model

The yield function plays an important role in the agricultural and forestry model 

because it determines the yield per hectare, the optimal rotation period and the area of 



forest (Sedjo & Lyon, 1990). Researchers commonly use yield functions to quantify the 

growth of a forest, but it is difficult to design a generic forest model because forest 

themselves are diverse with many characteristics. Included among these characteristics are 

climate, soil quality, and fertilizer. All of these serve to substantially influence the yield of 

forest volume. However, in this study, the yield of merchantable volume in cubic meter per 

hectare is a function of the age of the stand and the management intensity applied to the 

stand. Even though the management intensity substantially influences the merchantable 

stock volume at the time of harvest and there is uncertainty associated with the parameters 

used in the management intensity, we deal with parameter uncertainty relating only to 

yield.

For that purpose, we assume that the yield volume in cubic meters per hectare is a 

function of the age of the stand. There are consequently only two parameters to be 

estimated in the yield per hectare function. The yield function can be expressed as follows:

(1) =jYln jjT εβα +− / ,

where jY  is the average yield per hectare and jT  is time interval, and α  and β  are 

unknown parameters.

Combining all of the measurements into one simple regression is not appropriate 

here, since data in the forest are structured hierarchically and fitting regression models that 

ignore this hierarchical structure can lead to false inferences being drawn. Multi-level 

regression, or the Random coefficient model, is a mixed model of the simple linear 

regression (complete pooling) and estimates separate models within each group (no 

pooling) (Gelman & Hill, 2006). It also differs from the usual multiple regression model in 

that the equation defining the hierarchical linear model contains more than one error term, 



one of which is the group level in this study (Snijders & Bosker 1999). The basic idea of 

multilevel modeling is that the parameters are actually different in each species group and 

we do not assume they are all the same. Instead, this approach states that β ’s follow a 

random distribution. The yield function that expresses the different regression lines for 

each species is represented as:

(2) ijijjjij TY εβα +−= /ln ,

Where ijY  is the average yield per hectare at the jth species of the ith state at age ijT .  The 

intercepts jα  and slope jβ  are group-dependent. The group-dependent coefficients can be 

split into an average coefficient and a group-dependent deviation:

jj Uααα +=

jj U βββ +=

Substitution leads to the model:

(3) ijijjjijij TUUTY εβα βα +++−= //ln .

ijT/βα −  is called the fixed part of the model and ijijjj TUU εβα ++ / is called the random 

part. It is assumed that the random effects jUα , jU β  and ijε  have means 0. Also, given the 

value of the variable T, these random effects are mutually independent and identically 

distributed. The variance of ijε is denoted 2σ  and the variance of jUα and jU β  are denoted 

as follows:

2)( αα σ=jUVar , 2)( ββ σ=jUVar

Then, the expected value of the regression model is 



ijij TYE /)(ln βα −= , 

and the variance is 

=)(ln ijYVar  2
ασ + 2

βσ + 2σ .

Six states and three major species1 are selected from each state, based on the size of 

the area (Forest Resources of the United States, 2002). The major species inventory and 

areas of each species were obtained from the Forest Inventory and Analysis Program of the 

United States Forest Service. With the assumption of normality, a regression is 

implemented using the STATA software package by employing the xtmixed option. 

Results from the regression are reported in table1.

Table1

Coefficient α β

Average 7.63613 -14.14969

Std. Err. .1450898 1.485786

Z 52.63 -9.52

95% Conf. Interval (7.351759, 7.920501) (-17.06178, -11.2376)

The confidence interval is a range of values within which we are confident that the 

true value lies. It quantifies the degree of uncertainty and gives some information about 

uncertain parameters. A wide confidence interval suggests great uncertainty, while a 

narrow confidence interval suggests less uncertainty. The regression results show that there 

is little uncertainty in α , but considerably more uncertainty in β . Indeed uncertainty for 

1 See Appendix Table 1



β  amount to 21% of its median. Since we have little information on yields obtained in 

other countries, we apply the same percentage change throughout the simulation.

The Elasticity of Substitution between land uses

The parameter for the elasticity of substitution between land uses is based on the 

econometric work of Choi at al. (2006). They explored the factors influencing land use 

change between agriculture, forestry, and urban uses in the midwestern states using the 

multinomial logit framework. 

The form of multinomial logit model is:

Prob[ ]jyi = = )exp(/)exp( ij jij XX ∑ ′′ ββ ,

Where j denotes specific land use choices, iX is a vector of the independent variables and 

jβ  is a vector of coefficients.

The estimation function for the choice of land use and the elasticity of land supply can be 

formulated as follows:

jj XPP β=)/ln( 0

== )(βfeij
j

i
J

k
kkjj

j

i

i

j

P

X
PP

P

X

X

P
∑

=
−=

∂
∂

0

][ ββ .

The standard error and confidence interval of the elasticity can be obtained by delta method 

(Green 2003).

VGGeVar ij ′=)(



Where G is the gradient vector with the partial derivative of )(βf  and V is the variance-

covariance matrix of β ’s. The elasticity of forestland supply is -0.516 and the standard 

deviation of the elasticity is 0.04587. Therefore, the 95% confidence interval for the 

elasticity of forestland is 0.426 to 0.606. However, the elasticity of forestland supply can be 

approximated by the elasticity of substitution2. We use the elasticity of substitution to 

reflect the uncertainty in land-use change between agriculture and forestland.

Monte Carlo Simulation

One of the most popular methods of analyzing uncertainty, the Monte Carlo 

techniques (Smith & Heath 2000, 2001; Ogle at al. 2003; Verbeeck at al 2006; Gottschalk 

at al. 2007), turns a deterministic model with no probability into a proper probability 

model. Applying computer-based statistical sampling, this method allows for problem 

solution. It is especially popular when there is a mathematically complex question, or many 

input parameters. While sensitivity analysis analyzes the impacts of a parameter’s changes 

on the overall results after fixing all other parameters, monte carlo simulation (MCS ) 

allows several inputs to be used at the same time to create the probability distribution of 

one or more outputs. Also, MCS analyzes the impacts of possible combinations among 

input parameters on the overall results of the model by assuming the probability 

distribution of each parameter. Thus, one can say that MCS is complementary to the usual 

way of scenario and sensitivity analyses. MCS is usually comprised of three stages (New & 

Hulme 2000):

2 See Appendix



(a) Definition of prior probability distribution for input parameters;

(b) Repetitive model simulation through random sampling of input parameters according to 

the probability density functions (PDFs) defined earlier; and

(c) Understanding the relationships between the uncertainty of input parameters and model 

results.

Once the probability density functions of model input parameters are defined, one 

can easily sample using the computer. One of the simplest sampling methods is Simple 

Random Sampling (SRS). Random numbers are sampled from the uniform U(0,1) 

distribution, which can be transformed into drawings from other distributions. For example, 

the researcher can generate random numbers from ),( 2σµN  using the fact that if η  is 

distributed as U(0,1), then the inverse cumulative density function (CDF) of normal 

distribution is distributed as N(0,1); however, the method requires a large number of 

samples in order to fully express the characteristics of the PDFs. This requirement exists 

because a clustering problem may arise when a small number of iterations are performed 

and this clustering problem does not represent low probability outcome. However, low 

probability outcome could have a major impact on model results and a large number of 

simulations must be run to include this low probability outcome. Therefore, there rises a 

need to include this low probability outcome using a parsimonious approach. The stratified 

sampling method divides distributions into equal probability intervals , whose numbers 

correspond to the number of samples and then samples are drawn from these intervals. 

Using this method, one can express characteristics of distributions with even a small 

number of samples. As a result, a smaller number of samples are needed when compared to 



simple random sampling. Latin Hypercube sampling (LHS), as suggested by McKay et al. 

(1979), is considered the foremost stratified sampling method.

In LHS, one divides each probability distribution into n non-overlapping intervals 

of equal probability. This allows one to sample values evenly in the sample space. The 

process is that one samples n values one by one in each probability distribution, randomly 

selecting values without overlapping and the n values for a uncertain input are paired 

randomly with n values of the other inputs. In the process of random pairing, there is a 

possibility of spurious correlation, which is a false relationship between samples in the 

Latin Hypercube Sampling. This probability increases when the number of samples is 

relatively smaller than the number of inputs. Such a false relationship can be avoided by 

using the technique developed by Iman and Conover (1982). Their technique sets all the 

pair-wise rank correlations at 0 among the input parameters of the model, while 

maintaining the basic characteristics of LHS. The technique can also be used to induce 

certain rank correlation among model variables.

Uncertainty and Factor Importance

Input parameters with uncertainty have different impacts on model results. 

Although it is expected that those parameters with high uncertainty will have a large effect 

on uncertainty in results, even large uncertainties in some parameters may have negligible 

effects on uncertainty in results. In essence, the impacts on model results depend on the 

correlation between parameters and the model structure, but it is difficult to explain the 

causes and routes of a complex model. Thus, the simplest way to understand the impacts of 



input parameters with uncertainty on the results is to investigate the relationship between 

the input parameters and model results. For that purpose, the importance index and the least 

square linearization (LSL) that are usually used in uncertainty analysis are employed in this 

study. The importance index is the rank order correlation coefficient developed by Karl 

Spearman and used to measure the relative influences of input parameters on the 

uncertainty of the model results (Cullen & Frey 1999; Vose 2000). In the importance index, 

one first arranges the data from minimum to maximum value and then uses their ranks 

instead of the actual data values. When calculated in this way, the index is in no way 

influenced by the distribution shape of the data set. In other words, only the ranks of the 

data sets to be analyzed affect the importance index. The index value will not change 

simply because the distribution shapes of the data sets are altered. The importance index is 

calculated as: 

Importance index
)

)1(

)(6

(1 2

2

−

∆
−=

∑
nn

R
,

Where n is the number of data pairs and R∆  is the difference in the ranks between data 

values in the same pair. The importance index ranges between +1 and -1 and represents the 

strength and direction of correlation between each parameter and model result 

simultaneously. When the rank between two parameters is perfectly positively correlated, 

for example, the index value becomes 1 (∑ =∆ )0)( 2R ; and if it is perfectly negatively 

correlated, the value becomes -1 (∑ −=∆ )3/)1()( 22 nnR . 



     The other method used in the study is LSL, which is a regression analysis between 

parameter changes and model results and helps to calculate the effects of each parameter on 

model results with ease (Lei & Schilling1996; Verbeeck et al. 2006). LSL can be briefly 

described as follows: Consider a model with n independent parameters ),,( 21 nxxx  . 

When one does Monte Carlo simulations m times, one can calculate the means of 

parameters and model results. Then differences between model results and the mean can be 

linearized at mean values of parameters ( xnxx mmm ,21 , ). The regression model can be 

expressed as follows.

ynnnxx mmxmxmxY +−×++−×+−×≈ )()()( 2222111 ωωω 

Where Y is model output and is its mean value. Next, the method of least squares (OLS) is 

used to estimate the coefficients of regression equation. If the deviation from the means can 

be defined as uncertainty, each coefficient from regression analysis represents the linear 

relations between the uncertainty of parameters and that of model results. The standard 

deviation of model output can be calculates as:

∑
=

×=
n

i
xiiY

1

222 δωδ

Where  is the standard deviation of parameter ix . 

The standard deviation of mode output represents the overall uncertainty and illustrates the 

uncertainty of the entire input parameters on the model results. The contribution of each 



parameter to overall uncertainty can be expressed as contribution index as changes of 

normalized percentages. While high percentage indicates a big degree of influence on the 

uncertainty of model results, a low percentage indicates a small degree of influence. 

The contribution of each parameter can be defined as: 

%100
2

22

×
×

=
Y

xii
xiS

δ
δω

Results

     In an attempt to determine the relative contribution of the forest biomass yield function 

and the land supply elasticity parameters on the overall model results, we used the 

important index and LSL in the study. Five hundred model runs in one simulation were 

performed after we set a 95% confidence interval to prevent unrealistic samples from being 

extracted, and sampled at that interval. Table 2 shows the results of the important index 

that indicate the impacts of the input parameters on cropland and livestock land on the 

baseline (2015). In almost every country, the important index of land supply elasticity is 

marked 0.9 or higher, which means that land supply elasticity had the biggest influences on 

the uncertainty of cropland and livestock land. Meanwhile, was evident that the yield 

parameter had few impacts. As for each parameter's contribution to the uncertainty of the 

model results calculated with LSL, land supply elasticity made the greatest contribution as 

shown with the important index. 



     

     Table 3 contains two indexes that reveal the impacts of each parameter's uncertainty on 

forest area, and these findings are rather interesting. In developed countries like the US, the 

uncertainty in parameters of the biomass function had overwhelming effects on the 

uncertainty of forest area, which matches the current reality that there is not much land use 

change but a heavy focus on forest management in developed nations. However, the 

parameters of land supply elasticity had bigger impacts in Brazil, which correspond to the 

fact that large amounts of forest are converted to cropland and livestock land in the country 

and explains the land use change in countries where deforestation is occurring. Since 

deforestation following land use change produces carbon in the air, land supply elasticity 

has a significant effect on carbon sequestration in those nations. Using such findings, we 

can understand the impacts of each parameter on carbon sequestration costs, estimate 

uncertainty intervals for carbon sequestration cost functions, and gather useful information 

about the influences of deforestation and the policies needed to prevent them.

Conclusion

     

     The purpose of this paper was to develop an uncertainty analysis of several key 

parameters in the global land use model of Sohngen and Mendelsohn (2003) and to analyze 

the effect of uncertainty in input parameters on the marginal costs of carbon sequestration 

in forests. In this paper, we considered two parameters for analyzing the uncertainty in the 

model results, including the parameters of the forest biomass yield function and the land 

supply elasticity. Monte Carlo simulation techniques and Latin Hypercube sampling (LHS) 



were employed to generate the samples of input parameters and to analyze model 

uncertainty.  

     This paper aims to make several contributions to research in forest carbon 

sequestration. First, we considered the dynamic global model (Sohngen & Mendelsohn 

2007) to better understand the potential supply of carbon credits in different regions by 

compensating for previous regional studies. Second, we extended the earlier sensitivity 

analysis of Sohngen and Mendelsohn (2007) by providing a full characterization of the 

potential uncertainties associated with carbon credits from the forest. 

     The simulation results indicated the important dependency of input parameters and 

uncertainty in model output. Most of the uncertainty in the forest area in developed 

countries related to uncertainty in the parameters of the yield function, while in Brazil, 

where deforestation is occurring, the simulation showed the parameters of land supply 

elasticity to have the most significant impact on carbon supply. These results corresponded 

to the fact that large amounts of forest are converted to agricultural land, and this land use 

change has a significant effect on carbon credit in that region. The results also provided 

information about uncertainty intervals for carbon sequestration cost functions in each 

region, and this information can be useful to policy makers who make decisions related to 

assessing carbon prices. 
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Table 1

State Species
California California mixed conifer: Canyon live oak / interior live oak: Tanoak
Alabama Loblolly pine: Loblolly pine / hardwood: Mixed upland hardwoods

Maine Sugar maple / beech / yellow birch: Balsam fir: Paper birch
Michigan Sugar maple / beech / yellow birch: Aspen: Northern white cedar
Montana Douglas-fir: Lodgepole pine: Ponderosa pine
Oregon Douglas-fir: Ponderosa pine: Lodgepole pine



Table2.The impacts of the parameters on cropland and livestock land (2015): Importance 
Index of supply elasticity parameters and forest biomass yield parameters.

 
Cropland Livestock land

 

 
Supply elasticity

parameters
Forest biomass yield 

parameter
Supply elasticity 

parameters
Forest biomass yield

parameter

US - 0.999 
                                                 

0.028 
  

1.000 -0.027 

CHINA
                                           0.

891 -0.041 
  

1.000 -0.032 

BRAZIL
                                           1.

000 -0.027 -0.999 
                                                 0.

027 

CANADA
                                           1.

000 -0.027 -1.003 
                                                 0.

024 

RUSSIA
                                           1.

000 -0.027 
  

1.000 -0.029 

EU ANNEX I
                                           1.

000 -0.027 -1.002 
                                                 0.

026 

EU NON-ANNEX
                                           1.

000 -0.027 
  

0.019 
                                                 0.

070 

SOUTH ASIA -1.000 
                                                 

0.027 
  

1.000 -0.026 

CENT AMERICA -1.001 
                                                 

0.025 -0.995 
                                                 0.

028 

REST SOUTH AM -0.118 - 0.831 -0.970 -0.183 

SUB SAHARAN AF -0.827 
                                                 

0.036 
  

0.818 -0.041 

SOUTHEAST ASIA -1.000 
                                                 

0.027 
  

0.997 -0.060 

OCEANIA
                                           0.

996 -0.073 -0.919 
                                                 0.

044 

JAPAN
                                           0.

994 -0.039 -0.966 
                                                 0.

033 

EAST ASIA
-1.003 

                                                 
0.013 -0.861 -0.002 



Table3.The impacts of the parameters on forestland (2015): Importance Index and LSL 
contribution of supply elasticity parameters and forest biomass yield parameters.

 
Important Index

 

LSL Contribution 
to overall uncertainty (%)

 

 
Supply elasticity

 parameters
Forest biomass yield 

parameter
Supply elasticity

 parameters
Forest biomass yield

 parameter

US -0.0514 0.95789 0.1% 99.9%

CHINA 0.01750 -0.44857 0.2% 99.8%

BRAZIL -0.7975 0.44562 74.9% 25.1%

CANADA 0.21042 0.85323 8.2% 91.8%

RUSSIA 0.32133 0.25933 55.4% 44.6%

EU ANNEX I 0.4559 -0.64399 28.6% 71.4%

EU NON-ANNEX 0.13672 -0.66207 3.7% 96.3%

SOUTH ASIA -0.22079 -0.53880 16.3% 83.7%

CENT AMERICA -0.17339 -0.21765 39.4% 60.6%

REST SOUTH AM 0.23129 -0.63954 9.9% 90.1%

SUB SAHARAN AF 0.57780 -0.66728 41.9% 58.1%

SOUTHEAST ASIA -0.32766 -0.81782 15.2% 84.8%

OCEANIA 0.05279 0.51583 0.9% 99.1%

JAPAN -0.11202 0.92215 0.9% 99.1%

EAST ASIA -0.1909 0.77988 0.2% 99.8%


