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INTRODUCTION 

Discrete choice models are widely used in studies of recreation demand.  They 

have proven valuable when modeling situations where decision makers face large choice 

sets and site substitution is important.  However, when the choice set faced by the 

individual becomes very large (on the order of hundreds or thousands of alternatives), 

computational limitations make estimation with the full choice set intractable.  McFadden 

(1978) shows that sampling of alternatives in a conditional logit framework is an 

effective method to limit computational burdens while still producing consistent 

estimates.  His approach has been widely used throughout the literature (Parsons and 

Kealy 1992; Feather 2003; Parsons and Needelman 1992).  To implement the sampling 

approach researchers typically assume that unobserved utility is independently, 

identically distributed extreme value.  The assumption implies that the relative 

probabilities of any two alternatives do not change with the addition of a third alternative.  

This is known as the independence of irrelevant alternatives, or IIA, which is necessary 

for consistent estimation under sampling of alternatives.  Unfortunately, the IIA 

assumption is oftentimes a restrictive and inaccurate method for modeling behavior.  

Recent discrete choice innovations relax this assumption, however eliminating the 

reliance on IIA implies that sampling methods cannot be used. 

The random parameters mixed logit model is one of the more attractive and 

widely used innovations of discrete choice modeling.  It generalizes the conditional logit 

model by introducing unobserved preference heterogeneity across consumers through the 

model parameters (Train 1998).  This makes the random parameters model a powerful 

and effective discrete choice tool but in doing so does not permit sampling of 
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alternatives.  Unfortunately, when a researcher is faced with analyzing a model with a 

very large choice set (e.g. a large number of lakes in a region or access points to the 

ocean), they must choose between a more accurate model (with mixed logit) and a 

computationally feasible one (with a sampled conditional logit).   

Additionally in a random parameter model, preference heterogeneity is often 

introduced through analyst-specified parametric distributions for the coefficients.  The 

researcher's choice in error distribution thus becomes an important step in the estimation 

procedure.  The normal distribution is often employed but the well known restrictive 

skewness and kurtosis properties of such a specification raises the possibility that 

misspecification may be present.  Other parametric distributions may be used, but in each 

case misspecification is a concern. 

Both of these problems can be overcome through the use of a finite mixture model 

(latent class model) estimated via the expectation-maximization (EM) algorithm.  The 

latent class approach probabilistically assigns individuals to certain classes, each with 

homogeneous preferences within class.  This approach allows the researcher to recover 

separate preference parameters for each type of consumer without assumption of a 

parametric error distribution. 

This type of model can be estimated with the recursive EM algorithm.  Doing so 

transforms estimation of the non-IIA mixed logit model from a one-step computationally 

intensive estimation into a more feasible recursive estimation of an IIA conditional logit 

model.  By reintroducing the IIA assumption at each step of the recursion, sampling of 

alternatives can be used to produce consistent estimates (von Haefen and Jacobsen 
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unpublished).  This estimation strategy has not been exploited in the recreation literature 

before. 

 This paper begins by describing how the latent class method can be used to 

account for preference heterogeneity while dealing with large choice sets without 

assuming a restrictive error distribution.  Section one introduces the conditional and 

mixed logit models.  Section two describes large choice set problems in discrete choice 

modeling.  Section three details the latent class model estimated via the EM algorithm.  

Section four presents an empirical example using a recreation dataset of Wisconsin lake 

visits.  Section five finishes with a conclusion and discussion of further research. 

 

THE DISCRETE CHOICE MODEL 

Discrete choice models are a set of powerful estimation techniques used to predict 

qualitative choice outcomes (McFadden 1974).  Economic applications of discrete choice 

models assume that decision makers are utility maximizing.  An individual, when 

presented with a set of alternatives, will select the outcome which generates the highest 

utility.  From a recreation demand standpoint, the decision maker can be an individual 

who makes a trip to one of many possible recreation sites (in our case lakes), potentially 

many times a year. 

Following Train (2003), the discrete choice model is based on the assumption that 

consumers (indexed by n, n = 1, … , N) choose recreation destination i if it gives them 

greater utility over all other alternative lakes  j = 1 … J,  j ≠ i.  Regardless of the purpose 

of visit (fishing, viewing, swimming, boating, etc), on that choice occasion, the lake 

chosen provides the best recreation opportunity for that individual.  The consumer might 



5 
 

enjoy visiting any other alternative lake j, but will choose lake i because Uni > Unj ∀  j ≠ 

i.  We can relate the utility received from visiting lake i to a set of observable attributes 

relating to that choice, xni, (e.g. travel cost, water quality, amenities such as restrooms or 

boat ramps, catch rates, scenery, etc.) and the decision maker zn (e.g. income, # of kids, 

whether they own a boat, etc.)  Average or representative utility can be characterized as 

jzxVV nnjnj ∀=   ),( .   

There is also an idiosyncratic component of utility which is captured by the error 

term εni.  This component is known to the individual but unknown to the researcher so 

utility and choice are random from her perspective.  The resulting total utility from 

alternative i is represented by  

,,,...,1   , JiNnVU ninini ∈=+= ε  

If the researcher assumes that each error is independently, identically distributed (iid) 

extreme value with the scale of utility normalized to the variance of unobserved utility by 

the scale parameter µ, the probability Pni that individual n prefers alternative i is given by 

the multinomial logit formula (McFadden 1974): 
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Independence of Irrelevant Alternatives 

The logit model exhibits the IIA principle which states that the relative 

probabilities of any two alternatives must be independent of all other alternatives.  Using 

the probability of choosing an alternative in the logit framework, the relative probability 

of choosing alternative i over i* is: 
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As can be seen, the ratio of the probabilities is independent of all other alternatives.  This 

may be a plausible assumption in some cases, but in many, it is not behaviorally accurate.  

  The behavioral weakness of this assumption is well explained throughout the 

literature using the classic “red bus/blue bus” example (McFadden 1974).  Suppose a 

decision maker has the option of commuting either by car or by red bus.  Assume the 

probability of choosing either alternative is one half.  The probability ratio is thus one and 

all probabilities sum to one.  Now suppose a blue bus alternative is introduced.  The 

relative probability of red bus to car must still be equal to one and we can assume the 

decision maker would be indifferent between buses making the red bus/blue bus 

probability ratio equal to one.  Since the relative probabilities between any two 

alternatives are equal to one and the sum of all probabilities must equal to one, the 

conditional probability of any one alternative is now one-third.  However, this now 

indicates that by introducing the blue bus, we have increased the probability of taking any 

bus to two thirds while reducing the car probability to one third.  In reality, we should not 
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expect the introduction of a second type of bus to change the car/bus relative probability, 

thus illustrating the behavioral weakness of IIA.     

In a recreational demand model where an individual is choosing between two 

lakes, the construction of an identical second access point at one lake should not change 

the relative probability of choosing one lake over the other.  However, including the new 

access point as a separate alternative will change the odds ratios in an IIA-restricted 

model. 

Nested logit models have been used to overcome the limitations of IIA (Ben-

Akiva 1973; Train et al. 1987; Forinash and Koppelman 1993; and Lee 1999).  The 

fundamental decision made by the consumer can be represented as a series of decisions 

made in sequence.  In a recreational context, a consumer would choose whether to fish at 

a lake or a river, then choose which specific lake to visit, etc.  Within each decision step, 

the IIA assumption holds.  However, across different steps, the ratio of probabilities can 

depend on the attributes of other alternatives in those nests and IIA does not hold. 

An additional limitation of the conditional logit model is its limited ability to 

account for unobserved or random preference heterogeneity.  The estimated coefficients 

represent an average for all decision makers.  In some cases these results may present a 

weak fit for the data or may misrepresent preferences of the population, especially in 

situations where those preferences are diverse or polarized. 

Observed preference heterogeneity can be accounted for by interacting observed 

individual demographic characteristics with the attributes of the alternatives. As a result, 

every one of the preference parameters is a function of the vector of observed 



8 
 

socioeconomic characteristics.  However, even after accounting for differences in 

observed individual characteristics it is likely the heterogeneity may still remain. 

 

Mixed Logit Model 

To relax the IIA assumption and account for preference heterogeneity, the mixed 

logit model can be used (Train et al. 1987; Ben-Akiva et al 1993; McFadden and Train, 

2000).  It is an extension of the standard logit model that allows the coefficients to vary 

across individuals.  Theoretically, the utility of person n for alternative i is 

nininni xU εβ +=  

with  valueextreme iid~niε and )|(~ θββ nn f  where θ  is a vector of parameters.  As 

with the conditional logit model, it is assumed that every individual chooses the 

alternative which maximizes their utility.  Conditional on nβ , the choice probability is 

now: 
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where the probability of individual n choosing alternative i is the product of the logit 

probabilities over the density of nβ .  These densities (and resulting probabilities) can be 

expressed either as a continuous or discrete mixing distribution.   

 

Continuous Distribution Random Parameter Model 

In the continuous mixing distribution the unconditional probability of selecting 

alternative i is expressed as: 

βθββ dfLP nnnini )|()(∫=  
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However, for estimation purposes, the researcher usually specifies the distribution of θ  

parametrically.  She can then test various distributions and choose the one which provides 

the best fit.  The estimation procedure involves simulation of the choice probabilities and 

estimation of parameters by drawing pseudo-random realizations from this underlying 

error distribution (Boersch-Supan and Hajivassiliou 1990; Geweke et al. 1994; 

McFadden and Ruud 1994).   

There has been much discussion concerning the choice of distributions (Revelt 

and Train K 1998; Train and Sonnier 2003; Rigby et al 2008).  Hensher and Greene 

(2003) analyzed the welfare effect of a mixed logit model with lognormal, triangular, 

normal, and uniform distributions.  Although the mean welfare estimate was very similar 

across the normal, triangular, and uniform distributions, the lognormal distribution 

produced a result that differed by about a factor of three.  Even though the mean estimate 

was similar amongst the normal, triangular, and uniform distributions, the standard 

deviation varied by as much as 17 percent.  The functional form chosen can have a major 

impact on resulting WTP estimates and associated inferences as well as can be a 

determining factor for the accuracy of the estimation.   

 

Latent Class Model 

An alternative and more flexible specification relative to the parametric random 

parameters model is the latent class model.  In this case the logit probability is expressed 

as a discrete mixing distribution: 

∑=
c

cnicnni LsP )(β , c = 1,…,C. 
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where scn is the probability that βc = β and scn = f (βc |θ ).  The subscript c represents each 

discrete class of parameters.  Membership in each class is unobservable but can be 

predicted.  Conditional on the agent’s choices, the probability that an agent is a member 

of class c (and has coefficients βc) is ncncnnc PLsh )(β=  (Train 2008). 

 This is similar in functional form to the discrete factor method (DFM) where the 

distribution of classes is approximated with a step function and integrated out through a 

weighted sum of step levels where the weights are given by empirically estimated 

probabilities (Heckman and Singer 1984; Landry and Liu, forthcoming).  Whereas DFM 

nonparametrically specifies the class weights, the above latent class model introduces 

individual demographic data into the latent class probabilities.   

Computationally, the log-likelihood function for the sample to be maximized is 
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where k represents the choice occasion.  Gradient-based maximization of the log-

likelihood is possible, albeit computationally burdensome.  The calculation involves the 

maximization of the log of the sum of the conditional probabilities weighted by the class 

probability.  This maximization becomes even more complex with a large number of 

variables or classes.  Additionally, the likelihood is not necessarily strictly concave 
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implying the existence of several local maxima.  In light of this, researchers typically 

employ several sets of starting values which can significantly increase the estimation run 

time. 

 

LARGE CHOICE SETS 

The selection of the choice set is vital to the effective implementation of any 

discrete choice model.  Choice set definition deals with specifying the objects of choice 

that enter an individual’s preference ordering.  In practice, defining an individual’s choice 

set is influenced by the limitations of available data, the nature of the policy questions 

addressed, the analyst’s judgment, and economic theory (von Haefen 2008). 

Train (2003) describes the three requirements of a choice set: 1) alternatives must 

be mutually exclusive, 2) the choice set must be exhaustive, and 3) the number of 

alternatives must be finite.  In a recreational site-demand context, at any one moment, a 

consumer can only visit one site (satisfying requirement #1).  However, when 

constructing the model, requirements two and three lend themselves to large choice set 

problems.  All feasible alternatives must be included.  To model a one-day recreation trip, 

all sites within one day’s travel must be incorporated.  When analyzing a multi-day trip, 

the choice set becomes much more complicated as more sites must be included in order 

to satisfy the exhaustive and finite requirements.  These large choice set issues have been 

confronted throughout the literature (McFadden 1978, Parsons and Kealy 1992, Feather 

2003, Parsons and Needelman 1992).   

There are three common solutions to large choice set problems: 1) aggregation of 

alternatives, 2) assumptions of separability, and 3) sampling of alternatives.  Solutions (1) 
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and (2) are used in the formation of consideration sets and require the analyst to make 

additional assumptions about the behavior of the decision maker. 

Many researchers believe that when consumers are confronted with choices from 

a large set of quality-differentiated goods, they may only seriously consider and choose 

from a subset of available alternatives.  An explanation of this is that decision makers 

have limited information about all available goods and incur costs in the acquisition of 

additional information.  They rationally search for more information whenever the 

marginal benefit of doing so exceeds the marginal cost and at any point in time, have 

detailed information for only a subset of the available goods (e.g. their ‘consideration 

set’).  There is growing empirical evidence supporting the behavioral foundation of 

consideration sets (Shocker et al. 1991; Sethuraman et al. 1994) and the concept has been 

employed in the environmental economic literature (Horowitz 1991; Peters et al. 1995; 

and Parsons et al. 2000).  However empirically, there is the practical question of how to 

identify the objects of choice that enter each individual’s consideration set from the 

universal set of relevant alternatives.  This information is not revealed by consumer 

choice and the analyst may be forced to make potentially restrictive assumptions on the 

search process of the consumer.   

Aggregation methods make the assumption that alternatives can be grouped into 

representative choice options.  For a recreational demand context, similar recreation sites 

can be treated as one; in housing, a group of homes in a given sub-development can be 

aggregated.  This methodology can be effective but is problematic in that the success of 

estimation is entirely dependent on the assumptions made in the aggregation.  McFadden 
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(1978) and Ben-Akiva and Lerman (1985) have both shown that this technique can 

produce biased estimates if the utility variance within aggregates is not accounted for. 

Separability assumptions allow the researcher to selectively remove alternatives 

from the choice set based on a perceived very low probability that those options would be 

chosen by the individual.  This restricts preferences to an analyst-determined 

consideration set.  This method is common in discrete choice housing models where 

homes are excluded from the choice set based upon distance or price.  Again, the success 

of this method is only as good as the assumptions made. 

The third common solution is to sample the alternatives the decision maker faces.  

Fundamentally, this can be done as long as the resulting choice probability ratios do not 

change due to the elimination of choice alternatives.  This is feasible within the standard 

logit model due to the IIA assumption. 

McFadden (1978) proves that within the context of a discrete choice logit model 

sampling of alternatives provides consistent model parameters. This has been 

successfully utilized and demonstrated in the literature (Sermons and Koppelman 2001; 

Waddell 1996; Bhat et al. 1998; Guo and Bhat 2001; Ben-Akiva and Bowman 1998, von 

Haefen and Jacobsen unpublished).   

  

Sampling of Alternatives 

When faced with a very large choice set which exhibits IIA, sampling from 

alternatives can simplify the computational process while still producing consistent 

estimates as long as the uniform conditioning property holds (McFadden 1978).  This 

property (which is necessary for sampling) states that the resulting choice probabilities 
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will be the same regardless of the sample chosen.  More formally, uniform conditioning 

states that if there are two alternatives, i and j which are both members of the full set of 

alternatives C and both have the possibility of being an observed choice, the probability 

of choosing a sample of alternatives D (which contains the alternatives i and j) is equal, 

regardless of whether i or j is the chosen alternative.    

Both the continuous distribution random parameter and latent class models, as 

shown earlier, can account for preference heterogeneity and in some cases provide for an 

improvement in fit over the conditional logit model.  However, when faced with a large 

choice set, the continuous distribution method cannot provide consistent estimates when 

sampling from alternatives.  Recall that the mixed logit probability is represented by: 

βθββ dfLP nini )|()(∫=  

The relative probability of choosing alternative i over i* is: 
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The denominators of the integral are inside the logit formula and therefore do not cancel.  

The resulting relative choice probabilities do depend on the other alternatives and IIA 

does not hold. 

Nerella and Bhat (2004) evaluate sampling of alternatives in a continuous 

distribution model.  However, they sample by assuming uniform conditioning without a 

theoretical basis for doing so.  Nevertheless, they analyzed the effect of sample size on 

the empirical accuracy and efficiency of multinomial and mixed multinomial models.  

Their results suggest (for a standard model) using an eighth of the size of the full choice 
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set as a minimum, and suggest a fourth of the full choice set as a desirable target.  

Empirical testing for the mixed model suggests using a fourth of the full choice set to 

one-half of the full choice set as a desirable target.   

McConnell and Tseng (2000) perform a similar analysis on beach use and 

recreational fishing.  They found that sampling in a continuous distribution model does 

not alter the results significantly or systematically.  The theoretical infeasibility however 

remains.  The inability to sample alternatives has proven a difficult question in the 

literature and has been deemed an area requiring further study.   

 

SAMPLING IN A MIXTURE MODEL 

However, utilizing the latent class model maximized via the recursive 

expectation-maximization (EM) algorithm, sampling of alternatives can achieve 

theoretically consistent estimates (von Haefen and Jacobsen, unpublished).   

The EM algorithm (Dempster et al., 1977) is a method for maximizing a 

computationally complicated maximum likelihood function given the values of some 

correlated, known parameters.  The EM algorithm has become a popular tool in statistical 

estimation problems involving incomplete data (McLachlan and Krishnan 1997) or 

problems which can be posed in a similar form, such as mixture estimation (Bhat 1997; 

Train 2008).  The method also facilitates the consistent sampling of alternatives as shown 

by von Haefen and Jacobsen (unpublished). 

Assuming that an unknown parameter (in this case the latent class probability) is 

represented as a value in some parameterized probability distribution, the EM algorithm 

is a recursive procedure which begins by 1) specifying the expected value of unknown 
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parameters given some known parameters.  2) The parameters of the known values are 

then re-estimated given the expected values of the unknown parameters.  The steps are 

then repeated until convergence, defined by a pre-determined small change in the 

parameter estimates between iterations (Train 2008).  This methodology is an 

improvement over gradient-based methods by its ability to transform the maximization of 

a log of sums into a recursive maximization of the sum of logs.   

In our recreational demand context, given some set of starting values for the 

parametersθ t (representing individual and alternative specific characteristics), the EM 

algorithm lets us calculate a new value for the parameters: 

( )∑∑=+
n c

cnctnct Lsh )(ln)(maxarg1 βθθ θ  

where t represents the iteration number.  Since the right hand side of the equation can be 

rewritten as ( ) ( ) ( ))(lnln)(ln cncncncn LsLs ββ += , the maximization can be performed 

independently for each set of parameters.  Using various starting values, the probability 

(weight) of individual n belonging to class c is calculated keeping the choice probabilities 

fixed: 

∑
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c
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A maximization is then performed to update the individual class probability dependent on 

individual specific variables using the weights from the previous step as given: 

( )cn

C

c
cnn shLL ln∑=  

Another maximization is performed to update the conditional probability parameters, 

again using the weights as fixed; independently for each class: 
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( )( )cni

C

c
cnn LhLL βln∑=  

The weights are then re-estimated using the new parameter values, and the entire process 

is repeated until convergence.  Each successive maximization takes the prior parameters 

and individual-specific class probabilities as fixed for the maximization of the new 

values.  The previously computationally burdensome estimation has now been 

transformed into a recursive conditional logit estimation for each class and choice 

probability.  

By breaking the mixed logit non-IIA model into a series of standard logit IIA 

models, sampling of alternatives can be reintroduced at each recursive step while still 

effectively modeling a mixing distribution.  Recall that the two functions to be 

maximized are: 

∑∑=+

c
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i
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n
s

i shs ln)(maxarg1 θ  

which finds the expected value of the unknown variable (individual class probability) and  

∑=+

n
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i
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i
c Lh

b
)(ln)(maxarg1 βθβ β  

which re-estimates the likelihood function.  The maximization procedure calculates a 

standard logit (IIA) likelihood function for each class independently, keeping the 

individual weights fixed from the previous step.  In this way IIA holds within-class and 

for each estimation step.  The within-class estimates are independent of other alternatives 

in the choice set, and thus via the EM algorithm, sampling of alternatives will generate 

consistent estimates.   

It should be noted that use of the EM algorithm to solve a nonparametric log-

likelihood function has two notable drawbacks.  First, convergence may be at a local 
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instead of a global maximum because the unconditional likelihood is not globally 

concave.  To address this, it is often necessary to use multiple starting values.  Second, 

recursive estimation with multiple starting values may be time consuming.  The 

procedure provides the greatest computational benefits when used with a very large 

dataset where traditional maximum likelihood is not feasible and lesser benefits with 

marginally smaller datasets. 

 

Model Selection 

The researcher must choose the number of latent classes to be used.  This may 

seem similar to the dilemma of choice of error distribution in the mixed logit model; 

however the implications are much less troublesome.  Traditional specification tests 

(likelihood ratio, Lagrange multipliers, and Wald tests) do not satisfy the regularity 

conditions for a limiting chi-square distribution so alternative tests must be used.   

Throughout the latent class literature a variety of information criteria statistics have been 

used.  In general form (Hurvich and Tsai 1989), the information criteria statistic is 

specified as -2ln(L) + P*δ where ln(L) is the log likelihood of the model at convergence, 

P is the number of estimated parameters in the model, and δ is a penalty constant.  There 

are a number of different types of information criteria statistics that depends on the value 

of the penalty constant δ.  
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Information Criteria Penalty Constant δ = 

Akaike Information Criteria 2 

Bayesian Information Criteria ln(N) 

Consistent Akaike Information Criteria 1+ln(N) 

Corrected Akaike Information Criteria 2 + 2(P +1)(P +2)/(N −P−2) 

  

In each case, the optimal model is the one which gives the minimum value of the 

respective information criteria.  Roeder et al. (1999) and Greene and Hensher (2003) 

suggest using the Bayesian Information Criteria (BIC). One advantage of the BIC over 

traditional hypothesis testing is that it has good properties under weaker regularity 

conditions than the likelihood ratio test (Roeder et al., 1999).  Alternatively, many past 

papers (e.g. Meijer and Rouwendal 2006; Desarbo et al 1992; Morey et al. 2006) have 

used the AIC (Akaike 1974).   Other papers have compared the various information 

criteria (Thacher et al 2005; Scarpa and Thiene 2005; and Hynes et al 2008), however 

there is no general consensus in the literature for using one test over the others.  The 

improved fit of a given model will be taken in comparison with the possibility of over-

fitting. 

 

Standard Errors 

 Calculation of the standard errors of parameter estimates can be cumbersome 

since there is no direct method for evaluating the information matrix.  There is a wide 

expanse of statistical literature addressing various methods of calculating standard errors 

based upon the observed information matrix, the expected information matrix, or on 
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resampling methods (Baker 1992, Jamshidian and Jennrich 2002, Meng and Rubin 1991).  

The method used in this paper is a simple one based upon Ruud (1991).  At convergence 

of the EM algorithm, the matrix of scores and the numerical hessian matrix are calculated 

for each independent maximization step and then inverted to calculate robust clustered 

standard errors for the parameter estimates. 

 

EMPIRICAL EXAMPLE 

An empirical illustration is performed with the Wisconsin Fishing and Outdoor 

Recreation Survey.  Taken in 1998 by Triangle Economic Research, this dataset has been 

used previously by Murdock (2006) and Timmins and Murdock (2007).  A random digit 

dial of Wisconsin households produced a sample of 1,275 individuals who participated in 

a telephone and diary survey of their recreation habits over the summer months of 1998.  

513 individuals reported taking a single day trip to one or more of 569 sites in Wisconsin 

(identified by freshwater lake or, for large lakes, quadrant of the lake).  Of the 513 

individuals, the average number of trips was 6.99 with a maximum of 50.  Each of the 

569 lake sites had an average of 6.29 visits, with a maximum of 108.  Table one presents 

summary statistics. 

[Table 1 – Summary Statistics] 

This is an ideal dataset to evaluate the consistency of sampling of alternatives 

with a nonparametric approach because it is large enough so that a researcher would 

ideally prefer to work with a smaller choice set, however it is small enough so that 

estimation of the full choice set is still feasible for comparison. 
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The full choice set is estimated with both a standard logit model and a multiple 

class latent class model.  The parameter results are evaluated and  the various information 

criteria are used to compare improvements in fit by allowing for preference 

heterogeneity.  The same estimation is then also performed using three random sets of 

starting values on five randomly sampled choice sets equal to 50%, 25%, 12.5%, 5%, 2%, 

and 1% of the non-selected alternatives. 

To provide complete analysis of sampling in the latent class method, first 

discussion on the sampling properties of the conditional logit model will be presented.  

The results of the latent class model will then be compared using these results as a 

baseline. 

 

Conditional Logit Results 

All estimation was coded and performed in Matlab using the fminunc 

optimization toolbox with an analytically coded gradient and numerical hessian.  In the 

conditional logit model, the likelihood function is globally concave so starting value 

choice is of minimal importance (as opposed to the mixture model).  The dataset contains 

multiple trip occasions; however the estimation was performed on a per-trip basis. In the 

sampled models, a unique and random choice set was generated for each choice occasion.  

With a sample size of N, N-1 alternatives were randomly selected and included with the 

chosen alternative.  Five random samples were run for each sample size.  

[Table 2 – Estimation Time: Conditional Logit Model] 

The primary reason for sampling from alternatives is to reduce the computational 

burden of estimation.  An analysis of sampling’s effect on estimation time shows a 
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negative slope with diminishing returns at very small samples.  Estimation was 

performed on multiple computers with varying processor speeds, so all times were 

normalized at the 50% one-class model.  Estimation time for the full model was 

approximately 31 minutes.  Table two shows the average estimation time of the five 

random samples relative to the estimation time of the full model.   Cutting the sample by 

an additional 50% in any model roughly equates to an 80% reduction in estimation time.   

[Table 3 –Parameter Estimates: Conditional Logit Model] 

Table three shows the parameter estimates and standard errors for each of the 

sample sizes.  Five random samples were run and the means of the estimates and standard 

errors are reported.  Two log likelihood values are reported in this table.  The true log 

likelihood (LL) and the “normalized log likelihood” (NLL).  In any sampled model, a 

smaller set of alternatives will necessarily result in a smaller LL.  This number, however, 

is not useful in comparing goodness of fit across sample sizes.  For this reason the NLL is 

used.  After convergence is reached in a sampled model, the parameter estimates are then 

used with the full choice set to compute the LL as if they were the results of the full 

model.  Although this is marginally more time consuming than using the sampled data, it 

does not drastically increase overall computation time, as the optimization routine is the 

most computationally intensive process. 

A comparison of the LL and NLL show that, when sampling, less information is 

available and each successive sample provides a marginal reduction in goodness of fit, as 

expected, however this decrease in fit is very small.  A decrease in the sample size also 

increases the standard errors of the NLL reflecting the increased variability of estimates 

in smaller samples. 
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 The parameters themselves are rational (in terms of sign and magnitude) in the 

full model and relatively robust across sample sizes.  Travel cost and small lake are 

negative and significant, while all fish catch rates and the presence of boat ramps are 

positive and significant, as expected.  The standard errors for the parameters generally 

increase as the sample size drops, reflecting decreased ability to produce as strong of a fit 

with less information.  In the smallest samples, this decrease in fit is enough to make 

some previously significant parameters insignificant.  The parameters themselves move 

across sample sizes; however the most useful method for analyzing these is via a 

comparison of several welfare scenarios.   

Five different policy scenarios are considered and welfare estimates for all 

specifications are calculated.  Welfare changes are measured independently for each class 

and then aggregated across all classes within a specification, dependant on the class 

share.  The following policy scenarios are considered: 1) infrastructure construction, 2) 

an increase in entry fees, 3) and urban watershed management program, 4) an agricultural 

runoff management program, and 5) a fish stocking program.  Note that crowding 

considerations are not considered here, but these scenarios can be augmented or modified 

to fit any number of policy proposals. 

The infrastructure construction program simulates an augmentation of current 

man-made infrastructure across sites.  From the parameter estimates, it is clear that boat 

ramps are desired amenities, but only approximately 73% of sites have one.  Supposing 

that a boat ramp was constructed at each Wisconsin lake that did not have one, the 

estimates reflect the average willingness to pay (WTP) per participant per trip. 
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The second policy scenario replicates the impact of a $5 increase in entry fees at 

all state managed sites (defined by being in a state forest or wildlife refuge); 

approximately 23% of sites.  The estimates reflect the average WTP per participant per 

trip.   

The third and fourth policy scenarios are related by the assumption that lakes are 

negatively affected by either urban or agricultural runoff.  Sites that are near an urban 

area are affected by urban runoff, while sites that are not in an urban area but also not in a 

state forest or wildlife refuge, are affected by agricultural runoff.  It is assumed that all 

sites affected by one of these scenarios are impacted uniformly.  This decrease in water 

quality is assumed to cause a decrease in the aquatic life in a lake and by association, a 

decrease in catch rate.  The policy scenarios suppose that a storm water or non-point 

source pollution management policy could improve the quality of water and increase the 

catch rate by a uniform 5% across all fish species at affected sites.    The estimates reflect 

the average WTP per participant per trip.   

The final policy scenario replicates a fish stocking program where the catch rate 

of trout is increased by 25% across all sites.  Not every site contains trout, so the stocking 

program only takes place in locations where trout are indigenous. 

The methodology used to calculate WTP is the log-sum formula derived by 

Hanemann (1978) and Small and Rosen (1981).  Assuming a constant marginal utility of 

income ( ) ( )jpjp pypyf −=− ** ββ  and an attribute improvement from q0 to q1, the 

compensating surplus is  

( ) ( )( )jjqjpjjjqjpj
p

qpqpCS εββεββ
β

++−−++−= 01 maxmax1
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and for the iid type 1 extreme value case is 
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[Table 4 – Welfare Scenarios: Conditional Logit Model] 

This table shows the performance of the welfare estimates across sample size.  

Recall that five unique samples were run.  The parameters from each sample were then 

used with the full choice set.  As in the case with the NLL, using the full choice set does 

take more time than simply using the sampled set, however this provides for a stronger 

comparison  and does not drastically increase total computation time since no 

optimization is occurring. 

The mean WTP for each unique sample is calculated.  The table shows the mean 

of the five mean WTP estimates, as well as the standard deviation of the five mean WTP 

estimates.  As can be seen across the various welfare results, there is an increased 

variation in WTP estimates as the sample size becomes smaller, reflecting the reduced 

information available.  Depending on the welfare scenario, there is also a slight upward 

or downward bias, however this is not consistent across scenarios and might not be 

predictable.  Considering the full choice set estimates as the “true” value, it can be seen 

that progressively smaller samples lead to a smaller probability that the estimated WTP 

will match the true value.  Generally however, sampling performs very well down to the 

12.5% sample size and, depending on the needs of the researcher, can be useful down to 

the 1% level. 

[Table 5 –Welfare Confidence Intervals: Conditional Logit Model] 

Table five shows the mean 95% and 75% confidence intervals across the samples.  

This illustrates the variance of the individual WTP estimates within each sample.  A 
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similar conclusion can be drawn.  Variability of the estimates increases as the sample size 

decreases and is dependent on the specific welfare scenario being modeled, but can be 

considered very useful down to the 1% level depending on the needs of the researcher.  

 

Latent Class Results 

A similar evaluation of the performance of sampling in a mixture model will now 

be performed.  The main goal will be to show how the proposed procedure performs in 

direct comparison to the conditional logit model. 

Estimation was performed in Matlab with analytically coded gradients and 

numerical hessians.  Convergence in the EM algorithm was defined as the point at which 

the maximum change in parameters between iterations was less than 1/100.  Since the 

likelihood function is not globally concave and there is the possibility of convergence on 

a local minimum, multiple starting values were used.  To speed up computation, initial 

starting values were determined by a method used by Train (2008).  For a model with C 

classes, the full dataset is partitioned into C segments and a conditional logit model is 

performed on each, the resulting parameters are used as the starting values for each of C 

classes.  Alternative starting values were chosen by making random variations to those 

initial values.  A total of three starting values were used on the same fixed sample, the 

smallest log likelihood of which was determined to be the global minimum.     It would 

be advantageous to use more than three starting values (for instance, 10) to ensure 

convergence on a global minimum, but for the purposes of this research, since many 

different models were being run, only three starting values were used.   
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Fifteen site-specific parameters are estimated along with four individual-specific 

parameters.  The price coefficient is held fixed across classes and the individual-specific 

parameters are normalized for the first class, thus leaving only C-1 individual specific 

coefficients. 

[Table 6 – Estimation Time: Latent Class Model] 

Five independent samples were taken for each successive sample size, using the 

same procedure as in the conditional logit model.  The average computation time is 

shown in the graph above.  Estimation time approximately doubles with each additional 

class, and convergence in the full sample six class model was reached after 

approximately one week.  Sampling provides a decrease in relative runtime on a similar 

scale as in the conditional logit model, with diminishing returns to scale at much smaller 

sample size.   

As in the conditional logit model, the NLL is calculated and used for comparison 

purposes.  However, in this model, the NLL is more appropriate than the LL even without 

a cross-sample comparison since the full choice set is used for constructing the latent 

class probabilities.   

[Table 7 – Information Criteria] 

The NLL is used to calculate the various information criteria to determine the 

correct number of classes.  The AIC, BIC, and CAIC all indicate use of the same number 

of classes (six with the full choice set), however, evaluation of the parameter estimates 

suggest an over-fitting of the model.  At six classes, the model is attempting to fit 105 

parameters to 569 alternatives.  At a large number of classes, the parameters for one class 

for certain variables (specifically catch rates for trout, musky, and salmon) diverge 
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dramatically.  This is the result of the model trying to incorporate a handful of anomalous 

outlying observations, and thus the more appropriate decision criteria is the crAIC which 

incorporates the greatest penalty for an increased number of parameters.    

When sampling, the information criteria produce different conclusions based upon 

the sample size.  A smaller sample size in some cases leads to the result of a fewer 

number of classes in the optimal model.  This is certainly true in the crAIC, which 

suggests the use of three classes in all sample sizes except the 1% level, where two 

classes are optimal.  This result points towards a possible over-specification and the 

failure of the uniform conditioning property to hold at extremely small samples.  The 1% 

sample uses only six out of 569 alternatives, and the probability that any random sample 

will realistically represent the entire choice set is low. 

[Table 8 –Parameter Estimates: Two Class Model] 

In a latent class model, a full set of parameters is estimated for each class.  Recall 

that in our construction, individuals are homogeneous within class and heterogeneity is 

captured by the results of multiple classes.  Each individual is assigned to each class with 

a probability that can be constructed out of the individual specific parameters.  Table 

eight shows the results from a single two class model with multiple sample sizes 

estimated with three sets of starting values.  When analyzing the full sample results, it 

can be seen that owning a boat will lead to a larger probability of being in class one, 

which corresponds to a greater preference for boat ramps than class two.  Class one can 

be described as the ‘boat owner’ class.  Recall that when analyzing the results for 

multiple random samples in the conditional logit model we took the mean of the 

parameter estimates and parameter standard errors.  This type of comparison is not 



29 
 

possible in a latent class model because, although class one happened to be the ‘boat 

owner’ class, using alternative starting values or sampled choice sets may result in class 

two being the ‘boat owner’ class.  Thus, for the purposes of comparison, mean parameter 

estimates for the optimal number of classes are computed and presented in a similar 

format as the conditional logit model above.  Using the crAIC decision rule, the 

parameters for each class of the optimal model are weighted by the average class share 

(determined by the average latent class probability across individuals) and averaged to 

present a mean parameter estimate for the entire population.  This sort of analysis would 

be useful to a researcher seeking estimates from a better-fitting model, but not if a cross-

parameter comparison within classes is required.  The mean parameter estimates from the 

optimal model is presented in table nine.  Parameter standard errors are calculated by the 

same methodology.  This weighted mean of parameter estimates is useful only when 

running multiple random samples.  In a practical application where only one set of 

estimates is used, the full set of results as seen in table eight provides more information. 

[Table 9 –Parameter Estimates: Latent Class Model] 

As can be seen across sample sizes, the parameter estimates are, for the most part, 

robust for those that are significant at the 95% level.  Standard errors also are fairly 

consistent across samples and generally increase as the sample size decreases – a similar 

result to the conditional logit model.  Greater precision can be gained by running 

additional starting values and using more random samples. 

[Table 10 – Welfare Scenarios: Latent Class Model] 

Finally, the stability of the WTP estimates across sampling in the mixed model is 

analyzed.  Using the same policy scenarios as in the conditional logit model, WTP 
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estimates are constructed for each individual in each class.  They are then weighted by 

the individual class probability and averaged together.  In the sampled models, the mean 

WTP across individuals within a class is compared with that of four alternate random 

samples, the mean and standard deviation of which is reported in table 10.  The standard 

deviation shows how the mean estimates vary across different samples.  The results are 

not entirely clean or consistent to the smallest samples, but as in the conditional logit 

model, are good down to the 12.5% level, and depending on the needs of the researcher, 

can be useful down to the 1% level.  The lower stability of the estimates (as compared to 

the conditional logit model) is a result of using a small number of starting values (again, 

only three were used while 10 would be ideal) and the demands of extracting a large 

amount of information (in terms of the number of parameters to be estimated) from a 

relatively small amount of information – an effect which is exacerbated at the smallest 

sample sizes.  

 

CONCLUSION 

This paper has demonstrated the theoretical and practical uses of sampling of 

alternatives in a mixed logit non-parametric framework.  By employing the EM 

algorithm, non-IIA estimation can be broken down into a recursive conditional logit 

estimation for each class.  Within each class, IIA holds and thus allows for sampling of 

alternatives. 

At the current state of research, this paper has demonstrated the theoretical 

foundation for sampling of alternatives in a discrete choice mixture model.  By running 

several specifications on a recreation dataset, the applicability of the method has been 
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illustrated as well.  Future research could include a comparison against the nested logit 

model and continuous random parameter mixed logit model.  Additionally, a full Monte 

Carlo analysis of the model would be useful for analyzing bias in sampling techniques 

and to fully explore the practical extent of the model.  Using the greater number of runs, a 

meta-regression can be conducted to analyze trends present when varying the sample size 

or number of latent classes following Banzhaf and Smith (2007). 

Finally, since the current state of computing power is constantly and drastically 

improving, it would seem that this method will soon be out-of-date and could have rather 

provided the greatest benefit ten to fifteen years ago.  Although computational limitations 

were the prime motivational force behind McFadden’s 1978 paper introducing sampling, 

this method is not yet antiquated as evidenced by its still widespread use in the academic 

literature as well as the sometimes practical need for producing quick consistent estimates 

for policy analysis or legal cases.  Most importantly, the method will always allow us to 

“push the envelope” of research and innovation by running larger and more complicated 

models. 
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TABLES AND FIGURES 

 

Table 1 
Summary Statistics 

Variable  Description  Mean  St. Dev. 
Individual Summary Statistics  

trips   day trips during 1998 season   6.994  7.182 
boat   dummy = 1 if household owns boat   0.514  ‐  
kids   dummy = 1 if children under 14 in household   0.414  ‐  
income   personal income   $28,991   12,466 

Site Summary Statistics 
tcost  round trip travel time x opp. cost of time +$0.15 x round trip miles  $100.70   58.28 
ramp  dummy = 1 if site has at least one paved boat launch ramp  0.726  ‐ 
refuge  dummy = 1 if site is inside a wildlife area or refuge  0.056  ‐ 
forest  dummy = 1 if site is in a national, state, or county forest  0.178  ‐ 
urban  dummy = 1 if urban area on shoreline  0.179  ‐ 
restroom  dummy = 1 if restroom available  0.580  ‐ 
river  dummy = 1 if river fishing location  0.313  ‐ 
small lake  dummy = 1 if inland lake surface area <50 acres  0.172  ‐ 
trout  catch rate for brook, brown, and rainbow trout  0.094  0.170 
smallmouth  catch rate for smallmouth bass  0.200  0.205 
walleye  catch rate for walleye  0.125  0.145 
northern  catch rate for northern pike  0.085  0.057 
musky  catch rate for muskellunge  0.010  0.022 
salmon  catch rate for coho and chinook salmon  0.009  0.048 
panfish  catch rate for yellow perch, bluegill, crappie, and sunfish  1.579  0.887 
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Table 2 
Estimation Time

Conditional Logit Model 

 
* 1 ≈ 31 minutes 
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  Table 3 
  Parameter Estimates: Conditional Logit Model 

Sample Size  Full  50%  25%  12.50%  5%  2%  1% 
LL  ‐13257  ‐10901  ‐8640  ‐6568  ‐4172  ‐2314  ‐1414 
se  42  56 65 75 73  63 

Normalized LL  ‐13257  ‐13264 ‐13274 ‐13294 ‐13344 ‐13432  ‐13542
se  4  6 11 27 53  105

   
Site Specific Variable       

tcost  ‐10.070  ‐10.026 ‐9.907 ‐9.700 ‐9.303 ‐8.840  ‐8.600
0.412  0.407 0.400 0.393 0.390 0.401  0.434

ramp  0.421  0.407 0.397 0.380 0.371 0.349  0.343
0.176  0.177 0.178 0.179 0.184 0.195  0.217

refuge  0.165  0.169 0.177 0.190 0.202 0.229  0.240
0.194  0.195 0.196 0.199 0.211 0.233  0.270

forest  0.152  0.142 0.131 0.124 0.128 0.174  0.229
0.171  0.174 0.177 0.182 0.185 0.202  0.227

urban  ‐0.068  ‐0.084 ‐0.092 ‐0.094 ‐0.080 ‐0.024  0.032
0.117  0.118 0.119 0.122 0.134 0.157  0.186

restroom  0.149  0.149 0.144 0.143 0.147 0.174  0.211
0.130  0.131 0.131 0.130 0.134 0.148  0.168

river  ‐0.013  ‐0.015 ‐0.020 ‐0.032 ‐0.070 ‐0.180  ‐0.266
0.297  0.299 0.305 0.319 0.348 0.399  0.458

small lake  ‐0.789  ‐0.789 ‐0.776 ‐0.765 ‐0.724 ‐0.707  ‐0.702
0.161  0.164 0.168 0.175 0.185 0.209  0.236

trout  1.651  1.674 1.728 1.781 1.975 2.490  2.972
0.566  0.571 0.584 0.605 0.668 0.797  0.933

smallmouth  0.943  0.948 0.972 0.996 1.050 1.149  1.174
0.359  0.362 0.371 0.376 0.369 0.385  0.427

walleye  2.690  2.652 2.605 2.540 2.457 2.433  2.364
0.379  0.376 0.374 0.380 0.405 0.479  0.561

northern  2.659  2.536 2.328 2.013 1.505 0.908  0.658
0.935  0.955 0.998 1.070 1.215 1.472  1.746

musky  5.361  6.136 6.809 7.417 8.375 9.158  9.769
1.346  1.752 2.069 2.324 2.585 2.803  3.376

salmon  7.733  7.852 7.968 8.043 8.139 7.848  7.545
1.384  1.405 1.441 1.503 1.635 1.880  2.132

panfish  0.763  0.769 0.780 0.789 0.804 0.814  0.814
   0.189  0.189 0.191 0.194 0.201 0.223  0.253
*results for the sampled models represent the mean of five random samples; robust clustered standard 
errors in italics; bold indicates significance at the 5% level; “Normalized LL” is the log‐likelihood calculated 
at the parameter values for the entire choice set for comparison purposes. 
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Table 4 
Welfare Scenarios 

Conditional Logit Model 
 

    

    

 
* Mean WTP of five unique samples, the mean and standard deviation of which are reported. 
Method: Small and Rosen (1981); Hanemann (1978) performed using the parameter estimates 
from the sample size specified, calculated using the full choice set.  
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Table 6 
Estimation Time

Latent Class Model 

 
* 1 ≈ 6.99 days 
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Table 7

Information Criteria

Sample Size

  
# of 
classes  Full  50%  25%  12.5%  5% 

 
2%  1% 

LL  1  ‐13257  ‐13264 ‐13274 ‐13294 ‐13344 ‐13432  ‐13542
2  ‐12417  ‐12438 ‐12526 ‐12570 ‐12633 ‐12918  ‐13416
3  ‐12094  ‐12103 ‐12147 ‐12172 ‐12284 ‐12455  ‐13328
4  ‐11793  ‐11817 ‐11879 ‐12019 ‐12024 ‐12262  ‐13310
5  ‐11521  ‐11554 ‐11581 ‐11644 ‐12010 ‐12245  ‐13299
6  ‐11236  ‐11275 ‐11356 ‐11456 ‐11995 ‐12234  ‐13294

        
CAIC  1  26623  26637 26657 26697 26797 26973  27193

2  25073  25114 25291 25378 25505 26075  27071
3  24557  24576 24662 24713 24938 25279  27024
4  24085  24134 24256 24538 24548 25023  27119
5  23672  23738 23791 23919 24649 25120  27229
6  23232  23309 23472 23672 24750 25228  27348

        

crAIC  1  26560  26574 26594 26634 26734 26910  27130
2  25065  25106 25283 25370 25497 26067  27063
3  24902  24921 25007 25058 25283 25624  27370
4  25279  25328 25450 25732 25742 26217  28313
5  26438  26504 26557 26684 27415 27886  29994
6  28563  28640 28803 29003 30081 30559  32679

        
* CAIC, and crAIC calculated using the “Normalized LL”; Mean of 200 and five random 
samples reported for the one and multiple class models respectively; Optimal # of classes in 
bold defined by the minimum of the information criteria. 
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Table 8

Parameter Estimates: Two Class Model 

Sample Size  Full  50%  25%  12.50%  5%  2% 1% 
Normalized LL  ‐12416  ‐12426  ‐12431  ‐12464  ‐12506  ‐12890 ‐12944 

   Class 1  Class2  Class 1  Class2  Class 1  Class2  Class 1  Class2  Class 1  Class2  Class 1  Class2  Class 1  Class2 

Individual Specific Variable           

intercept  ‐1.138   ‐   ‐1.024   ‐   ‐1.140   ‐   ‐0.956   ‐   ‐1.008   ‐   ‐2.726   ‐   ‐0.518   ‐  

boat  0.377   ‐   0.332   ‐   0.370   ‐   0.200   ‐   0.274   ‐   0.361   ‐   0.455   ‐  
kids  ‐0.106   ‐   ‐0.142   ‐   ‐0.114   ‐   ‐0.136   ‐   ‐0.080   ‐   ‐0.136   ‐   ‐0.089   ‐  

income  0.057   ‐   0.059   ‐   0.058   ‐   0.042   ‐   0.080   ‐   0.171   ‐   0.166   ‐  

Fixed Site Specific Variable           

tcost  ‐10.287   ‐   ‐10.160   ‐   ‐10.102   ‐   ‐10.051   ‐   ‐9.730   ‐   ‐9.038   ‐   ‐9.283   ‐  
 

Site Specific Variable           
ramp  0.716  0.161  0.615  0.137  0.776  0.159  0.597  0.216  0.965  0.042  0.766  0.399  0.828  ‐1.253 
refuge  ‐1.857  0.950  ‐1.315  0.945  ‐2.141  0.945  ‐1.369  1.021  ‐0.567  0.851  0.697  0.531  ‐0.332  1.203 
forest  ‐0.669  0.482  ‐0.762  0.499  ‐0.927  0.556  ‐0.971  0.633  ‐0.715  0.661  ‐1.545  0.521  ‐0.316  0.758 
urban  ‐1.491  0.406  ‐1.393  0.388  ‐1.497  0.353  ‐1.284  0.399  ‐1.480  0.494  ‐0.827  ‐0.023  ‐1.979  1.359 

restroom  ‐0.659  0.784  ‐0.613  0.828  ‐0.675  0.802  ‐0.601  0.947  ‐0.378  0.913  0.423  0.222  ‐0.159  1.547 
river  3.460  ‐1.866  3.139  ‐2.116  3.421  ‐2.009  3.627  ‐2.147  3.187  ‐2.301  ‐0.39  0.047  0.605  0.844 

small lake  ‐1.139  ‐0.465  ‐1.151  ‐0.376  ‐1.079  ‐0.442  ‐0.990  ‐0.438  ‐0.696  ‐0.539  ‐1.704  ‐0.567  ‐0.588  ‐1.326 
trout  ‐0.796  2.398  ‐0.493  2.485  ‐0.724  2.530  1.318  2.503  ‐0.651  3.470  ‐24.625  2.54  1.662  3.250 

smallmouth  1.851  0.809  1.380  1.095  1.417  0.995  0.758  1.221  1.040  1.367  5.524  0.434  0.947  1.759 
walleye  4.527  1.721  4.294  1.512  4.768  1.596  4.722  1.700  3.325  1.403  5.96  0.907  3.632  1.893 
northern  5.294  1.959  4.578  1.405  4.442  1.495  0.817  1.957  3.235  1.523  ‐8.625  0.957  3.953  ‐8.328 
musky  4.169  7.587  4.369  9.136  1.490  7.453  6.291  7.932  6.820  9.281  ‐2.549  9.363  12.702  6.522 
salmon  8.966  1.320  8.466  0.613  7.854  0.991  8.170  1.261  6.369  0.317  21.625  8.042  13.252  9.639 
panfish  2.907  ‐0.474  2.723  ‐0.614  2.867  ‐0.524  2.970  ‐0.477  2.636  ‐0.445  ‐1.564  0.778  1.247  1.474 

*robust clustered standard errors not reported; bold indicates significance at the 5% level; “Normalized LL” is the log‐likelihood calculated at the parameter values  
for the entire choice set for comparison purposes. 
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  Table 9 
  Parameter Estimates: Latent Class Model 

Sample Size  Full  50%  25%  12.50%  5%  2%  1% 
Normalized LL  ‐12094  ‐12103  ‐12147  ‐12172  ‐12284  ‐12455  ‐13416 

se  6  17  90  81  48  96 
   

Site Specific Variable       
tcost  ‐10.315  ‐10.397 ‐10.285 ‐9.887 ‐9.473 ‐9.151  ‐8.867

0.378  0.288 0.312 0.313 0.487 0.439  2.274
ramp  0.334  0.259 0.340 0.341 0.421 0.305  1.940

0.239  0.225 0.195 0.213 0.231 0.297  0.781
refuge  0.131  ‐0.025 0.150 0.117 0.323 0.305  0.412

0.278  0.256 0.275 0.264 0.298 0.282  3.222
forest  0.096  ‐0.059 ‐0.008 0.152 0.099 ‐0.157  0.061

0.347  0.366 0.343 0.313 0.343 0.353  0.231
urban  ‐0.383  ‐0.260 ‐0.301 ‐0.269 ‐0.249 ‐0.196  0.098

0.242  0.305 0.239 0.231 0.270 0.304  0.221
restroom  0.202  0.323 0.153 0.353 0.357 0.388  0.484

0.199  0.189 0.171 0.174 0.239 0.260  0.168
river  ‐0.159  ‐0.636 ‐0.637 ‐0.897 ‐0.837 ‐0.310  0.112

0.196  0.191 0.185 0.194 0.206 0.244  0.151
small lake  ‐0.971  ‐1.086 ‐1.178 ‐0.752 ‐1.658 ‐1.436  ‐1.832

0.473  0.417 0.443 0.505 0.528 0.564  0.409
trout  0.555  0.909 0.895 1.029 2.049 2.407  0.943

0.279  0.260 0.271 0.266 0.311 0.348  1.783
smallmouth  0.588  0.949 1.066 1.184 1.438 0.841  0.903

0.987  0.968 1.134 1.088 1.284 1.083  1.057
walleye  2.391  2.347 2.313 2.038 2.189 1.699  2.140

0.507  0.557 0.502 0.527 0.509 0.617  0.417
northern  2.961  2.749 1.893 1.697 0.104 1.401  1.029

0.475  0.511 0.509 0.579 0.623 0.658  0.438
musky  4.348  5.861 7.851 5.526 6.469 8.519  9.041

1.456  1.434 1.571 1.579 2.010 2.231  1.536
salmon  7.309  4.850 4.843 ‐4.182 2.936 4.787  7.989

2.445  2.346 2.937 3.206 3.928 4.183  3.232
panfish  0.609  0.441 0.457 0.364 0.468 0.746  0.859

   1.905  2.276 2.287 3.651 2.641 2.788  1.910
*results for the sampled models represent the mean of 5 random samples using the optimal number of 
classes as defined by the crAIC and weighted parameter means;  robust clustered standard errors in 
italics; bold indicates significance at the 5% level; “Normalized LL” is the log‐likelihood calculated at the 
parameter values for the entire choice set for comparison purposes. 
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Table 10 
Welfare Scenarios 

Latent Class Model (crAIC) 
 

    

    

 
* Mean WTP of five unique samples using the best of three starting values, the mean and 
standard deviation of which are reported. Method: Small and Rosen (1981); Hanemann (1978) 
performed using the parameter estimates from the sample size specified, calculated using the 
full choice set.  
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