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Introduction 

Choice experiments (CE) or choice-based conjoint analysis have been widely used to elicit 

consumer valuation of nonmarket goods (i.e. Adamowicz et al. 1998; Boyle et al. 2001; 

Colombo et al. 2007) and marketable goods with novel attributes (i.e. Alfnes 2004; Darby et al. 

2008; Tonsor et al. 2005).  The increasing popularity of CE types of surveys is partially in 

response to recognized problems of contingent valuation by the NOAA panel in 1990 (Hausman 

1993), and its ability of easily identifying the trade-off among different product attributes relative 

to other approaches.  However, several issues with use of CE remain unresolved.  The major 

challenge is how to design statistically efficient experiments to provide enough information for 

accurately eliciting consumer preferences, and at the same time, to make the length of choice 

experiments reasonable such that cognitive burdens on survey participants are minimized.   

Although different types of design strategies have been developed (see Louviere, Hensher 

and Swait (2000) for various design strategies), no general agreement has been reached on what 

is the ―best design‖ of choice experiments.  Each design approach has its advantages in capturing 

certain types of effects and there is no superior design for all purposes (Chzan and Orme 2000).  

D-optimal design with correct priori information generates more accurate valuation of products 

or services (Carlsson and Martinsson 2003; Ferrini and Scarpa 2007), however, if high quality 

prior information is not available, the shift design is the most promising (Ferrini and Scarpa 

2007).  Lusk and Norwood (2005) compared six design strategies regarding their performance in 

WTP estimates and demonstrated that random designs are the best. In addition, designs 

incorporate attribute interactions results in more precise valuation estimates than main effects 

only design (Lusk and Norwood 2005).  Previous research recognizes that the criterion of a good 

choice experiment design is not only in the statistical efficiency, but also in the cost associated 
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with the choice complexity.  This is because more statistically efficient design is always 

accompanied by a higher level of complexity which results in heavier cognitive burden on 

respondents.  However, existing literature using simulations has only compared different design 

strategies with fixed design dimensionality (e.g., number of alternatives, number of attributes and 

number of attribute levels) which is highly correlated with the complexity of choice experiments.  

For instance, Carlsson and Martinsson (2003) constructed pair-wise choice experiments with 4 

attributes, three of them having 3 levels, and one having 2 levels; Lusk and Norwood (2005) 

designed choice experiments in which each choice set consisted of  3 alternatives, and  each 

alternative with four 3-level attributes.  Ferrini and Scarpa’s (2007) conducted a simulation based 

on pair-wise choice experiments with 4 attribute, each having 3 levels.   

Several studies have demonstrated that design dimensionality, especially the number of 

product attributes included in choice experiments, affects consumer preference and valuation 

(Islam, Louviere, and Burke 2007, Hensher 2006, Gao and Schroeder 2009).  Lack of research 

on the performance of different experimental designs under various attribute information, 

implied by the number of product attributes, hinders our ability to infer efficiency of different 

choice experiment design strategies.  In addition, it is also unclear if the impacts of the number 

of product attributes in choice experiments result from its effects on respondent cognitive ability 

of processing information or the statistical property of choice experiments when the number of 

attributes increases.  The purposes of this article are to 1) determine the performance of different 

choice experimental designs on welfare estimates such as willingness-to-pay (WTP) under 

different attribute information loads; and 2) investigate the effects of information loads on 

consumer valuation in simulation scenarios. We believe that more appropriate design strategies 

can be made base on the attribute information determined by researchers before implementation 
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of choice experiments.  In addition, identifying the impacts of dimensionality on the statistical 

property of choice experiment helps enhance our understanding of the effects of dimensionality 

on respondent valuation.   

Choice Experiment and Good Experimental Design 

In a choice experiment, predetermined attributes that are believed to have the largest 

impacts on consumer choice decisions comprise a series of alternatives (profiles or choices). 

Two or more alternatives are used to form a choice set, and a sequence of choice sets composes a 

choice experiment.  Respondents are asked to choose one alternative from each choice set in an 

experiment.  Based on the random utility theory, a consumer will choose an alternative from 

each choice set to maximize her/his utility.  Consumer preferences for products and product 

attributes can be elicited from their sequent choice decisions.  However, in most cases, 

enumerating all combinations of product attributes is not feasible because the number of 

combinations of product attributes is huge, resulting in very large number of choice sets.  Too 

many choice sets hinder consumer ability to make rational choice decisions in a short time.  

Therefore, one of the major challenges of conducting a choice experiment is to design choice 

experiments simple for respondents to make efficient choice decisions while at the same time 

provide enough information for researchers to accurately elicit consumer preferences.   

Various experimental designs have been discussed and used by researchers, including 

orthogonal main effects design, D-optimal design, fractional factorial design and shifted (or 

cycled) design, etc.  There is a general agreement that the choice experiment generated from the 

design should result in the minimum variance of coefficient estimates.  In a linear model, the 

variance of coefficient estimates does not depend on the true parameters, such that 
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2 1( ) ( ' )Var X X   , where X is the design matrix and 2 is the variance of the random error in the 

linear model.  Therefore, the D-optimal design which maximizes the D-efficiency 

1
1 ( )

1
100

| ( ' ) | A CN X X  

 , should be the best design method in linear models, where N is the number 

of observation in the design, A is the number of attributes and C is the number of attribute levels.  

The balanced orthogonal design automatically results in a design with 100% D-efficiency 

because 1 1
( ' )X X I

N

    where I is an identity matrix.  A design deviated from unbalanced but 

orthogonal design will have a D-efficiency less than 100, with the minimum efficiency being 

zero (Kuhfeld, Tobias and Garrat 1994).  The algorisms that maximize D-efficiency of a design 

are readily available in SAS and other software which make the design of experiments of linear 

models simple.  However, good designs based on the standards in a linear model may not hold 

for choice experiments.  The models used in choice experiments are usually nonlinear, and the 

variance of parameter estimates not only depends on the design matrix, but also on the true 

parameter in the models.   

The variance matrix of parameter estimates from choice experiments depends on the 

assumption of the random component in consumer random utility function 'j j jU x   , 

where jU is consumer utility of consuming product j ,  is a vector of parameters, jx is a vector of 

attributes for alternative j and j is the random component with a certain type of probability 

distribution.   Consumers will choose an alternative from a choice set to maximize her/his utility 

and the probability of choosing alternative j is Prob( ' ' ,  )j j j i iP x x i j         .  In a 

multinomial logit model (MNL), a prevailing model used to estimate consumer preferences in 

choice experiments, j  has identical independent Gumbel distribution.  The probability that a 
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consumer chooses alternative j from a choice set with n choices is 
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  , and M is 

the number of choice sets for all respondents (McFadden 1974).  The formula of the variance of 

the parameters in MNL implies that it is not possible to choose a design strategy that minimizes 

the variance of parameter estimates without knowing the true parameters in the consumer utility 

function.  Carlsson and Martinsson (2003) and, Ferrini and Scarpa (2007) demonstrate that the 

choice experiment maximizing the D-efficiency 
1

1 ( )100 | | A C    with high-quality prior 

information results in most accurate parameter estimates.  However, in most cases, obtaining and 

verifying high-quality prior information of the true parameters is difficult and designs 

maximizing D-efficiency with low quality prior information usually leads to inferior estimation 

to those designs without prior information (Ferrini and Scarpa 2007).   

In this article we extend Lusk and Norwood (2005) work by investigating the efficiency of 

different experimental designs in various information loads used to estimate consumer valuation.  

Lusk and Norwood (2005) compared the impacts of experiment designs on consumer valuation 

without prior information on consumer preferences.  Like other research, their work only 

investigated the impacts of experiment designs with fixed product attributes.  However, the 

amount of attribute information provided affects consumer behaviors, so that it is important to 

understand the performance of different experimental designs under various attribute information 

loads and identify sources of impacts of attribute information on consumer preferences. 
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Comparison of Different Experiment Designs under Various Information Loads 

Comparison Scenarios 

To investigate the performance of different experiment designs under various attribute 

information loads, we conduct several Monte Carlo simulations where the true consumer utility 

functions are known.  Pair-wise choice experiments are used in the simulations in which 

respondents are assumed to choose one alternative from two choices in a choice set.  With the 

true utility function, random components following a Gumbel distribution are added to simulate 

unobservable consumer preferences that may affect the choice decision.  Consumer choices are 

simulated by comparing the utility level of the two alternatives in a choice set and then a MNL 

model is used to estimate the utility parameters.  Consumer WTP for product attributes from 

MNL are compared with the true WTP, and the deviation can be used for evaluating different 

experimental designs.   

We employ four types of choice experimental designs and evaluate their performances 

under four attribute information loads, three levels of sample size and two types of utility 

functions (table 1).  Therefore the total number of simulation scenarios is 4×4×3×2.  The choice 

experiment design includes randomly drawn choice sets from 3
N
×3

N 
full factorial design (RD), 

where N indicates the number of attributes in a choice experiment; main effects only design 

drawn from 3
N
×3

N 
full factorial design (ME); main effects design maximizing D-efficiency with 

a minimum number of choice sets drawn from 3
N
×3

N 
full factorial design (MD); and the design 

pairing alternatives generated from 3
N 

full factorial design using bin method (RP).  Those four 

designs are similar to those in Lusk and Norwood (2005).  We exclude designs with two-way 

interaction effects, because the main effects design is the most commonly used design.  In 
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addition, adding two-way interactions significantly increases the choice sets in a choice 

experiment, especially when the attribute information load is high, thus resulting in heavy 

cognitive burden on survey respondents.  Smaller main effects only design may be preferable 

even if larger designs with interactions have statistical advantages (Lusk and Norwood 2005).  

The numbers of attributes, each with three levels in choice experimental designs are 2, 3, 4 and 5 

implying the attribute information loads from low to high.  The minimum number of attributes is 

selected to be two, because price and another product attribute must be included in order to 

calculate the WTP estimate.  The maximum number of attributes is five, because a larger number 

of attributes typically leads to choice experiments with more choice sets, which are difficult to 

administer and also quickly result in respondents’ fatigue or information overload.  Similar to 

Lusk and Norwood (2005) a continuous and a discrete true consumer utility function are 

assumed.  The samples size measured by the total number of choice sets for all respondents are 

selected to be approximate 250, 500 and 1000, representing the surveys with small, middle and 

large sample size, respectively.  The description of different simulation scenarios is provided in 

table 1.       

The true consumer utility functions employed in our study are 

(1)  0

1

n
c

ij j k ijk

k

V P x  


     for continuous utility functions and  

(2)  0

1 1

n n
d

ij j ka ijka kb ijkb

k k

V P x x   
 

         for discrete utility functions.  Where j is alternative 

specified constant,  s are parameters related to product price and different attributes, P is 

product price, ijkx is kth product attribute, ijkax  and ijkbx are dummy variables corresponding to the 

levels in attribute ik
1
, and n equals 1, 2, 3 and 4 denoting the number of attributes in choice 
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experiments.  The true parameters in continuous utility functions are 1j  , 0 1   , 

1 2  , 2 3  , 3 4  and 4 0.1  .  The true parameter of dummy variables in discrete utility 

functions are 1 2a   , 1 1b   , 2 3a   , 2 2b  , 3 4a   , 3 3b  , 4 5a   , 4 4b  .  

Monte Carlo Simulation   

For each alternative in choice experiments, the utility k
ijV  (k=c, d) is calculated using the 

presumed true parameters.  Random variable ij with a Gumbel distribution is drawn 

independently with the number of observation equal the total number of alternatives in a 

simulation (2 × the number of choice sets in a choice experiment × the sample size).  As such, 

the assumptions of multinomial logit models are strictly satisfied.  The consumer random utilities 

k k
ij ij ijU V   (k=c, d) are compared across alternatives in a choice set, and the alternatives with the 

highest random utility level are assigned a number of one to simulate consumer choices.  MNL 

models are estimated using simulated consumer choices and the attribute levels in choice 

experiments.  The WTP estimates for each attribute is calculated as the negative value of the 

ratio of attribute and price coefficients such 
0

kWTP



  , (k=1-4) for the continuous utility 

function and 
0

khWTP



  , (k=1-4, h=a, b) for the discrete utility function. The procedure is 

repeated 500 times to compose a Monte Carlo simulation, resulting in 500 WTP of each attribute 

for each simulation scenario.  The performance of different choice experimental designs with 

respect to each attribute evaluation is compared using mean squared error 

2

1

( ) /

N

i t

i

MSE WTP WTP N



  , and absolute relative error 
1

1
( ) /

N

i t t

i

RSE WTP WTP WTP
N



   , where 

WTPi is the simulated WTP, WTPt is the corresponding true WTP, and N is the number of 



9 
 

simulations.  Because consumer true WTP for different attributes varies from $0.1 to $5, the RSE 

error provides a relative measure of the error such that the impact of different designs can be 

compare across attributes. The choice experiment design that results in the minimum MSE and 

RSE is considered here the best design.  The MSE and RSE of different scenarios can be 

compared 1) across sample size to study the effect of sample size, 2) across different designs to 

investigate the performance of different designs with small, mid and large sample sizes, 3) across 

the number of attributes to investigate the effect of information loads on WTP estimates.   

Identification of Factors Affecting WTP Estimate 

Pair-wise comparisons across the sample size, design strategy and the number of attributes can 

help identify the impact of a single factor on WTP estimates.  However, the effects of different 

factors may be compounded so that the pair-wise comparisons are not sufficient.  Three simple 

models are estimated as: 

(3) 2
1 1 1 1i i i i i iWTP Des Sam Att Att                 

(4) 2
2 2 2 2i i i i i iMS Des Sam Att Att                and 

(5) 2
3 3 3 3i i i i i iRS Des Sam Att Att                

 

Where iWTP  is the willingness- to-pay estimate, 2( )i i tMS WTP WTP  is the squared difference 

between the estimated WTP and the true WTP, | ( ) / |i i t tRS WTP WTP WTP  is the relative difference 

between the estimated WTP and the true WTP, [   ]'i i i iDes ME MD RP is a vector of dummies 

denoting the design strategy,  [  ]'i i iSam M L is a vector of dummies denoting the sample size, 

iAtt is the number of attributes in the choice experiments. s , s , s , s and s are coefficients to 

be estimated, and i is stochastic errors.  A quadratic term of iAtt  is added in the models because 

Swait and Adamowicz (2001) demonstrate that the preference variance of consumers has a 

quadratic relationship with the complexity of the decision environment.  Gao and Schroeder 
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(2009) have shown that consumer WTP has a quadratic form with the number of attributes in 

choice experiments.  However, it is not clear whether the relationship is from changing consumer 

preference as a result of the complexity of decision making, or a statistical property of choice 

experiments with the increasing number of attributes in designs.  Models (3), (4) and (5) are 

estimated for both continuous and discrete utility functions.  

Results 

WTP Estimates, MSE, RSE and Best Designs in Various Scenarios  

Table 2 reports the means, MSE and RSE of simulated WTP of each attribute for the 

corresponding simulation scenarios when the true utility functions are continuous.  For each 

attribute, the best experimental designs under the combinations of the number of attributes and 

the sample size choices are reported based on the minimum MSE and minimum RSE rules.  In 

general, both rules result in the same best design.  However, in some cases (e.g., for attribute x1, 

with 2 attributes in a choice experiment and a large sample size), there is divergence of the best 

designs between MSE and RSE rules. This may result from the MSE punishes extreme values in 

the sample more severely than the RSE, because of the squared difference between WTP 

estimates and the true WTP.   

Overall, the simulated WTP is larger than the true WTP.  For all designs under different 

information loads, increasing the sample size of choice experiments reduces the WTP estimates, 

which is companied with smaller MSE and RSE.  The number of product attributes in choice 

experiments affects the performance of different designs.  In general, choice experiments with 5 

attributes are accompanied with higher WTP estimates, MSE and RSE.  However, the impact of 

the number of product attributes on WTP estimated, MSE and RSE measures are not clear—it 
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depends on the choice experiment design.  For instance, in the RD design, a larger number of 

attributes in choice experiments is accompanied with larger WTP estimates and MSE/RSE as 

well.  However, in the ME design, the WTP estimates and MSE/RSE are the largest when the 

number of attributes in choice experiments is four.  Results imply it may not be the best strategy 

to improve WTP estimation while keeping the number of attributes at the small level, at least 

from a statistical perspective.  

The selected best design for each attribute under different number of product attributes and 

sample size combinations demonstrates that there are no dominant designs.  The performances of 

designs are highly related to the number of product attributes.  For instance, with two attributes 

in choice experiments, ME design is the overall best design.  When the number of attributes 

increases to 3, RP design changes to be the best design, and with the number of attributes being 4 

and 5, RD design performs the best.  Table 3 reports the means, MSE and RSE of simulated WTP 

for each attribute when the true utility functions are discrete.  Results reveal the similar 

conclusion as from the case of the continuous utility functions.  Most WTP estimates are larger 

than the true WTP, a larger sample size results in smaller MSE and RSE in all scenarios, and 

increasing the number of attributes in choice experiments leads to larger MSE and RSE in most 

cases.  The best designs under the sample size and number of attributes combinations, however, 

are not consistent with the results from continuous utility function and may be attribute related.  

For instance, when the number of attributes in choice experiments is 2, the best design for 

attribute x1a is the MD design.  However, for attribute x1b, the best one is the RP design.  

Unlike in the continuous utility function cases where the MD designs perform the worst in 

general, the MD designs are the best designs when the number of product attributes in choice 

experiments is three.  When the number of product attributes is four, the ME designs become the 
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best, and with five attributes in choice experiments, RD designs perform the best.  However, it 

needs to point out that the best designs based on MSE and RSE may not be the ―golden rule‖ to 

select the design strategy in practice.  In some cases, the difference in MSE and RSE between the 

best and the second best design is very small, and sometimes, negligible.   

Factors Affecting WTP Estimates 

Results of model (3) for continuous utility functions are reported in table 4.  Most of the 

coefficients are significantly different from zero at 5 percent significance level.  The positive 

coefficients of design strategy indicated that RD, ME and RP designs tend to result in higher 

WTP estimates for attributes X1, X2 and X3, compared with the MD design. However, for the 

WTP for X4, those 4 design strategies are equivalent with regard to the WTP estimate.  The 

negative signs of the sample size coefficients imply that middle and large sample size tend to 

have smaller WTP estimates compared with the case of small sample size.  This is consistent 

with the fact that the WTP estimates are generally larger than true WTP.  Smaller WTP estimates 

with middle and large sample size indicate an improvement of WTP estimate as sample sizes 

increase. The insignificant coefficients of Middle for WTP for attribute x2 and x3 show that 

increasing sample size from small to middle does not decrease the WTP.   The statistical tests 

demonstrated that for attributes x2, x3 and x4, middle sample size is equivalent to large sample 

size in explaining the variation in WTP estimation.  The quadratic relationship between WTP 

estimate and the number of attributes is statistically significant at the 5 percent level with the 

WTP for attribute x1.  However, these effects are not significant for attribute x2, and increasing 

the number of attributes in choice experiments do not have significant impact on the WTP 

estimate of attribute x3.  
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Results of model (4) and (5) reported in table 4 implies that RD, ME and RP designs are 

significantly better than MD design based on the measures of squared or absolute relative errors.  

Compare to the MD design, those three designs significantly reduce the square and relative 

absolute errors of estimated WTP.  The relatively larger coefficients for RD imply that the RD 

designs are the best, and the RP designs are second best.  Based on the SE and RE measures, 

increasing sample size significantly improves the WTP estimates of all design strategies.  The 

tests for the coefficients of the design strategy indicate that both RD and RP designs are 

significantly better than ME design in explaining variation in WTP estimate, SE and RE 

measures for the attributes x1, x2 and x3.  However, the RD designs are not statistically 

significantly superior to the RP designs at the 5% significance level.  For attribute x4, all the four 

design strategies are equivalent in explaining the variation in WTP estimates.  For other 

attributes, RD, ME, and RP designs are significantly better than the MD design to explain the 

variations in SE and RE (5% significance level), but they are not significantly different from 

each other.  One potential reason for this phenomenon may be that the true WTP for attribute x4 

has a much smaller scale compared with the WTP for other attributes (0.1 vs. 2, 3 and 4).  

Another reason may be that x4 is only presented in the choice experiments with five product 

attributes, and performance of all design strategies are significantly affected by the number of 

attributes in the choice experiments.  Additional models for attributes x1, x2, and x3 with the 

WTP estimates only from choice experiments with 5 attributes also show that all the three design 

strategies (RD, ME, and RP) are equivalent. Results imply that when the attribute information 

loads achieve a certain level (in our case, 5 attributes) none of those design strategies is dominant.   

Table 5 reports the results of model (3) for a discrete consumer utility function.  They 

provide similar but a little different information compared with the results from the continuous 
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utility function.  First of all, RD, ME and RP result in statistically significant (5% significance 

level) and larger WTP estimates for attributes x1a, x2a and x4a and significantly smaller WTP 

estimates for attribute x3a than the MD design.  A large sample size results in statistically 

significant smaller WTP estimates than a small sample size, with the exception of the WTP 

estimates for attribute x2a with a middle sample size, and the attribute x4a with a large sample 

size.  The WTP estimates from the middle and large sample sizes are not significantly different 

(5% significance level) for the attributes x3a and x4a.  However, for the attributes x1a and x2a, a 

large sample size results in statistically significant and smaller WTP estimates (5% significance 

level).  WTP estimates for the attributes x1a and x2a have statistically significant and quadratic 

relationship with the number of attributes in the choice experiments.  For attribute x3a, 

increasing the number of attributes (from 4 to 5) in the choice experiment significantly reduced 

the WTP estimates.  The design strategies of RD, ME and RP are not significantly different in 

explaining the variations in WTP estimates.   

Results for the models (4) and (5) reported in table 4 imply that for all design strategies 

RD, ME and RP statistically improve the WTP estimation with smaller SE and RE than MD 

design.  Based on the scale of the absolute value of coefficient estimates of design strategy, RD 

design performs the best followed by the RP design, which is the same result found in the case of 

continuous utility functions.  Increasing sample size from small, to middle, and to large 

significantly improves the performance of WTP estimates.  For the attribute x1a and x2a, the SE 

and RE measures have statistically significant and convex relationships with the number of 

attributes in choice experiments; both SE and RE first decrease and then increase as the number 

of attributes in choice experiments increases.  The result implies that keeping the number of 

attributes at either the minimum (2 in our case) or the maximum (5 in our case) may not be the 
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best strategy for WTP estimates.  However, the positive coefficients for the # of Attributes for 

attribute x3a indicate that increasing the number of attributes from 4 to 5 significantly increases 

both SE and RE measures (5% significance level).  The result is different from the case of 

continuous utility functions, in which increasing the number of attributes from 4 to 5 results in 

decreased SE and RE for the attribute x3.  The statistical tests indicate that in most cases RD is a 

significantly better design than ME.  However, the performances of RP and ME designs are not 

clear—results from model (4) imply that three out of the four cases (attributes x1a, x3a and x4a), 

RP design does not perform significantly better that ME design.  However, results from model (5) 

indicate that RD design is significantly better than ME design in WTP estimates of attributes x1a 

and x3a.  

Conclusion 

The increasing application of choice experiments in consumer valuation reflects the comparative 

advantage of this technique in valuation of multiple product attributes and the tradeoff between 

different attributes can be easily estimated in a single experiment rather than multiple surveys or 

experiments required by other valuation techniques.  On the other hand, the popularity of choice 

experiments also demands more research on this area to study the impacts of design parameters 

on consumer valuation estimates.  Although used by many researchers, the effort to address the 

second issues is not adequate.  Carlsson and Martinsson (2003), Lusk and Norwood (2005), and 

Ferrini and Scarpa (2007) are among the few to study the impacts of design strategies on 

consumer valuation estimate using Monte Carlo simulation.  However, in those studies, the 

impacts of choice experiment design are evaluated with fixed attribute information loads.  With 

the current field studies finding that attribute information loads affect consumer WTP estimates, 

it is worthwhile to investigate the performance of different design strategies under different 
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information loads, as well as to identify the sources that affect consumer valuation in field 

study—are the impacts of information load due to the change in consumer cognitive ability to 

make choice decision, the substitute and complement effects between product attributes or the 

pure statistical property of choice experiments?  In this paper we extend previous researches by 

investigating the change in consumer WTP estimates under different attribute information loads, 

design strategies, sample sizes and utility function types to address those questions. 

Results in this article delivered similar information with previous studies that larger 

sample size can significantly improve the WTP estimates.  If all other design parameters such as 

information loads and sample size are controlled, RD design is the overall best design; however, 

this design is not significantly better than RP design.  If other design parameters are also 

considered, the information loads significantly affect the performance of design strategies — 

when the number of attributes is 5, RD design is the best with both continuous and discrete cases; 

when the number of attributes is 3, RP and MD are the best with both continuous and discrete 

utility functions, respectively. The fact that the WTP estimates have a quadratic relationship with 

the number of attributes in choice experiments is unexpected.  This result calls for further 

research to investigate the impacts of attribute information on consumer valuation—how much 

of the changes in consumer valuation found by the previous researches such as Hensher (2006) 

and Gao and Schroder (2009) result from the changes in consumer cognitive ability to processing 

information, or due to the statistical property of the choice experiments with the change of the 

number of attributes in a design?  The quadratic relationships between the performance and the 

number of attributes in choice experiments also indicates that keeping the information loads as 

few as possible is not the best design strategies to improve consumer valuation estimates.  

However, too many attributes will deteriorate the performance of all design strategies in 
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valuation estimates.  In our case, the optimal attribute number in the choice experiment was 3 in 

the discrete case.  However, this conclusion depends on the particular attributes studied.   

Choosing right design strategies is only a small step for a successful choice experiment.  

Many factors are correlated so that tradeoffs must be made between statistical performance, 

feasibility to administer the choice experiments, the potential problem of omitted variables in a 

consumer utility function, and the budget constraints of the researchers.  For example, the 

number of attributes in a choice experiment determines the minimum choice set in ME and MD 

designs. ME design may be an overall better design than MD design, but the choice sets in ME 

design is always larger than that in MD design. The increased number of choice sets in an ME 

design may increase the cognitive burden on respondents, which may result in less accurate 

estimation.  Restricting information loads in a choice experiment may reduce cognitive burden 

on respondents and improve the statistical property of choice experiments.  However, if the 

omitted information includes important variables determining consumer preference in real-world 

purchases, less attribute information may result in biased estimation of consumer preference.  

RD design overall perform the best.  However, it is not financially efficient to ask one 

respondent to only answer one choice experiment question.  All those factors should be carefully 

evaluated before conducting a choice experiment.  Further research may add more design 

parameters such as the number of choices in choice sets in choice experiments to study the 

performance of various design strategies.  Furthermore, worthwhile is expressing the deviation of 

WTP estimates from the true WTP as a function of major factors that affect consumer valuation 

subject to research budget, and seek the optimal strategies regarding experiment design, attribute 

information loads, sample size, and other design parameters.   
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1
 Because each attribute has three levels, two dummy variables are created for each attribute. 
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Table 1. Description of Simulation Scenarios   

Experiment 

Design 

Description # of 

Attribute 

(N) 

# of Choice 

Sets in 

Experiment 

Utility 

Function 

Sample Size 

RD Random drew choice 

set from N
3
xN

3
 full 

factorial design 

2 N/A Continuous

/Discrete 

243/486/972 

3 N/A 250/500/1000 

4 N/A 250/500/1000 

5 N/A 250/500/1000 

ME Main effects only 

design drawn from 

N
3
xN

3
 full factorial 

design 

2 9 Continuous

/Discrete 

252/504/1008 

3 27 270/513/1026 

4 27 270/513/1026 

5 27 270/513/1026 

MD Main effects minimum 

design with maximized 

D-efficiency 

2 9 Continuous

/Discrete 

252/504/1008 

3 13 260/507/1001 

4 17 255/510/1003 

5 21 252/504/1008 

RP Random pair 

alternatives generated 

from full factorial 

design  

2 9 Continuous

/Discrete 

243/495/999 

3 27 243/486/999 

4 81 243/486/972 

5 243 243/486/972 
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Table 2 WTP Estimates, MSE, RSE and Best Design under Different Simulation Scenarios 

(Continuous Utility Function) 

Attribute # of 

Attribute 

 RD   ME   MD   RP  Best Design  

s=S s=M s=L s=S s=M s=L s=S s=M s=L s=S s=M s=L s=S s=M s=L 

x1 

2 

2.17
a
 2.05 2.03 2.03 2.03 2.03 2.15 2.08 2.01 2.29 2.18 2.08    

(0.53)
b
 (0.17) (0.87) (0.17) (0.10) (0.50) (0.47) (0.21) (0.08) (1.23) (0.43) (0.15) ME

d
 ME MD 

{0.25}
c
 {0.16} {0.12} {0.17} {0.13} {0.09} {0.26} {0.18} {0.12} {0.37} {0.25} {0.15} ME

e
 ME ME 

3 

2.25 2.09 2.04 2.35 2.21 2.11 2.20 2.16 2.11 2.20 2.08 2.02    

(0.86) (0.28) (0.12) (1.78) (0.71) (0.25) (0.90) (0.47) (0.25) (0.80) (0.27) (0.11) RP RP RP 

{0.33} {0.20} {0.14} {0.43} {0.28} {0.19} {0.35} {0.26} {0.19} {0.32} {0.20} {0.13} RP RP RP 

4 

2.13 2.14 2.03 3.38 2.38 2.13 1.50 1.80 2.22 2.22 2.18 2.07    

(0.74) (0.46) (0.17) (7.67) (1.30) (0.17) (5.14) (2.72) (1.29) (0.89) (0.53) (0.20) RD RD RD 

{0.33} {0.26} {0.16} {0.85} {0.34} {0.16} {0.80} {0.55} {0.38} {0.35} {0.27} {0.18} RD RD RD 

5 

2.41 2.20 2.10 2.33 2.22 2.12 1.20 2.16 2.24 2.45 2.21 2.09    

(2.37) (0.55) (0.26) (2.12) (0.67) (0.26) (6.65) (4.21) (0.95) (2.34) (0.68) (0.25) ME RD RP 

{0.47} {0.28} {0.19} {0.48} {0.30} {0.20} {0.83} {0.61} {0.35} {0.50} {0.30} {0.19} RD RD RP 

x2 

3 

3.40 3.14 3.07 3.52 3.30 3.16 3.33 3.26 3.19 3.29 3.12 3.03    

(2.00) (0.62) (0.25) (3.62) (1.40) (0.48) (2.54) (1.35) (0.72) (1.61) (0.52) (0.22) RP RP RP 

{0.33} {0.21} {0.14} {0.41} {0.27} {0.18} {0.40} {0.29} {0.22} {0.29} {0.19} {0.13} RP RP RP 

4 

3.20 3.21 3.05 4.49 3.46 3.17 1.88 2.62 3.41 3.36 3.27 3.12    

(1.60) (1.00) (0.36) (9.03) (1.80) (0.32) (12.89) (8.36) (4.41) (2.05) (1.08) (0.41) RD RD ME 

{0.32} {0.24} {0.16} {0.65} {0.29} {0.14} {0.91} {0.67} {0.47} {0.34} {0.25} {0.17} RD RD ME 

5 

3.57 3.28 3.14 3.57 3.36 3.19 1.60 3.25 3.40 3.63 3.28 3.14    

(4.45) (1.09) (0.50) (5.61) (1.65) (0.63) (19.30) (12.36) (2.69) (4.87) (1.48) (0.57) RD RD RD 

{0.43} {0.26} {0.18} {0.51} {0.31} {0.21} {0.94} {0.68} {0.39} {0.49} {0.30} {0.19} RD RD RD 

x3 

4 

4.27 4.27 4.05 6.75 4.76 4.25 2.56 3.46 4.57 4.50 4.38 4.16    

(2.95) (1.79) (0.68) (30.76) (5.16) (0.65) (28.56) (15.90) (8.28) (3.86) (2.00) (0.75) RD RD ME 

{0.33} {0.25} {0.17} {0.85} {0.33} {0.15} {0.97} {0.68} {0.48} {0.35} {0.26} {0.17} RD RD ME 

5 

4.81 4.39 4.20 4.77 4.49 4.26 2.61 4.28 4.44 4.89 4.39 4.19    

(8.56) (2.02) (0.92) (9.74) (2.90) (1.08) (19.95) (13.40) (3.18) (9.33) (2.61) (1.02) RD RD RD 

{0.45} {0.27} {0.18} {0.51} {0.31} {0.20} {0.74} {0.55} {0.32} {0.50} {0.30} {0.20} RD RD RD 

x4 5 

0.11 0.12 0.11 0.09 0.10 0.11 0.17 0.07 0.08 0.11 0.10 0.10    

(0.05) (0.02) (0.01) (0.07) (0.02) (0.01) (0.13) (0.06) (0.01) (0.06) (0.02) (0.01) RD RP RD 

{1.78} {1.18} {0.85} {2.01} {1.19} {0.83} {2.36} {1.64} {0.88} {1.91} {1.13} {0.81} RD RP RP 
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Notes: We removed 5% of the lowest and highest extreme value in WTP estimates, because 

some of those values are not rescannable. 
a
 Mean WTP from 450 simulated WTP 

b
 Mean Squared Errors 

c
 Average of the Absolute Relative Error 

d
 Best Design based on Minimum MSE 

e
 Best Design based on Minimum RSE 
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Table 3 WTP Estimates, MSE, RSE and Best Design under Different Simulation Scenarios 

(Discrete Utility Function) 

Attribute 
# of 

Attribute 

 RD   ME   MD   RP  Best Design 

s=S s=M s=L s=S s=M s=L s=S s=M s=L s=S s=M s=L s=S s=M s=L 

x1a 

2 

2.12 2.03 2.00 2.04 2.02 2.03 2.08 2.03 2.00 2.10 2.04 2.00    

(0.37) (0.13) (0.06) (0.29) (0.13) (0.07) (0.25) (0.11) (0.05) (0.45) (0.19) (0.07) MD MD MD 

{0.24} {0.15} {0.10} {0.21} {0.14} {0.11} {0.20} {0.13} {0.09} {0.26} {0.18} {0.11} MD MD MD 

3 

2.10 2.08 2.04 2.19 2.08 2.04 2.11 2.05 2.03 2.13 2.07 2.03    

(0.44) (0.21) (0.10) (0.66) (0.25) (0.11) (0.40) (0.18) (0.09) (0.41) (0.20) (0.08) MD MD RP 

{0.26} {0.18} {0.13} {0.30} {0.19} {0.14} {0.24} {0.17} {0.12} {0.25} {0.18} {0.11} MD MD RP 

4 

2.16 2.08 2.02 2.11 2.07 2.06 2.34 2.24 2.15 2.20 2.09 2.06    

(0.61) (0.24) (0.09) (0.51) (0.23) (0.12) (2.44) (0.88) (0.37) (0.76) (0.28) (0.14) ME ME RD 

{0.30} {0.20} {0.13} {0.28} {0.19} {0.14} {0.53} {0.35} {0.23} {0.32} {0.20} {0.15} ME ME RD 

5 

2.27 2.11 2.06 2.32 2.23 2.10 1.28 2.00 2.21 2.27 2.18 2.10    

(1.03) (0.28) (0.13) (1.85) (0.77) (0.26) (4.90) (1.73) (0.79) (1.30) (0.54) (0.24) RD RD RD 

{0.37} {0.20} {0.14} {0.48} {0.31} {0.20} {0.80} {0.47} {0.32} {0.40} {0.27} {0.19} RD RD RD 

x1b 

2 

1.06 1.01 0.99 1.02 1.01 1.02 1.05 1.02 1.01 1.05 1.02 1.00    

(0.14) (0.05) (0.02) (0.09) (0.04) (0.02) (0.09) (0.04) (0.02) (0.09) (0.04) (0.02) ME RP RP 

{0.29} {0.18} {0.13} {0.24} {0.17} {0.12} {0.24} {0.17} {0.12} {0.23} {0.16} {0.11} RP RP RP 

3 

1.05 1.05 1.02 1.08 1.04 1.03 1.07 1.04 1.02 1.06 1.03 1.01    

(0.17) (0.08) (0.04) (0.18) (0.07) (0.03) (0.14) (0.06) (0.03) (0.22) (0.10) (0.04) MD MD MD 

{0.33} {0.24} {0.16} {0.32} {0.21} {0.15} {0.30} {0.19} {0.14} {0.37} {0.25} {0.15} MD MD MD 

4 

1.06 1.03 1.01 1.05 1.03 1.02 1.16 1.10 1.06 1.12 1.05 1.04    

(0.18) (0.08) (0.04) (0.23) (0.11) (0.06) (0.58) (0.19) (0.08) (0.32) (0.12) (0.05) RD RD RD 

{0.35} {0.23} {0.16} {0.38} {0.27} {0.20} {0.51} {0.33} {0.23} {0.42} {0.27} {0.19} RD RD RD 

5 

1.16 1.06 1.03 1.18 1.10 1.06 0.89 0.99 1.04 1.11 1.10 1.06    

(0.43) (0.11) (0.06) (0.60) (0.22) (0.10) (1.79) (0.56) (0.27) (0.45) (0.20) (0.10) RD RD RD 

{0.48} {0.27} {0.19} {0.56} {0.36} {0.24} {0.94} {0.59} {0.43} {0.49} {0.34} {0.24} RD RD RD 

x2a 

3 

3.15 3.12 3.06 3.30 3.15 3.06 3.17 3.08 3.04 3.25 3.13 3.03    

(0.79) (0.39) (0.19) (1.49) (0.57) (0.27) (0.88) (0.34) (0.17) (0.97) (0.49) (0.18) RD MD MD 

{0.23} {0.17} {0.12} {0.30} {0.20} {0.14} {0.23} {0.16} {0.11} {0.26} {0.19} {0.11} RD MD MD 

4 

3.25 3.14 3.04 3.12 3.08 3.09 3.41 3.28 3.17 3.30 3.13 3.09    

(1.28) (0.52) (0.22) (1.10) (0.49) (0.28) (2.99) (1.10) (0.45) (1.54) (0.54) (0.26) ME ME RD 

{0.28} {0.19} {0.13} {0.27} {0.19} {0.14} {0.39} {0.25} {0.17} {0.31} {0.19} {0.13} ME ME RD 

5 3.43 3.19 3.10 3.40 3.27 3.13 1.90 2.89 3.21 3.35 3.25 3.14    
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(2.70) (0.79) (0.35) (3.48) (1.27) (0.49) (11.12) (4.02) (1.73) (2.08) (0.97) (0.12) RP RD RP 

{0.39} {0.22} {0.16} {0.42} {0.27} {0.18} {0.83} {0.49} {0.34} {0.34} {0.24} {0.17} RP RD RD 

x2b 

3 

2.11 2.06 2.04 2.19 2.09 2.05 2.12 2.05 2.02 2.13 2.07 2.02    

(0.38) (0.17) (0.08) (0.64) (0.26) (0.12) (0.37) (0.13) (0.07) (0.37) (0.19) (0.08) MD MD MD 

{0.24} {0.17} {0.12} {0.30} {0.20} {0.14} {0.22} {0.14} {0.10} {0.24} {0.17} {0.11} MD MD MD 

4 

2.16 2.09 2.03 2.13 2.08 2.07 2.30 2.21 2.12 2.17 2.07 2.05    

(0.57) (0.23) (0.10) (0.49) (0.22) (0.11) (1.89) (0.65) (0.27) (0.57) (0.21) (0.11) ME RP RD 

{0.28} {0.19} {0.13} {0.28} {0.19} {0.13} {0.46} {0.29} {0.19} {0.29} {0.18} {0.13} ME RP RD 

5 

2.28 2.13 2.07 2.25 2.20 2.09 1.01 2.07 2.24 2.24 2.17 2.09    

(1.35) (0.40) (0.17) (1.59) (0.66) (0.20) (7.55) (2.55) (1.07) (1.02) (0.46) (0.20) RP RD RD 

{0.41} {0.24} {0.16} {0.44} {0.28} {0.13} {0.94} {0.56} {0.38} {0.36} {0.25} {0.18} RP RD ME 

x3a 

4 

4.31 4.18 4.04 4.16 4.08 4.09 4.51 4.34 4.21 4.44 4.19 4.13    

(2.06) (0.89) (0.36) (1.62) (0.67) (0.39) (4.71) (1.72) (0.69) (3.38) (1.12) (0.51) ME ME RD 

{0.26} {0.18} {0.13} {0.24} {0.17} {0.12} {0.37} {0.24} {0.16} {0.33} {0.20} {0.14} ME ME ME 

5 

4.56 4.26 4.15 4.43 4.36 4.15 2.70 4.16 4.44 4.50 4.35 4.20    

(4.41) (1.26) (0.59) (6.54) (2.70) (0.86) (27.12) (8.78) (3.02) (4.14) (1.76) (0.79) RP RD RD 

{0.37} {0.22} {0.15} {0.44} {0.29} {0.18} {0.87} {0.48} {0.31} {0.35} {0.24} {0.17} RP RD RD 

x3b 

4 

3.22 3.13 3.03 3.08 3.04 3.07 3.39 3.29 3.17 3.35 3.14 3.10    

(1.15) (0.52) (0.22) (0.97) (0.44) (0.25) (3.16) (1.25) (0.48) (1.96) (0.65) (0.29) ME ME RD 

{0.27} {0.19} {0.13} {0.25} {0.18} {0.13} {0.40} {0.27} {0.17} {0.34} {0.21} {0.14} ME ME RD 

5 

3.44 3.20 3.09 3.35 3.29 3.13 1.98 3.01 3.29 3.36 3.25 3.14    

(2.56) (0.73) (0.34) (3.34) (1.41) (0.45) (14.18) (4.76) (1.84) (2.18) (0.89) (0.42) RP RD RD 

{0.38} {0.22} {0.15} {0.43} {0.28} {0.18} {0.88} {0.50} {0.34} {0.34} {0.23} {0.16} RP RD RD 

x4a 5 

5.74 5.34 5.18 5.72 5.51 5.20 3.38 5.05 5.43 5.66 5.47 5.23    

(7.06) (2.06) (0.92) (10.44) (4.06) (1.19) (27.89) (9.57) (3.71) (6.90) (3.12) (1.28) RP RD RD 

{0.37} {0.22} {0.15} {0.43} {0.28} {0.17} {0.73} {0.41} {0.28} {0.36} {0.26} {0.17} RP RD RD 

x4b 5 

4.59 4.28 4.15 4.64 4.40 4.17 2.82 4.00 4.33 4.52 4.38 4.18    

(4.35) (1.32) (0.58) (8.11) (2.77) (0.94) (15.50) (5.61) (2.25) (4.53) (1.94) (0.83) RD RD RD 

{0.38} {0.22} {0.15} {0.47} {0.30} {0.19} {0.70} {0.40} {0.27} {0.36} {0.25} {0.17} RD RD RD 

Notes: We removed 5% of the lowest and highest extreme value in WTP estimates, because 

some of those values are not rescannable. 
a
 Mean WTP from 450 simulated WTP 

b
 Mean Squared Errors 

c
 Average of the Absolute Relative Error 

d
 Best Design based on Minimum MSE 

e
 Best Design based on Minimum RSE 
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Table 4 Models of WTP Estimates, SE, RE on Design Strategy, Samples Size and Number of 

Attributes (Continuous Utility Function) 

 WTP for   SE for   RE for  

 X1 X2 X3 X4  X1 X2 X3 X4  X1 X2 X3 X4 

Design Strategy               

RD 0.15 0.35 0.68 0.00  -1.40 -5.86 -12.06 -0.04  -0.17 -0.30 -0.35 -0.36 

 (0.00)
a
 (0.00) (0.00) (0.70)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 

ME 0.29 0.59 1.23 -0.01  -0.68 -4.45 -6.50 -0.03  -0.10 -0.22 -0.23 -0.28 

 (0.00) (0.00) (0.00) (0.33)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 

RP 0.19 0.37 0.77 0.00  -1.29 -5.76 -11.62 -0.04  -0.14 -0.29 -0.33 -0.35 

 (0.00) (0.00) (0.00) (0.61)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 

Sample Size               

Middle -0.07 -0.02 -0.09 -0.03  -1.31 -3.07 -8.49 -0.05  -0.16 -0.17 -0.22 -0.73 

 (0.00) (0.50) (0.14) (0.00)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 

Large -0.11 -0.06 -0.13 -0.02  -1.88 -4.83 -12.14 -0.07  -0.26 -0.29 -0.35 -1.17 

 (0.00) (0.06) (0.03) (0.00)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 

# of Attributes 0.19 -0.27 -0.02 N/A
d
  1.02 7.02 -2.22 N/A  0.18 0.50 -0.04 N/A 

 (0.00) (0.25) (0.66) N/A  (0.00) (0.00) (0.00) N/A  (0.00) (0.00) (0.00) N/A 

# of  Attributes 

Squared 

-0.02 0.03 N/A
c
 N/A  -0.07 -0.67 N/A N/A  -0.02 -0.05 N/A N/A 

(0.00) (0.28) N/A N/A  (0.04) (0.00) (0.00) N/A  (0.00) (0.00) (0.00) N/A 

Constant 1.71 3.47 3.83 0.12  0.33 -7.10 31.74 0.10  0.33 -0.41 0.98 2.26 

 (0.00) (0.00) (0.00) (0.00)  (0.39) (0.03) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 

Statistical Test               

RD=ME 

R 

(0.00) (0.00) (0.00) (0.17)  (0.00) (0.00) (0.00) (0.17)  (0.00) (0.00) (0.00) (0.16) 

RD=RP (0.08) (0.61) (0.24) (0.37)  (0.23) (0.71) (0.52) (0.60)  (0.00) (0.37) (0.14) (0.86) 

ME=RP (0.00) (0.00) (0.00) (0.64)  (0.00) (0.00) (0.00) (0.40)  (0.00) (0.00) (0.00) (0.22) 

Middle=Large (0.01) (0.23) (0.52) (0.75)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 

R-Squared 0.013 0.015 0.027 0.004  0.060 0.068 0.075 0.093  0.122 0.144 0.134 0.128 

# Observations 21600
b
 16200 10800 5400 21600 16200 10800 5400 21600 16200 10800 5400 

a
 Numbers in parentheses are p values. 

b
 Number of observations are derived from 450 simulations from each simulation scenario. 

c
 On attribute X3, the # of attributes squared variable is nearly perfectly collinear with the number of 

attributes variable. 
d
 On attribute X4, there is no variation in the # of attribute, only choice experiments with five attributes 

include X4.  
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Table 5 Models of WTP Estimates, SE, RE on Design Strategy, Samples Size and Number of 

Attributes (Discrete Utility Function) 

 WTP for   SE for   RE for  

 X1a X2a X3a X4a  X1a X2a X3a X4a  X1a X2a X3a X4a 

Design Strategy              

RD 0.05 0.15 -0.15 0.80  -0.71 -1.73 -6.08 -10.38  -0.10 -0.12 -0.19 -0.22 

 (0.00)
a
 (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 

ME 0.06 0.16 -0.13 0.85  -0.58 -1.48 -5.54 -8.50  -0.08 -0.09 -0.16 -0.18 

 (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 

RP 0.06 0.17 -0.16 0.83  -0.63 -1.71 -5.72 -9.96  -0.09 -0.11 -0.16 -0.21 

 (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 

Sample Size               

Middle -0.02 -0.03 -0.13 0.22  -0.65 -1.58 -4.39 -8.37  -0.12 -0.12 -0.15 -0.18 

 (0.04) (0.19) (0.00) (0.01)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 

Large -0.06 -0.07 -0.21 0.14  -0.87 -2.12 -5.85 -11.30  -0.19 -0.20 -0.23 -0.28 

 (0.00) (0.00) (0.00) (0.10)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 

# of Attributes 0.15 0.46 -0.26 N/A
d
  -0.58 -3.93 3.66 N/A  -0.05 -0.26 0.12 N/A 

 (0.00) (0.00) (0.00) N/A  (0.00) (0.00) (0.00) N/A  (0.00) (0.00) (0.00) N/A 

# of  Attributes 

Squared 

-0.02 -0.06 N/A
c
 N/A  0.13 0.61 N/A N/A  0.02 0.04 N/A N/A 

(0.00) (0.00) N/A N/A  (0.00) (0.00) N/A N/A  (0.00) (0.00) N/A N/A 

Statistical Test               

RD=ME 

R 

(0.20) (0.58) (0.45) (0.55)  (0.00) (0.02) (0.19) (0.03)  (0.00) (0.00) (0.01) (0.00) 

RD=RP (0.26) (0.43) (0.28) (0.70)  (0.06) (0.81) (0.38) (0.63)  (0.00) (0.34) (0.02) (0.31) 

ME=RP (0.87) (0.81) (0.07) (0.84)  (0.24) (0.03) (0.65) (0.09)  (0.17) (0.00) (0.80) (0.02) 

Middle=Large (0.01) (0.04) (0.14) (0.33)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00) 

Constant 1.79 2.19 0.78 4.50  1.82 9.32 -5.37 20.28  0.37 0.77 -0.03 0.63 

 (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) (0.00)  (0.00) (0.00) (0.31) (0.00) 

R-Squared 0.004 0.005 0.003 0.004  0.071 0.083 0.067 0.075  0.163 0.144 0.142 0.137 

# Observations 21600
b
 16200 10800 5400  21600 16200 10800 5400  21600 16200 10800 5400 

Notes: The models for attributes Xib (i=1,2,3,4) are not presented in the table because the results are 

similar with those from models for attributes Xia. 
a
 Numbers in parentheses are p values. 

b
 Number of observations are derived from 450 simulations from each simulation scenario. 

c
 On attribute X3a, the # of attributes squared variable is nearly perfectly collinear with the number of 

attributes variable. 
d
 On attribute X4a, there is no variation in the # of attribute, only choice experiments with five attributes 

include X4a.  
 


