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Abstract 

Urban decentralization and dispersion trends have led to increased conversion of rural 

lands in many urban peripheries and exurban regions of the U.S. The growth of the exurban 

areas has outpaced growth in urban and suburban areas, resulting in growth pressures at the 

urban-rural fringe. A thorough analysis of land use change patterns and the ability to predict 

these changes are necessary for the effective design of regional environmental, growth, and 

development policies. We estimate a multinomial discrete choice model with spatial 

dependence using parcel-level data from Medina County, Ohio. Accounting for spatial 

dependence should result in improved statistical inference about land use changes. Our spatial 

model extends the binary choice “linearized logit” model of Klier and McMillen (2008) to a 

multinomial setting. A small Monte Carlo simulation indicates that this estimator performs 

reasonably well. Preliminary results suggest that the location of new urban development is 

guided by a preference over lower density areas, yet in proximity to current urban 

development. In addition, we find significant evidence of spatial dependence in land use 

decisions.  
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Introduction 

Land-use changes that have occurred in the United States over the past few decades 

have given rise to a series of intricate land use and land management policy issues. Urban 

decentralization and dispersion trends have led to increased conversion of rural lands in many 

urban peripheries and exurban regions of the U.S. Growth in exurban areas has outpaced 

growth in urban and suburban areas, causing substantial fragmentation of the rural landscape 

and creating growth pressures in the urban-rural fringe. In addition, the concurrent increase in 

exurban population and decrease in traditional rural population have widely changed the 

nature of the rural environment and the composition of rural population in the area.  

Land-use changes occurring in the urban-rural fringe and beyond warrant examination 

for the following reasons. First, these areas are increasingly hosting a high degree of land-use 

change activities (Brown et al., 2005).  Second, land development occurring at the urban-rural 

fringe is typically low-density and land intensive (Rusk, 1999). This form of development raises 

inefficiency concerns and is often referred to as “urban sprawl”. Third, direct connections exist 

between individual economic choices regarding land use and aggregate impacts of land-use 

changes (Bell and Irwin, 2002).  Hence, studying individual land use decisions helps understand 

and explain the formation of land-use patterns. Lastly, individual landowners’ decision making 

is driven by private incentives. Yet, their decisions have serious environmental, social, and 

economic consequences that need to be addressed in public policy formulations. These 

decisions incur costs that are often not internalized (Burchell, 1998). Thus, inefficiencies in 
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patterns of land use emerge. Understanding these dynamics is necessary to make a meaningful 

contribution to the policy debates regarding land use.  

Land-use changes and the resultant spatial land-use patterns are generally described as 

the consequence of interactions among combinations of human factors (e.g. population, 

technology, economic conditions) and biophysical factors (e.g. soil, climate, topography) over a 

wide range of temporal and spatial dimensions. While temporal dynamics have received an 

extensive attention in economic analyses of land-use change, the treatment of spatial dynamics 

has frequently followed two approaches: it has either been ignored (e.g., McMillen, 1989), 

resulting in potentially inconsistent estimation and improper statistical inference, or spatially 

disperse data have been aggregated, resulting in artificially sharp intraregional differences or 

unrealistic interregional uniformity (Bockstael, 1996). This is not surprising given the complexity 

of spatial dependence. Spatial explicit analysis can help identify critical locations of land-use 

change and provide novel insights regarding the land use conversion process. Incorporating 

spatial dependence also contributes to the ultimate goal of developing a model that can reliably 

predict changes in land-use patterns and help understand them. 

In this paper, we follow a spatial explicit approach to help identify the factors that drive 

the land use conversion process and explain the emerging land use patterns. Of particular 

interest is the identification of the factors responsible for the observed sprawling patterns of 

urban land development, defined as urban development that occurs in fragmented and 

dispersed patterns across the landscape (Carrión-Flores and Irwin, 2004).  
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The area of interest in our study is an urban-rural fringe county within the metropolitan 

area of Cleveland, Ohio—Medina County—due to its various patterns of new urban 

development occurring in the fringe. Four land uses are considered in the analysis: agricultural, 

residential, commercial, and industrial. The prevalent land development in this region is 

residential, accounting for more than 85 percent of land development in the last 30 years. The 

observed pattern of residential land use has become more fragmented and dispersed over time 

aligning with our definition of sprawl development. Unlike residential development, 

commercial and industrial land development has become more clustered over time suggesting 

the presence of agglomeration economies. These land development patterns indicate divergent 

development processes for different land uses. Therefore, encompassing multiple land uses 

provides a more comprehensive analysis of the spatial pattern of land use change. The parcel 

database is comprised of data from the Medina County Auditor’s office records. It includes 

information on 1990-1996 land uses among other characteristics of each parcel, major roads, 

soil type, and population and income data. The parcel-level data allows addressing not only the 

spatial heterogeneity of the landscape (e.g. soil type) and policies (e.g. zoning), but also spatial 

dependence on the land use change decisions.  

We borrow an economic model of land use conversion from a rich available literature, in 

which land use changes are modeled explicitly. The base of the economic model is an economic 

agent who is assumed to make an inter-temporal, profit maximizing choice regarding the 

conversion of a parcel of land to some available alternative use. Since only a number of factors 

that affect the stream of returns and the cost of conversion are observable to the analyst, the 

net returns are decomposed into a random unobservable portion and a systematic portion. This 
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treatment of the net returns allows for a reformulation of the optimal land use decision and 

allows for probabilistic statements about the choice by the landowner. Since the data on land 

use is typically categorical and the choice of land use is mutually exclusive, the theoretical 

model leads naturally to an empirical discrete-choice framework (e.g., McMIllen, 1989). Our 

empirical model is analogous to other spatially-explicit land use change models estimated at 

the parcel-level within a discrete choice framework (e.g., Bockstael, 1996; Carrión-Flores and 

Irwin, 2004; Irwin, 2002; Kline and Alig, 1999; Landis and Zang, 1998).  

The application of discrete-choice spatial econometric models to rich-data 

environments is problematic due to a number of econometric challenges such as spatial 

heteroskedasticity and autocorrelation, spatial heterogeneity, and selection bias. If these 

problems are overlooked, modeling methods will lead to inconsistent estimates and are as a 

result inappropriate for hypothesis testing and prediction (McMillen, 1992). However, the 

conventional maximum likelihood estimation procedure typically employed in estimating 

discrete choice models becomes cumbersome and infeasible because the likelihood function 

involves integrals of dimension equal to the sample size. Other proposed estimators in the 

literature provide consistent estimates under spatially dependent data for the binary choice 

case (e.g. Case, 1992; LeSage, 2000; McMillen, 1992; Pinkse and Slade, 1998). However, these 

estimators become infeasible as well in large data sets due to their requirement of inversion of 

large matrices. Another recent attempt to incorporate spatial (error) dependence in a 

multinomial probit context is found in Schnier and Felthoven (2009). 
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An important innovation of this research is the introduction of a feasible estimator for 

the multinomial choice model with a spatially lagged dependent variable that can be estimated 

with large samples. Klier and McMillen (2008) propose a linearized version of the generalized 

method of moments (GMM) estimator developed in Pinkse and Slade (1998) for the binary 

choice model. We extend their binary choice “linearized logit” model to a multinomial setting, 

thereby analyzing multiple land uses. The linearization avoids the (𝑛𝑛 × 𝑛𝑛) matrix inversion 

required in estimation, thus circumventing the computational infeasibility for large samples by 

reducing the estimation of the model to two simple steps: a standard multinomial logit model 

with no spatial dependence followed by a two-stage least squares estimation of the linearized 

model which accounts for the spatial dependence. The methodology extended within this 

paper is relevant to a myriad of empirical problems in addition to land-use decisions. For 

instance, it can be employed to model household and firm location decisions, occupational 

choice (based on “economic distance” measures), fishing location decisions, among others.  

Monte Carlo simulations indicate that the proposed estimator performs reasonably well.  

We also compare our results to estimates from a standard multinomial logit model. Preliminary 

empirical results suggest that the location of new urban development is guided by a preference 

over lower density areas, yet in proximity to current urban development. In addition, we find 

very significant evidence of spatial dependence in land use decisions. 
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Economic Model of Land Use Conversion 

To develop the economic model of land use conversion we follow an approach that 

models land use changes explicitly (e.g. McMillen, 1989; Bockstael and Bell, 1997; Landis and 

Zhang, 1998; Irwin and Bockstael, 2002; Carrión-Flores and Irwin, 2004).  Several assumptions 

need to be made to develop this model. Consider an economic agent (the landowner) that 

makes an inter-temporal decision regarding the conversion of a parcel of land to some 

alternative economically viable use. The landowner is assumed to choose an optimal allocation 

of land uses such as to maximize the present discounted sum of the expected stream of future 

net land returns. The returns to conversion are measured net of conversion costs and are a 

function of land attributes.  For instance, land attributes associated with agricultural use may 

include land characteristics and land quality such as soil type, slope, fertility level, water-

holding capacity, location, proximity to market, etc. In the case of residential or commercial 

land use, the expected returns may be a function of distance to urban centers, employment, 

shopping sites, neighborhood amenities, public services and policies, etc.  

Since only a number of factors that affect the stream of returns and the cost of 

conversion are observable to the analyst, the net returns can be modeled as having a 

systematic portion and a random unobservable portion. Let 𝑌𝑌𝑖𝑖𝑖𝑖  denote the net returns from a 

parcel of land i currently in use 𝑖𝑖, 𝑋𝑋𝑖𝑖𝑖𝑖  denote observed parcel characteristics, and 𝑍𝑍𝑖𝑖𝑖𝑖  denote 

parcel characteristics that affect conversion costs. The land net returns for parcel i in use k are 

given by: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑓𝑓(𝑋𝑋𝑖𝑖𝑖𝑖) + 𝑒𝑒𝑖𝑖𝑖𝑖  
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where 𝑒𝑒𝑖𝑖𝑖𝑖  is a random error term representing the unobserved parcel characteristics.  

The landowner will choose to allocate parcel i currently in use k to use 𝑙𝑙 if:  

𝑌𝑌𝑖𝑖𝑙𝑙(𝑋𝑋𝑖𝑖𝑙𝑙) > 𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙≠𝑖𝑖  {𝑌𝑌𝑖𝑖𝑖𝑖(𝑋𝑋𝑖𝑖𝑖𝑖) − 𝐶𝐶𝑖𝑖𝑖𝑖 (𝑍𝑍𝑖𝑖𝑖𝑖)}, for all 𝑙𝑙=1, …,L 

Thus, parcel i will be converted to use 𝑙𝑙 if the expected net returns from use 𝑙𝑙 exceed the 

expected returns from the current use k and from any alternative use in the choice set L. If the 

inequality does not hold for any uses in the choice set L, parcel i will remain at state k.  

This treatment of the net returns implies a latent variable representation of the 

problem. Consider the “true” net returns for each land use k:   𝑌𝑌𝑖𝑖𝑖𝑖  
∗ = 𝑓𝑓𝑖𝑖𝑖𝑖(𝑋𝑋,𝑍𝑍) + 𝜀𝜀𝑖𝑖𝑖𝑖 , where X 

and Z are observed but not 𝑌𝑌∗ .  Then, a parcel of land will remain in use k if 𝑌𝑌𝑖𝑖𝑖𝑖  
∗ >  𝑌𝑌𝑖𝑖𝑙𝑙  ∗  for all k≠𝑙𝑙 

and be converted otherwise to a land use choice that satisfied the inequality. This 

reformulation of the optimal land use decision can be interpreted in the context of a pressure 

for conversion and allows for probabilistic statements about the choice of landowner.  The 

model can be directly estimated once a distributional assumption is made for the error term 

𝜀𝜀𝑖𝑖𝑖𝑖 .  

 

Methodology 

The goal is to model the determinants of land use conversion choices. The decision to 

convert a given parcel from one use to another will depend on several economic factors such as 

the size of the parcel, its distance to the nearest urban center, its road accessibility, the 

availability and level of amenities, among other things. In addition, it is plausible that the choice 
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will also depend on the propensity of nearby parcels to choose a particular use (either 

strategically or collaboratively). For example, a parcel may be less likely to convert to a 

residential use if it is surrounded by parcels that are likely to be in agricultural use. This feature 

of the land use decision naturally leads to dependence over space.  

 A common approach for dealing with spatial interdependence is to estimate a model 

with a spatial weight matrix that explicitly accounts for the spatial structure of the neighboring 

land parcels. This study follows the same approach as other spatially-explicit land use change 

models estimated at the parcel-level using a discrete choice framework (e.g., Bockstael, 1996; 

Carrión-Flores and Irwin, 2004; Irwin, 2002; Kline and Alig, 1999; Landis and Zang, 1998). We 

employ a spatial autoregressive lag model (i.e., a spatially weighted dependent variable) to 

explicitly model the spatial dependence in the context of a multinomial logit model that allows 

the analysis of the determinants of land use conversion. While a spatially weighted dependent 

variable has been incorporated successfully in models where the dependent variable is 

continuous (e.g. Case et al., 1993; Brueckner, 1998; Brett and Pinkse, 2000; Saavedra, 2000; 

Fredriksson and Millimet, 2002), a spatially autoregressive lag model remains challenging in a 

discrete choice framework. The reason is that estimation via maximum likelihood quickly 

becomes infeasible because the likelihood function involves as many integrals as the sample 

size.  

A number of estimators in the literature provide consistent estimates under spatially 

dependent data for the binary choice case. These estimators attempt to preserve the 

estimation structure implied by maximum likelihood by either making simplifying assumptions 



10 
 

about the spatial weighting matrix or directly simulating the probabilities under a set of 

assumptions for the error terms (e.g. Case, 1992; LeSage, 2000; McMillen, 1992, Beron and 

Vijverberg, 2004). Pinkse and Slade (1998), on the other hand, developed a generalized method 

of moments (GMM) estimator for a spatial-discrete choice model. However, these approaches 

are all computationally intensive and also become infeasible with large data sets since they 

require repeated inversion of an (𝑛𝑛 × 𝑛𝑛) spatial weighting matrix.  

Klier and McMillen (2008) propose a spatial logit estimator based on Pinkse and Slade’s 

(1998)  GMM estimator for the binary choice model. They propose linearizing the model in a 

way that allows estimation in two steps: estimation of a standard logit model followed by two-

stage least squares. They show using simulations that their linearized spatial logit accurately 

identifies the coefficient on the spatially lag dependent variable. Importantly, the method does 

not require the inversion of large matrices and thus can be applied to large datasets—those 

typically available in microlevel data. In this paper, we extend the linearization methodology by 

Klier and McMIllen (2008) to a multinomial model. Furthermore, and more generally, our 

extension also covers the conditional logit and mixed logit models.1

                                                            
1 The difference between these polychotomous models is as follows. The multinomial model allows only variables 
that vary over units, while the conditional logit allows variables that vary by choice. The mixed logit model 
combines the two types of variables. 

 

More specifically, the spatial multinomial model can be motivated with a random utility 

formulation (McFadden, 1974) in which the decision maker’s utility (or revenue as in the 

economic model above) from a given alternative is a function of nearby agent’s utility and other 

factors: 
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𝑌𝑌𝑖𝑖𝑖𝑖 ∗ = 𝜌𝜌∑ 𝑊𝑊𝑖𝑖𝑖𝑖 𝑌𝑌𝑖𝑖𝑖𝑖 ∗𝑛𝑛
𝑖𝑖=1 + 𝑋𝑋𝑖𝑖𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑖𝑖 ,     

where 𝑌𝑌𝑖𝑖𝑖𝑖 ∗ is a latent dependent variable representing the underlying utility from choosing a 

given alternative k, 𝑊𝑊𝑖𝑖𝑖𝑖  are elements of the spatial weighting matrix W, 𝑋𝑋𝑖𝑖  is a vector of 

explanatory variables,  𝜀𝜀𝑖𝑖𝑖𝑖  is a vector of independently and identically distributed errors, and ρ 

and 𝛽𝛽𝑖𝑖   are the parameters of interest.  The spatial weighting matrix is typically row-

standardized such that ∑ 𝑊𝑊𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1 = 1  for j ≠i, and 𝑊𝑊𝑖𝑖𝑖𝑖 = 0. The parameter ρ measures the 

degree of spatial dependence. A ρ>0 (<0) would imply that high values of Y* for neighboring 

observations increase (decrease) the value of Y* for observation i. The alternative with highest 

latent utility is the one chosen by the agent, which is observed. Given an extreme value 

distribution assumption on the errors, the differences in error terms will also possess the same 

distribution. 

The current model can be written in matrix form as: 

𝑌𝑌∗ = 𝜌𝜌𝑊𝑊𝑌𝑌 + 𝑋𝑋𝛽𝛽 +  𝜀𝜀,     

while the corresponding reduced form of the model can be written as :  

𝑌𝑌∗ = (𝐼𝐼 − 𝜌𝜌𝑊𝑊)−1𝑋𝑋𝛽𝛽 + 𝑒𝑒,  𝑒𝑒 = (𝐼𝐼 − 𝜌𝜌𝑊𝑊)−1𝜀𝜀 , 

which results in an error covariance matrix proportional to 𝑉𝑉(𝑒𝑒) = [(𝐼𝐼 − 𝜌𝜌𝑊𝑊)′(𝐼𝐼 − 𝜌𝜌𝑊𝑊)]−1. 

The model structure implies both heteroskedasticity and autocorrelation, which is the reason 

for standard discrete choice models to be inconsistent.  Denote by 𝜎𝜎𝑖𝑖2 the variance of the error 

terms, that is, the diagonal elements of 𝑉𝑉(𝑒𝑒). Define for simplicity 𝑋𝑋𝑖𝑖∗ =  𝑋𝑋𝑖𝑖/𝜎𝜎𝑖𝑖   and  𝑋𝑋𝑖𝑖∗∗ =
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 (𝐼𝐼 − 𝜌𝜌𝑊𝑊)−1𝑋𝑋𝑖𝑖∗ ; and let 𝑑𝑑𝑖𝑖𝑖𝑖 = 1 if alternative k  is chosen and zero otherwise. The current 

model implies the following probabilities (by individual i) of choosing alternative k:  

𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑃𝑃(𝑑𝑑𝑖𝑖𝑖𝑖 = 1|𝑋𝑋𝑖𝑖) =  
exp(𝑋𝑋𝑖𝑖∗∗𝛽𝛽𝑖𝑖)

∑ exp(𝑋𝑋𝑖𝑖∗∗𝛽𝛽𝑖𝑖)𝑖𝑖
. 

The present model can in principle be estimated using GMM (as in Pinkse and Slade, 

1998) or nonlinear two-stage least squares employing instruments Z (more about Z later) and 

the model’s gradients with respect to the parameters. The gradients are:2

The main estimation insight of Klier and McMIllen (2008) is to avoid the repeated 

inversion of large matrices by approximating the model—which in itself can be argued to be an 

approximation to the true model—by linearizing it around a convenient value of the 

parameters. This value sets ρ = 0, since the gradients above greatly simplify as 𝑋𝑋𝑖𝑖∗∗ = 𝑋𝑋𝑖𝑖  and 

𝛬𝛬 = 𝑊𝑊. The parameter ρ is identified from the remaining term H (a function of ρ) in the 

corresponding gradient.  

 

𝐺𝐺𝛽𝛽𝑖𝑖𝑖𝑖 =   𝑃𝑃𝑖𝑖𝑖𝑖(1 −  𝑃𝑃𝑖𝑖𝑖𝑖)𝑋𝑋𝑖𝑖∗∗ 

𝐺𝐺𝜌𝜌𝑖𝑖 =   𝑃𝑃𝑖𝑖𝑖𝑖(1 −  𝑃𝑃𝑖𝑖𝑖𝑖) �𝐻𝐻𝑖𝑖 −
𝑋𝑋𝑖𝑖∗∗𝛽𝛽
𝜎𝜎𝑖𝑖2

𝛬𝛬𝑖𝑖𝑖𝑖 � 

where 𝐻𝐻 = (𝐼𝐼 −  𝜌𝜌𝑊𝑊)−1𝑊𝑊𝑋𝑋∗∗ and 𝛬𝛬 = (𝐼𝐼 −  𝜌𝜌𝑊𝑊)−1𝑊𝑊(𝐼𝐼 −  𝜌𝜌𝑊𝑊)−1(𝐼𝐼 −  𝜌𝜌𝑊𝑊)−1. Importantly, 

note that to employ this approach the repeated inversion of large matrices is required since the 

estimates are obtained through an iterative optimization process, which makes it 

computationally intensive. 

                                                            
2 The derivation of these expressions for the multinomial logit, as well as for the conditional and mixed logit 
models, are relegated to an appendix available upon request. 
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In practice, the linearization approach consists of two steps. First, the model is 

estimated with standard multinomial logit, implicitly linearizing around the estimated 

multinomial logit estimated parameters and ρ = 0. These values are employed to calculate 

residuals 𝑢𝑢𝑖𝑖𝑖𝑖� =  𝑑𝑑𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑖𝑖𝑖𝑖�  and gradients 𝐺𝐺𝛽𝛽𝑖𝑖𝑖𝑖�  and 𝐺𝐺𝜌𝜌𝑖𝑖� .  In the second step, each estimated 

gradient is regressed on the instruments Z and fitted values are constructed (𝐺𝐺𝛽𝛽𝑖𝑖𝑖𝑖�
�  and 𝐺𝐺𝜌𝜌𝑖𝑖�

� ). 

Finally, the coefficients in the regression of (𝑢𝑢𝑖𝑖𝑖𝑖� +  𝐺𝐺𝛽𝛽𝑖𝑖𝑖𝑖� ′𝛽𝛽𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀� ) on 𝐺𝐺𝛽𝛽𝑖𝑖𝑖𝑖�
�  and 𝐺𝐺𝜌𝜌𝑖𝑖�

�    are the 

estimated parameter values of interest. A remaining issue is the specification of the 

instrumental variables in Z. We follow common practice for the linear spatial lag model (e.g., 

Kelejian and Prucha, 1998) as done in Klier and McMillen (2008) and specify Z to contain the 

linearly independent columns of [𝑋𝑋  𝑊𝑊𝑋𝑋  𝑊𝑊2𝑋𝑋   𝑊𝑊3𝑋𝑋… ]. We call this estimator the spatial 

multinomial logit (SMNL). 

 

Some Finite Sample Evidence 

In order to provide evidence of the performance of the SMNL estimator presented 

above, we conduct a small-scale Monte Carlo simulation exercise. To do this, we partially follow 

Klier and McMIllen’s (2008) experimental design. We consider four alternatives that make the 

simulations comparable to our model of land-use in the next section. Taking as starting point 

the reduced form of the model, we employ a single explanatory variable (X) generated 

uniformly distributed in the interval (-1,1). The variable is transformed as in the previous 

section to obtain 𝑋𝑋∗  and  𝑋𝑋∗∗ and subsequently the simulated probabilities are obtained as: 
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𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑃𝑃(𝑑𝑑𝑖𝑖𝑖𝑖 = 1|𝑋𝑋𝑖𝑖) =  exp (𝑋𝑋𝑖𝑖
∗∗𝛽𝛽𝑖𝑖)

∑ exp (𝑋𝑋𝑖𝑖
∗∗𝛽𝛽𝑖𝑖)𝑖𝑖

. For these, we set each of the 𝛽𝛽𝑖𝑖  coefficients equal to 1. 

We vary the value of ρ between 0 and 0.9 in 0.1 increments. To generate the observed 

individual choices, we generate a uniform (0,1) random variable (𝑢𝑢) and set 𝑑𝑑𝑖𝑖𝑖𝑖 = 1 for k=𝑙𝑙 if 

∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑙𝑙−1
𝑖𝑖=0 < 𝑢𝑢 < ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑙𝑙

𝑖𝑖=0  with 𝑃𝑃𝑖𝑖0 = 0. 

We consider a specification of W that comes from the empirical application in Flores-

Lagunes and Schnier (2009), which is a common specification in practice. It sets 𝑊𝑊𝑖𝑖𝑖𝑖 =

1/(𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑)𝑖𝑖𝑖𝑖
𝑓𝑓  to be the inverse Euclidean distance between locations i and j, with f a “friction" 

parameter that we set equal to 2. In this specification, the number of neighbors is controlled by 

choosing a band that is set to 7, and the matrix is row standardized. This general specification 

of W is also similar to the one employed in the empirical application below. 

Table 1 reports the simulation results for the standard MNL model and the spatial MNL 

(SMNL). All simulations were conducted with a sample of n=320 and 1,000 replications. The 

matrix of instruments Z  is specified as [X WX W2X W3X]. We report the average bias and root 

mean-squared error (RMSE) of the three estimated slopes (one is normalized to zero) and the 

spatial parameter estimated by the SMNL. The results indicate that the performance of the 

MNL progressively deteriorates as spatial dependence (as measured by ρ) increases. The 

highest amount of bias of the MNL slopes in our simulations is slightly over 24% for a ρ of 0.9. 

The RMSE also deteriorates as ρ increases. An obvious disadvantage of MNL is that it does not 

produce an estimate of ρ.  

The SMNL estimator has a relatively similar performance as the MNL estimator 

regarding the estimation of the slopes, both in terms of average bias and RMSE. However, the 
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SMNL estimator is somewhat more robust to the presence of spatial dependence relative to the 

MNL estimator (as expected). Nevertheless, it is somewhat disappointing in these preliminary 

results that the SMNL does not achieve a markedly better performance in the estimation of the 

slopes as spatial dependence increases. As for the ρ parameter, our preliminary simulations 

indicate that it is accurately estimated by SMNL when ρ is zero—which is important since it 

correctly identifies the absence of spatial dependence—but it is underestimated for other 

values of ρ (except for ρ=0.9). In fact, the percentage bias (relative to the true ρ is large at 

between 50 to 70 percent for values of ρ ∈ [0.1, 0.5] to between 20 to 45 percent for values of 

ρ ∈ [0.6, 0.9]. 

 

Determinants of Land Use Choice 

We are particularly interested in the pattern of new urban development as it occurs in 

rural-urban fringe areas. The typical pattern of new development in rural-urban fringe areas 

throughout the U.S. is low-density, land intensive development. The area considered for this 

study is a rural-urban fringe county within the Cleveland, Ohio metropolitan area that is typical 

of such development: Medina County (located just south of the City of Cleveland and its 

suburbs).  

To generate parcel-level data, we use a Geographic Information System (GIS) that allows 

us to generate the relevant set of variables using the geocoded parcels and additional GIS data 

layers.  These additional data layers include 1990 land use (Medina County and Cleveland State 

University), major roads (Ohio Department of Transportation), soil type (STATSGO), and Census 
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block group boundaries and data from the U.S. Census of Population (U.S. Census Bureau). The 

major urban center of our study area is Cleveland and so we measure proximity from each 

parcel centroid to the center of Cleveland via the major roads network (Totdiscle). Local 

markets are important for urban land uses, therefore, distance to nearest city (Disttonear) is 

included.  

To capture the potential disamenity effects of population on urban development, we 

measure the density of population in 1990 within the local neighborhood of each parcel 

(Popdens). To capture localized housing demand from the in-migration of urban residents in the 

region, we measure the proportion of houses in 1990 (housedens). To investigate whether 

surrounding land uses confer either positive or negative spillovers, we include three variables 

that measure the proportion of the surrounding land in residential (Reside), commercial 

(Commarea) and agricultural (Agarea) land uses respectively as of 1990. We also capture 

constraints to the density of development from large lot zoning with a dummy variable that is 

assigned a value of one if the minimum lot size is zoned as three acres or greater and zero 

otherwise (Largelot). Note that these variables measure, to an extent, some of the potential 

spatial dependence. Whether they are enough for that purpose can be seen from the statistical 

significance of the estimate of the spatial lag parameter in the SMNL model. 

For our spatial analysis, we specify a spatial weights matrix, W.  Because the true 

specification of W is unknown, six different weighting matrices were constructed that impose 

varying assumptions about the extent and gradient of spatial dependence. All of them set the 

non-zero elements of the matrix to 𝑊𝑊𝑖𝑖𝑖𝑖 = 1/(𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑)𝑖𝑖𝑖𝑖
𝑓𝑓  which is the inverse Euclidean distance 
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between locations i and j, and f a “friction" parameter. The first three specifications of W set 

the friction parameter to one and consider maximum cut-off distances—beyond which 

𝑊𝑊𝑖𝑖𝑖𝑖 = 0—at 400, 800 and 1600 meters.  The next three specifications set the friction 

parameter to two (inverse of the squared Euclidean distance) and employ the same cutoff 

distances as before. All matrices set 𝑊𝑊𝑖𝑖𝑖𝑖 = 0 and are row standardized (rows sum to one). 

Preliminary estimated parameters for the MNL and the SMNL are presented in Table 2, 

in which the base category chosen is the industrial land use. At this point, we have not 

computed marginal effects for these estimated parameters—which is undoubtedly of interest—

and thus we concentrate in this draft on the point estimates. The estimates from these models 

tell a consistent story that is in accordance with expectations. Moreover, most estimated 

coefficients are reasonably robust across specifications. The estimates show that industrial land 

uses become less attractive as distance to Cleveland (Totdiscle) increases. For instance, the 

relative probability of a parcel in industrial land use increases as the distance between 

Cleveland and the parcel decreases. At the same time, local markets are important to 

agricultural, commercial and residential land uses, as measured by the distance to the nearest 

town (Disttonear). Estimates indicate that the relative probability of commercial, residential 

and agricultural land uses is higher than for industrial land use as distance to nearest town 

decreases.  

Land characteristics of the parcel and characteristics of the surrounding area strongly 

affect the probability of agricultural use. For example, parcel size (Area) has the expected sign 

indicating that if parcel size increases, the relative probability of commercial and agricultural 
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land uses is higher than industrial land use. On the other hand, the relative probability is lower 

between residential and industrial land uses as the parcel size increases. In addition, these 

estimates suggest that the relative probability between agricultural and industrial land use is 

higher when the majority area surrounding the parcel is in agricultural use (Agarea). 

Conversely, when urban uses surround the parcel (Reside and Commarea), the relative 

probability between agricultural and industrial land use is lower. These results are robust across 

all models presented.  

Population density (Popdens) is found to increase the relative probability of agricultural, 

commercial and residential land uses relative to industrial in all our estimations, implying that 

these land uses will occur in more dense areas. The magnitude of this effect is fairly small 

however. House density (Housedens), surprisingly, lowers the relative probability between 

residential and industrial land uses. This appears counterintuitive, since we would expect that 

urban development tends to cluster and that, ceteris paribus, urban development is less likely 

to occur in rural areas. This point merits further investigation. Another measure of proximity to 

local markets is per capita income (Percpinc). Our estimates suggest that the relative 

probability of agricultural land use is lower relative to industrial land uses the higher Percpinc is. 

This is expected since agriculture land use tends to occur in economically depressed areas.  

A binary variable representing large minimum-lot zoning (Largelot) is introduced as a 

land use policy variable. It is defined as a minimum lot size of three or more acres. Estimates 

suggest that the minimum-lot size policy decreases the relative probability of industrial land use 
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relative to the other land uses, implying that if the parcel is subject to a restriction of a 

minimum lot size of three or more acres, the industrial land use is less likely to occur. 

Our estimates also include indicator variables for the township the parcel is located in, 

although their estimated parameters are not presented in the table for readability. All of these 

parameter estimates are positive, indicating that a parcel located in any one of these townships 

is more likely to experience industrial development than a parcel located in the township to 

which we normalized the results: Homer Township. This is expected since, in contrast to most 

of the other townships, the base township is very rural and has experienced almost no urban 

growth. 

Finally, the estimates of the spatial lag parameter (ρ) that is produced by the SMNL 

model varies from 0.14 to 0.41 (depending on the specification of W), and they are all highly 

statistically significant. This strongly suggests the importance of a positive spatial interaction 

effect in land-use decisions. This result is consistent with the widely accepted idea that land use 

change is a process. Moreover, the presence of these spatial spillover effects suggests that 

policies at a small scale could lead to a sub-optimal land use pattern. In this regard, the 

extension of our analysis to the prediction of land use patterns accounting for this spatial 

dependence is an important next step and is at the top of our research agenda. 
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Conclusion and Future Work 

 This paper has presented preliminary results on the estimation of the determinants of 

land use change employing a multinomial logit model that explicitly accounts for spatial 

dependence in the form of a spatially lagged dependent variable. The main insight gained with 

this application is that spatial dependence is an important factor to take into account when 

analyzing land use choices and conversion. Spatial dependence is critical in these models since 

it helps us understand the underlying mechanisms of land use predictions.  In addition, we 

corroborate some of the previous findings in the literature in that the location of new urban 

development is guided by a preference over lower density areas, yet in proximity to current 

urban development. 

A methodological contribution of this paper is the extension of the linearization 

methodology by Klier and McMillen (2008)—originally applied to a binary logit model—to a 

multinomial logit model. We present some finite sample evidence on the performance of the 

method that indicates its promise and points out some areas where further exploration is 

needed. We remark that this spatial multinomial logit (SMNL) can also be employed in the 

context of the conditional and mixed logit models to account for spatial lag dependence. All of 

these models have a wide applicability in analyzing economic decisions. 

Several improvements are at the front of this ongoing research. First, it is the need to 

calculate marginal effects for our SMNL. Their computation is straightforward but somewhat 

time consuming given that the (𝑛𝑛 × 𝑛𝑛) matrix (𝐼𝐼 − 𝜌𝜌𝑊𝑊) needs to be inverted for each 

specification of W. The second is the application of our SMNL estimates to the prediction of 
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land use changes and its comparison to the predictions given by the standard MNL model. We 

expect that accounting for spatial dependence results in improved prediction of future land use 

changes, which is an important input in the development of effective policies. A third aspect is 

the application of tests for spatial dependence (e.g., Kelejian and Prucha, 2001) to test the 

model specification by assessing whether a spatially lagged dependent variable is enough to 

account for all spatial dependence in a given application. Finally, a more complete exploration 

of the finite sample properties of the SMNL estimator (such as considering larger sample sizes) 

is warranted given the promising but not completely satisfactory results from the current small-

scale Monte Carlo simulation. 
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Table 1. Simulation Results for a Sample of 320 Observations 

  Standard Multinomial Logit   Spatial Multinomial Logit 
ρ β1 β2 β3   β1 β2 β3 ρ 
0 

        Bias -0.001 0.003 0.005 
 

-0.001 0.003 0.005 -0.016 
RMSE 0.080 0.084 0.080 

 
0.080 0.085 0.080 0.248 

0.1 
        Bias -0.002 0.002 0.004 

 
-0.002 0.003 0.004 -0.077 

RMSE 0.081 0.083 0.079 
 

0.081 0.084 0.079 0.253 
0.2 

        Bias -0.003 0.001 0.003 
 

-0.004 0.002 0.003 -0.137 
RMSE 0.081 0.084 0.080 

 
0.080 0.084 0.080 0.266 

0.3 
        Bias -0.006 -0.002 0.001 

 
-0.006 -0.001 0.001 -0.188 

RMSE 0.081 0.083 0.080 
 

0.081 0.083 0.080 0.288 
0.4 

        Bias -0.009 -0.007 -0.003 
 

-0.009 -0.006 -0.003 -0.235 
RMSE 0.080 0.083 0.079 

 
0.080 0.083 0.079 0.315 

0.5 
        Bias -0.019 -0.013 -0.011 

 
-0.018 -0.012 -0.011 -0.261 

RMSE 0.080 0.084 0.079 
 

0.080 0.084 0.080 0.342 
0.6 

        Bias -0.029 -0.024 -0.023 
 

-0.028 -0.022 -0.022 -0.278 
RMSE 0.082 0.085 0.080 

 
0.082 0.086 0.080 0.362 

0.7 
        Bias -0.050 -0.044 -0.044 

 
-0.049 -0.042 -0.043 -0.258 

RMSE 0.083 0.086 0.080 
 

0.082 0.086 0.080 0.383 
0.8 

        Bias -0.097 -0.093 -0.092 
 

-0.095 -0.090 -0.090 -0.162 
RMSE 0.089 0.092 0.086 

 
0.089 0.092 0.086 0.396 

0.9 
        Bias -0.241 -0.237 -0.239 

 
-0.238 -0.233 -0.236 0.211 

RMSE 0.132 0.136 0.135   0.131 0.135 0.134 0.699 

Notes: Results based on 1,000 replications. See text for the specification of W in the 
SMNL model. The slope's true value is 1 in all cases. 
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VARIABLE Est. St. Err. Est. St.  Err. Est. St. Err. Est. St. Err. Est. St. Err. Est. St. Err. Est. St. Err.

Acres:
βag 0.081 0.009 0.090 0.004 0.108 0.004 0.125 0.003 0.090 0.004 0.109 0.004 0.126 0.003
βres -0.253 0.014 -0.645 0.072 -0.809 0.058 -0.334 0.041 -0.653 0.072 -0.823 0.057 -0.359 0.040

βcom 0.068 0.009 0.068 0.005 0.066 0.004 0.061 0.004 0.068 0.005 0.066 0.004 0.060 0.004
Totdiscle:

(x10,000)  βag -0.329 0.083 -0.320 0.024 -0.314 0.024 -0.304 0.022 -0.321 0.024 -0.314 0.024 -0.307 0.022
βres -0.355 0.085 -0.402 0.035 -0.414 0.034 -0.345 0.032 -0.405 0.035 -0.419 0.034 -0.345 0.031

βcom -0.381 0.092 -0.386 0.065 -0.383 0.063 -0.371 0.059 -0.386 0.065 -0.381 0.063 -0.371 0.059
Disttonear:

(x10,000)  βag 0.437 0.163 0.413 0.061 0.348 0.060 0.230 0.056 0.410 0.061 0.345 0.060 0.224 0.056
βres 0.294 0.171 0.420 0.089 0.467 0.086 0.612 0.080 0.426 0.089 0.484 0.086 0.661 0.079

βcom 1.053 0.193 1.102 0.168 1.013 0.164 1.010 0.153 1.094 0.168 0.999 0.163 0.994 0.152
Agarea:

βag 1.730 0.807 1.643 0.311 1.452 0.303 1.224 0.283 1.645 0.311 1.447 0.302 1.241 0.282
βres 1.744 0.835 3.292 0.465 4.054 0.435 3.226 0.392 3.331 0.465 4.093 0.434 3.210 0.390

βcom 2.139 1.013 2.199 0.958 2.167 0.931 1.912 0.868 2.187 0.958 2.178 0.929 1.961 0.865
Reside:

βag -1.894 0.929 -1.790 0.373 -1.592 0.363 -1.156 0.339 -1.785 0.373 -1.584 0.362 -1.099 0.337
βres 4.239 0.955 6.281 0.650 6.776 0.591 2.720 0.519 6.320 0.650 6.818 0.588 2.786 0.515

βcom 0.363 1.142 0.517 1.040 0.611 1.011 0.500 0.945 0.527 1.039 0.683 1.010 0.603 0.942
Commarea:

βag -0.007 1.499 -0.089 0.530 -0.070 0.515 0.314 0.481 -0.113 0.530 -0.047 0.514 0.413 0.479
βres 3.726 1.515 4.938 0.667 5.156 0.638 2.734 0.589 4.925 0.667 5.137 0.637 2.809 0.586

βcom 4.545 1.688 4.596 1.191 4.396 1.156 4.094 1.077 4.595 1.191 4.413 1.154 4.130 1.072
Popdens:

βag 0.006 0.001 0.006 0.001 0.006 0.001 0.006 0.001 0.006 0.001 0.006 0.001 0.006 0.001
βres 0.003 0.001 0.002 0.001 0.002 0.001 0.004 0.001 0.002 0.001 0.002 0.001 0.004 0.001

βcom 0.011 0.002 0.012 0.003 0.011 0.003 0.010 0.003 0.012 0.003 0.011 0.003 0.011 0.003
Housedens:

βag -0.018 0.003 -0.017 0.002 -0.017 0.002 -0.018 0.002 -0.017 0.002 -0.017 0.002 -0.018 0.002
βres -0.011 0.003 -0.011 0.002 -0.012 0.002 -0.014 0.001 -0.011 0.002 -0.012 0.002 -0.013 0.001

βcom -0.034 0.005 -0.035 0.010 -0.034 0.009 -0.032 0.009 -0.035 0.010 -0.034 0.009 -0.032 0.009
Percpinc:

(x10,000)  βag -0.352 0.415 -0.361 0.158 -0.329 0.153 -0.276 0.143 -0.361 0.158 -0.323 0.153 -0.283 0.143
βres 0.036 0.426 0.254 0.212 0.262 0.204 -0.284 0.190 0.246 0.212 0.233 0.204 -0.285 0.189

βcom -1.304 0.495 -1.397 0.433 -1.339 0.422 -1.229 0.394 -1.389 0.433 -1.337 0.421 -1.248 0.392
Largelot:

βag 0.650 0.236 0.583 0.087 0.439 0.085 0.223 0.079 0.582 0.087 0.429 0.085 0.220 0.079
βres 0.144 0.247 0.579 0.156 0.816 0.148 0.495 0.134 0.601 0.156 0.834 0.148 0.511 0.134

βcom 0.828 0.266 0.832 0.179 0.804 0.174 0.761 0.162 0.829 0.179 0.800 0.174 0.759 0.161

ρ -- -- 0.145 0.009 0.213 0.008 0.406 0.008 0.145 0.009 0.214 0.008 0.401 0.008

Notes: Sample size is 9,760 parcels. All models include indicater variables for the township in which the parcel resides. The columns for the SMNL 
estimator correspond to different specifications of W that vary the cut-off distance (400, 800, and 1600) and the friction parameter (f=1 or 2). See text for 
details. 

Table 2. Multinomial Logit (MNL) and Spatial Multinomial Logit (SMNL) Estimated Coefficients of Land Use Change Model

MNL Results SMNL Results
W_400_f=1 W_800_f=1 W_1600_f=1 W_400_f=2 W_800_f=2 W_1600_f=2
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