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Abstract 

An agronomic crop growth model, Decision Support System for Agro-Technology Transfer 

(DSSAT), is used to find optimal crop management strategies for cotton production in Mitchell, 

Miller, and Lee Counties in Georgia during the past 10 years. Planting date and irrigation threshold 

are the two variables optimized to maximize farmer's expected utility. A decreasing absolute risk 

aversion - constant relative risk aversion (DARA-CRRA) utility function is used to examine crop 

management decision that can be influenced by changes in inter-temporal risk behavior. Comparison 

is made from management perspective - one is dynamic crop management strategy that varies each 

year; one is static (constant) strategy over 10 years. Based on the best crop management strategies, 

index insurance products are designed to help farmers further reduce production risk. The impact of 

geographical basis risk was assessed by comparing the risk reduction generated from index 

insurance contracts based on different weather stations; the impact of temporal basis risk is assessed 

by allowing separate contracts to be purchased for different sub-periods during the entire period.  

 

Key Words: Irrigation, Planting Date, Risk Management, Weather Derivative Contract, Basis Risk  

 

Introduction 

Agricultural production has always been a risky endeavor. The inherent biophysical nature 

of agricultural systems combined with the various external stimuli (e.g., economics) makes it 

vulnerable to various sources of risk. Two primary risks are market risk and production risk. The 

market risk is in terms of price variation resulting from the market supply and demand changes. 

The production risk addressed is in terms of variability of crop yield due to spatial and temporal 

weather, which includes extreme rainfall or temperature events as well as natural disasters. 

Weather conditions greatly affect the production of farmers and therefore their revenue. 
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Spatial and temporal variability of crop factors within a field can have a significant 

influence on agricultural production by reducing yield and quality of produce. Water commonly 

has a leading role among the factors responsible for spatial and temporal yield variability and is a 

major input resource for precision management. Soil water relations have been shown to explain 

more than 50% of infield yield variability (Howell et al.). Temporal and spatial management of 

soil water can significantly increase water use efficiency (Jagtap et al.).  

Irrigation has been identified as an important risk management strategy (Boggess et al.). 

In Georgia, although annual rainfall is adequate for most agricultural crops, the distribution of 

rainfall across a year is highly unpredictable. Irrigation is extensively used in Georgia to offset 

the impact of rainfall variability on crop yield and to reduce the risk associated with weather 

variability. In addition to water application scheduling, selecting the best planting date is another 

critical decision growers must make to enable a crop to have a successful start. 

 Simulation tools provide the opportunity to provide producers with better crop production 

scheduling (Morgan, Biere, and Kanemasu). Several studies have examined on–farm irrigation 

using the engineering notion of irrigation water (i.e., the ratio of water stored in the crop root 

zone to the total water diverted for irrigation) and have found opportunities for water savings 

while increasing yield (e.g., Harris and Mapp1980; Harris and Mapp1988; Howell, Hiler and 

Reddell; Lyle and Bordovsky, Raju et al).  

While engineering studies have addressed the changes and the diffusion of irrigation 

technologies in agriculture, they often lack economic intuition. The decision environment is 

typically nonoptimizing — with the exception of yield maximization – and the issue of risk is 

rarely considered.  

In the financial world, the federally subsidized crop insurance program provides crop 



 4

producers with protection against many weather-related risks. However, the program is plagued 

with moral hazard and adverse selection problems (Skees et al). In contrast, index crop insurance 

products can eliminate the asymmetric information problem inherent in farm-level multiple peril 

crop insurance. In addition, with index insurance products, there is no need for farm-level loss 

adjustment so transaction costs are low. 

There are currently markets for temperature–based weather derivatives traded on the 

Chicago Mercantile Exchange, as well as more personal markets for over–the–counter weather 

derivatives exchanged in the form of weather swaps and options. Weather derivatives are 

typically based on official NOAA measurements for at least two reasons. First, both parties can 

be confident of an objective measurement of the weather phenomenon on which the contract will 

be settled. Second, buyers (sellers) can base bid (offer) prices on an extended time series of data 

collected at the site. While the market for weather derivatives based on temperature indices has 

grown significantly, the market for precipitation–based derivatives is still in its infancy making it 

a natural area for further research (Varangis, Skees, and Barnett). 

The purpose of this study is to find optimal on-farm crop management strategies and 

index insurance strategies to reduce the risk associated with weather variability, and how these 

strategies vary spatially and temporally with different weather and soil conditions. Three weather 

stations and three soil types for Mitchell, Miller, and Lee Counties respectively are used to 

account for spatial variability. Based on the best crop management, index insurance products are 

designed to help farmers further reduce production risk. Optimal levels of index insurance 

parameters are solved to maximize expected utility for each index insurance product. The 

influence of basis risk is also examined.  
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Literature Review 

A number of studies have used simulation models to evaluate crop production schedules 

based on plant growth relationships. For example, Zavaleta, Lacewell, and Taylor use the grain 

sorghum growth model by Maas and Arkin to consider stochastic weather and allow irrigation 

timing and quantity decisions to be based on an expected profit maximization criterion. Numeric 

search procedures, referred to as open–loop stochastic control, are used to derive irrigation 

strategies which maximize expected profits over eight discrete irrigation periods of the crop year.  

Harris and Mapp (1988) use the same grain sorghum plant growth model to analyze 

intensive and water–conserving irrigation strategies. A number of irrigation strategies are 

simulated with their modifications to the plant growth model. Stochastic dominance procedures 

are used to identify risk efficient irrigation strategies.  

Endale and Fipps apply the Irrigation District Decision Support System (IRDDESS), a crop 

growth and irrigation district simulation model capable of predicting biomass development and 

yields for fields varying in soil type and irrigation management scenarios, to a large irrigation 

scheme in the Middle Awash Valley of Ethiopia. Their results illustrate the potential role of 

decision support systems in the evaluation and management of large irrigation projects. 

Apart from crop managemnt strategies, farmers also choose insurance products to improve 

their risk profile (Schnitkey, Sherrick, and Irwin). Richards, Manfredo, and Sanders found that a 

temperature–based weather index insurance product could be used to offset production risks 

faced by nectarine growers in Fresno County, California. Skees et al found that a rainfall index 

insurance scheme could be feasible in Morocco and Argentina. Turvey examined the economics 

and pricing of weather index insurance in Ontario and suggested that temperature and 

precipitation–based insurance contracts could be used to insure against yield losses for some 
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crops. Vedenov and Barnett investigated the feasibility of using weather index insurance to 

protect against shortfalls in corn and soybean yields in Iowa and Illinois and cotton yields in 

Mississippi and Georgia.  

 

Methodology 

In order to study the decision problem of a risk–averse competitive agricultural producer 

under output price and weather risks, we used an expected utility maximizing model. A widely 

used representation of expected utility that satisfies the maintained hypothesis of 0u′ > , 0u′′ < , 

and 0u′′′ >  is the constant relative risk aversion utility function that is best parameterized as: 

1

1

rNRU
r

−

=
−

,                                                 (1)  

where NR is the return to the decision maker; r is the relative risk aversion coefficient. This 

model is employed in this paper to examine crop management strategies and precipitation 

contract design across different levels of risk aversion coefficients. 

A crop simulation model, DSSAT model, is used to find optimal crop management 

stratigies. Irrigation and planting date are two input variables we want to optimaize. The optimal 

strategy is chosen from 21*4 combinations of strategies (irrigation threshold ranges from 5 to 99 

in steps of 5 in addition to no irrgation; planting date include 4/20, 4/25, 5/1, and 5/6). Farm yield, 

irrigation water use, and net revenues, are then generated for various combinations of strategies, 

were generated by DSSAT (Decision Support System for Agro–technology Transfer).  We were 

then able to identify the plant–available water threshold that maximized the expected utility 

function.  
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Where E denotes the expectation operator, NR denotes net return to an irrigated farm; 

pumpingC  denotes per unit irrigation cost; w  denotes irrigation amount, which is an output form 

DSSAT model and is positively related with irrigation threshold; tq denotes crop yield; P denotes 

crop price; r denotes relative risk aversion coefficient; th denotes probability function for each 

year. 

 Two probability functions across years are under consideration - one is uniform 

distribution; the other one puts more weights on drought years to account for the possibility of 

decrasing precipitaion in the near future. We arbitrarily set the probabilities of three driest years 

as 0.2 for each year, and the probability of the other years as (40/7)%. The analytical framework 

is also expanded to accommodate sensitivity analysis involving gradual change in the magnitude 

of risk aversion to determine changes in irrigation decisions. Comparison is also made from 

management perspective - one is dynamic crop management strategy that varies each year; one is 

static (constant) strategy over 10 years.  

In the index insurance model, the critical components involve setting the indemnity 

payments and the premium of the contract. Indemnity refers to the payments made to the holder 

of the contract when events as specified in the contract trigger a payment. If the index is 

positively correlated with crop yield, then a call option is appropriate; otherwise, a put option is 

appropriate.  

In this study, we propose two unique index insurance products - one is weather derivative 

contract based on precipitation amount measured at the weather station; one is insurance product 
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based on predicted yields from DSSAT. These contracts allow the purchasers to specify the 

parameters of the indemnity function according to their risk management needs. While the 

proposed contracts have characteristics much like a put option, we assume the highly tailored 

contracts and the relatively small dollar amount of protection required by most retail purchasers 

would necessitate sales through traditional retail insurance channels. In particular, the 

precipitation contract envisaged here is designed to trigger a payment when rainfall in the said 

time period falls short of a certain set strike rainfall amount, while the DSSAT yield contract 

trigger a payment when DSSAT simulated yield for a given year is less than a certain set strike 

DSSAT yield amount. The indemnity is paid conditional on the realization of the 

precipitation/DSSAT yield according to the following schedule: 

0 *
*( | , *, ) * *

* *
1 *

i i
i if i x i x i i I

i i
i i

λ λ
λ

λ

>⎧
⎪ −⎪= × < ≤⎨ −⎪

≤⎪⎩

                              (3) 

where 
*( | , , )f i x i λ  is the indemnity; i  is the rainfall/DSSAT yield index for a specific 

period measured not at the farm as in (3) (in the crop simulation model) but rather at the weather 

station referenced in the insurance contract; 
*i  is the strike; λ *

*i  is the limit variable, and x  

is the maximum indemnity. The contract triggers an indemnity whenever i  falls below
*i . In 

addition to allowing purchasers to tailor the characteristics of index options according to their 

risk management needs, the limit variable makes rating of precipitation puts more tractable. 

Specifically, the maximum indemnity x  is paid whenever the index falls below the limitλ *
*i . 

Thus, the contract can be uniquely identified by fixing the three parameters 
*i , λ , and x . By 

their choices of strike and limit, purchasers define the domain of x over which the option will pay 

the indemnity. 
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  The premium on the precipitation standard contract is a function of 
*i ,λ , x , and the 

probability distribution of i . The distribution is estimated based on historical precipitation data 

by using a nonparametric approach. Kernel smoothing is used to derive a continuous probability 

density function ( )h i  of i . Formally, for index realizations i ; t = 1,…,T, the kernel density 

function of the index is calculated as: 

1

1( )
T

t

t

i ih i K
T =
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∑

                                        (4) 

where ( )K ⋅  is a kernel function, and ∆  is a degree of smoothness or bandwidth (Härdle). 

The expected payoff and hence the actuarially fair premium for the standard contract can be 

determined by: 
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The above formulation for calculating the pure premium is based on the pure indemnity 

history and does not cover the transaction costs or risk preference of partners. Reinsurance firms 

usually load the pure premium based on the variance of the loss costs. If one further assumes that 

a proportional premium load γ  (γ ≥0 ) is applied to the actuarially fair premium to cover 

transaction costs, return on investment, and reserve–building, then the loaded premium is: 

*( , , ) (1 )loaded fairiπ λ γ γ π= +                                      (6)                         

For the purposes of this study, a 2% load is imposed on the standard deviations of 

indemnity payments per liability. The irrigation cost during the driest years is considered a good 

proxy for the value at risk and used to establish a liability estimate by crop. The remaining 

parameters for the contract are the strikes i* and limit parameterλ , which are selected to 
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maximize the Expected Utility function over a historic period (1997–2006).  

1* *2006
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Where withoutNR  denotes net return to an irrigated farm without weather derivative contract; 

tf  denotes instrument payoff (indemnity) for year t; π is contract premium. Once the contract 

parameters strike, liability and limit are solved, fair premium and loaded premium rates can be 

formulated.  

The impact of geographical basis risk was assessed by comparing the risk reduction 

generated from index insurance contracts based on different weather stations; the impact of 

temporal basis risk is assessed by allowing separate contracts to be purchased for different 

sub-periods during the entire period. A sub-period precipitation insurance, which partitions the 

growing season into 3 parts, and designs 3 different sets of insurance parameters for each period, 

is proposed and analyzed. The objective function of the sub-period contract is: 
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Where 
1

tf ,
1π ,

2
tf ,

2π ,
3

tf ,
3π  are indemnities and premiums for 3 subsequent sub-period 

contracts respectively. 

Certainty–equivalent revenues (CER) were used to assess the robustness of the risk 

reduction performance of the optimal crop management and precipitation contract (Manfredo and 

Leuthold). For a specified utility function, CER is the level of return that, if received with 

certainty, would generate a level of utility equal to the expected utility of the risky investment. 

Using the utility function in equation (1), the certainty–equivalent revenues (CER) can be 

calculated as: 
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1
1((1 )( ( )) rCER r EU NR −= −                                     (9) 

 

Data 

The DSSAT crop growth model utilizes crop management data, daily weather data, and soil 

data. The economic model requires output price data and crop management cost data. Daily 

weather data for Mitchell, Miller, and Lee Counties are available from the United States National 

Climate Data Center (NCDC). Evapotranspiration rates are calculated from daily weather data 

using Priestley–Taylor Methods. Soil information came from the University of Georgia’s 

Agricultural Economics Extension Program. Three common soil types in Georgia (Norgram 

Sandy Soil, Tifton Loamy Sand, and Norfolk Loamy Sand) are included in the study.  

 

Results 

A cotton production example is used to illustrate the procedure described above. The 

results are organized as follows. The first section shows optimal on-farm crop management 

stratities that maximizes producer's expected utility, and how these strategies vary with the 

magnitude of risk aversion. The results from two probability distributions are compared. Static 

versus dynamic crop management methods are also compared and discussed. 

Regional estimates for two index insurance, the precipitation insurance and the DSSAT 

yield insurance, are developed in second section for the study areas. The impact of the index 

insurance products on producers' Certainty Equivalent Revenue and the influence of geographic 

and temporal basis risk are also analyzed. A sub-period precipitation which is intended to reduce 

index contract’s temporal basis risk is also analyzed and discussed. 
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Optimal Crop Management Strategies 

Table 1 o 3 shows the optimal crop management strategies for cotton production in 

Mitchell County over different levels of risk aversion levels. CER can be considered as 

"compensated net revenue" that takes into account risk measures, and thus CER is always less 

than expected net return. For cotton production in Mitchell County, soil 1, over a large range of 

risk aversion levels (from r=1.5 to 5.5), optimal irrigation threshold is constant 40%, and optimal 

planting date is constant April 20. The only different strategy is for very high risk averse 

producers (r=6), with irrigation threshold being 45%, and planning date being April 25. 

Table 1. Optimal Crop Management Strategies for cotton production in Mitchell County 

Soil 1. 

 R Planting 
date moisture Expected_water Expected_Yield Expected_Net_Return CER 

1 1.5 20-Apr 40 2.71 4020.6 1560.2 1543.8
1 2 20-Apr 40 2.71 4020.6 1560.2 1538.2
1 2.5 20-Apr 40 2.71 4020.6 1560.2 1532.6
1 3 20-Apr 40 2.71 4020.6 1560.2 1526.9
1 3.5 20-Apr 40 2.71 4020.6 1560.2 1521.3
1 4 20-Apr 40 2.71 4020.6 1560.2 1515.7
1 4.5 20-Apr 40 2.71 4020.6 1560.2 1510.1
1 5 20-Apr 40 2.71 4020.6 1560.2 1504.6
1 5.5 20-Apr 40 2.71 4020.6 1560.2 1499.1
1 6 25-Apr 45 2.84 4004.8 1540.0 1494.3

 

For cotton production in Mitchell County Soil 2, optimal planting date is the same (April 

20) across all risk averse levels, while irrigation threshold is 35% for low risk averse producers 

(r=1.5 to 2.5) and is 30% for higher risk averse producers (r=3 to 6).   
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Table 2. Optimal Crop Management Strategies for cotton production in Mitchell County 

Soil 2. 

soil R Planting 
date moisture Expected_water Expected_Yield Expected_Net_Return CER 

2 1.5 20-Apr 35 1.50 4091.9 1711.8 1697.1
2 2 20-Apr 35 1.50 4091.9 1711.8 1692.2
2 2.5 20-Apr 35 1.50 4091.9 1711.8 1687.2
2 3 20-Apr 30 1.32 4059.1 1708.8 1682.8
2 3.5 20-Apr 30 1.32 4059.1 1708.8 1678.5
2 4 20-Apr 30 1.32 4059.1 1708.8 1674.2
2 4.5 20-Apr 30 1.32 4059.1 1708.8 1669.9
2 5 20-Apr 30 1.32 4059.1 1708.8 1665.7
2 5.5 20-Apr 30 1.32 4059.1 1708.8 1661.6
2 6 20-Apr 30 1.32 4059.1 1708.8 1657.5

 

For cotton production in Mitchell County Soil 3, for producers with risk aversion level 

from 1.5 to 5, optimal planting date is April 20 and optimal irrigation threshold is 35%; for 

producers with risk aversion level from 5.5 to 6, optimal planting date is April 25 and optimal 

irrigation threshold is 30%. 

Table 3. Optimal Crop Management Strategies for cotton production in Mitchell County 

Soil 3. 

soil R Planting 
date moisture Expected_

water 
Expected_ 

Yield 
Expected_Net_ 

Return CER 

3 1.5 20-Apr 35 1.62 4083.6 1695.9 1681.6 
3 2 20-Apr 35 1.62 4083.6 1695.9 1676.8 
3 2.5 20-Apr 35 1.62 4083.6 1695.9 1672.0 
3 3 20-Apr 35 1.62 4083.6 1695.9 1667.3 
3 3.5 20-Apr 35 1.62 4083.6 1695.9 1662.5 
3 4 20-Apr 35 1.62 4083.6 1695.9 1657.7 
3 4.5 20-Apr 35 1.62 4083.6 1695.9 1653.0 
3 5 20-Apr 35 1.62 4083.6 1695.9 1648.4 
3 5.5 25-Apr 30 1.40 4016.2 1676.2 1643.9 
3 6 25-Apr 30 1.40 4016.2 1676.2 1641.0 

 

Table 4 to 6 presents the results of optimal crop management for cotton production in 

Mitchell County when higher weight is put to drought years. Years 1999, 2000, and 2002 are the 
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driest year with lowest rainfall amount during cotton growing season. An arbitrary probability of 

20% is assigned to these years while probability of (40%/7) is assigned to the other 7 years, to 

indicate the current trends in decreasing rainfall.  

The results show that for soil 1, comparing with the result for the uniform distribution, 

across different risk aversion levels, except for very high risk averse producers(r=6) who keep 

irrigation threshold as 45%, producers with lower risk averse levels increase irrigation threshold 

from 40% to 45%, and optimal planting date changes from April 20 to April 25, and the resulting 

irrigation water amount increases from 2.71mm/acre to 2.89mm/acre. For high risk averse 

producers (r=6), both irrigation and planting date strategy doesn’t change. The change in 

expected water is due to higher weight is put on drier years with higher irrigation application. 

Table 4. Optimal Crop Management Strategies for cotton production in Mitchell County 

Soil 1 with Larger Weight on Dry Years. 

soil R Planting 
date 

moisture Expected_water Expected_Yield Expected_Net_Return CER 

1 1.5 25-Apr 45 2.89 3972.6 1515.8 1508.9
1 2 25-Apr 45 2.89 3972.6 1515.8 1506.7
1 2.5 25-Apr 45 2.89 3972.6 1515.8 1504.4
1 3 25-Apr 45 2.89 3972.6 1515.8 1502.1
1 3.5 25-Apr 45 2.89 3972.6 1515.8 1499.9
1 4 25-Apr 45 2.89 3972.6 1515.8 1497.7
1 4.5 25-Apr 45 2.89 3972.6 1515.8 1495.4
1 5 25-Apr 45 2.89 3972.6 1515.8 1493.2
1 5.5 25-Apr 45 2.89 3972.6 1515.8 1491.0
1 6 25-Apr 45 2.89 3972.6 1515.8 1488.8

 

For soil 1, except for low risk averse producers (r=1.5 to 2.5) who keep irrigation threshold 

as 35%, other producers increase irrigation threshold from 30% to 35%. Across different levels of 

risk aversion, optimal planting date changes from April 20 to April 25, and the resulting irrigation 

water amount increases from 1.55mm/acre for low risk averse producers and 1.32 mm/acre for 

high risk averse producers to 1.60mm/acre. This result is same as our expectation: with higher 
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weight put on drought years, optimal irrigation threshold incrasesa and the resulting expected 

water use increases. 

Table 5. Optimal Crop Management Strategies for cotton production in Mitchell County 

Soil 2 with Larger Weight on Dry Years. 

soil R Planting 
date 

moisture Expected_water Expected_Yield Expected_Net_Return CER 

2 1.5 25-Apr 35 1.60 4013.7 1656.2 1650.9
2 2 25-Apr 35 1.60 4013.7 1656.2 1649.1
2 2.5 25-Apr 35 1.60 4013.7 1656.2 1647.4
2 3 25-Apr 35 1.60 4013.7 1656.2 1645.6
2 3.5 25-Apr 35 1.60 4013.7 1656.2 1643.9
2 4 25-Apr 35 1.60 4013.7 1656.2 1642.1
2 4.5 25-Apr 35 1.60 4013.7 1656.2 1640.4
2 5 25-Apr 35 1.60 4013.7 1656.2 1638.7
2 5.5 25-Apr 35 1.60 4013.7 1656.2 1637.0
2 6 25-Apr 35 1.60 4013.7 1656.2 1635.3

 

For Soil3, except for very high risk averse producers (r=5.5 to 6) who keep irrigation 

threshold level as 30% and keep planting date as April 25, other producers changes planting date 

from April 20 to April 25 and increase irrigation from 35% to 40%. 

Table 6. Optimal Crop Management Strategies for cotton production in Mitchell County 

Soil 2 with Larger Weight on Dry Years. 

soil R Planting 
date 

moisture Expected_water Expected_Yield Expected_Net_Return CER 

3 1.5 25-Apr 40 1.81 4036.4 1651.4 1645.6
3 2 25-Apr 40 1.81 4036.4 1651.4 1643.7
3 2.5 25-Apr 40 1.81 4036.4 1651.4 1641.8
3 3 25-Apr 40 1.81 4036.4 1651.4 1639.9
3 3.5 25-Apr 40 1.81 4036.4 1651.4 1638.0
3 4 25-Apr 40 1.81 4036.4 1651.4 1636.1
3 4.5 25-Apr 40 1.81 4036.4 1651.4 1634.3
3 5 25-Apr 40 1.81 4036.4 1651.4 1632.4
3 5.5 25-Apr 30 1.55 3995.6 1650.2 1630.7
3 6 25-Apr 30 1.55 3995.6 1650.2 1629.0
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The previous results assumes when one strategy is chosen, it cannot be adjusted during 

the 10 years. Table 7 to 9 are the results of dynamic crop management for 3 soil types which 

assumes that crop management strategy can varies every year. The result shows that any one of 

the 4 planting dates can be chosen for a given year, and the same for irrigation strategies. Thus, 

there is no dominant static strategy that should be applied over the whole 10 years. 

Table 7. Dynamic Crop Management Strategies for Cotton Production in Mitchell 

County Soil 1. 

year soil Planting_date moisture yield 
1997 1 April 25 40 4308 
1998 1 April 20 55 4505 
1999 1 May 1 60 4220 
2006 1 April 20 45 4076 
2001 1 April 20 45 4402 
2002 1 May 6 55 3915 
2003 1 April 20 40 4346 
2004 1 April 20 45 4296 
2005 1 May 6 45 3752 
2006 1 April 20 40 3610 

     

Table 8. Dynamic Crop Management Strategies for Cotton Production in Mitchell 

County Soil 2. 

year soil Planting_date moisture yield 
1997 2 April 20 35 4389 
1998 2 April 20 50 4513 
1999 2 May 1 45 4220 
2006 2 April 20 40 4155 
2001 2 April 20 40 4438 
2002 2 May 6 50 3915 
2003 2 April 20 5 4306 
2004 2 April 20 40 4312 
2005 2 May 6 35 3771 
2006 2 April 20 30 3631 
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Table 9. Dynamic Crop Management Strategies for Cotton Production in Mitchell 

County Soil 3. 

year soil Planting_date moisture yield 
1997 3 April 20 40 4396 
1998 3 April 20 50 4514 
1999 3 May 1 40 4225 
2006 3 April 20 40 4147 
2001 3 April 20 40 4458 
2002 3 April 25 40 3925 
2003 3 April 20 5 4325 
2004 3 April 20 40 4323 
2005 3 May 6 35 3791 
2006 3 April 20 55 3713 

 

Table 10 to 12 illustrates the differences in Certainty Equivalent Revenue between static 

and dynamic strategies. It can be seen that for Soil 1 and Soil 2, CER increases by around 

20$/acre over all levels of risk aversions. For Soil 3, CER increases by around 27$/acre. 

Therefore, a dynamic scheduling results in higher CER over 10 years than a static scheduling 

does. We calculate the differences between dynamic and static strategies under expected utility 

maximization, and conclude that a dynamic scheduling results in higher net revenue each year 

and higher expected utility over 10 years than a static scheduling does. 

Table 10. Comparing of CER between Static and Dynamic Crop Management Strategies 

in Mitchell County Soil 1.  

soil R CER_stat CER_dynamic CER_change 
1 1.5 1543.8 1564.1 20.4 
1 2 1538.2 1558.7 20.5 
1 2.5 1532.6 1553.3 20.7 
1 3 1526.9 1547.8 20.9 
1 3.5 1521.3 1542.4 21.1 
1 4 1515.7 1537.0 21.3 
1 4.5 1510.1 1531.6 21.5 
1 5 1504.6 1526.3 21.7 
1 5.5 1499.1 1521.1 22.0 
1 6 1494.3 1515.9 21.6 
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Table 11. Comparing of CER between Static and Dynamic Crop Management Strategies 

in Mitchell County Soil 2.  

soil R CER_stat CER_dynamic CER_change 
2 1.5 1697.1 1718.1 21.0 
2 2 1692.2 1713.5 21.3 
2 2.5 1687.2 1708.8 21.6 
2 3 1682.8 1704.2 21.4 
2 3.5 1678.5 1699.5 21.1 
2 4 1674.2 1694.9 20.7 
2 4.5 1669.9 1690.3 20.4 
2 5 1665.7 1685.8 20.1 
2 5.5 1661.6 1681.3 19.7 
2 6 1657.5 1676.9 19.4 

 

Table 12. Comparing of CER between Static and Dynamic Crop Management Strategies 

in Mitchell County Soil 3.  

soil R CER_stat CER_dynamic CER_change 
3 1.5 1681.6 1709.4 27.8 
3 2 1676.8 1704.4 27.6 
3 2.5 1672.0 1699.4 27.3 
3 3 1667.3 1694.4 27.1 
3 3.5 1662.5 1689.4 27.0 
3 4 1657.7 1684.5 26.8 
3 4.5 1653.0 1679.7 26.6 
3 5 1648.4 1674.9 26.5 
3 5.5 1643.9 1671.7 27.8 
3 6 1641.0 1668.7 27.8 

     

However, it should be noted that in reality, producers cannot exactly foresee weather 

condition before production, and thus it is not possible to choose best strategy each year. Thus, 

using maximizing expected utility based on past experience might be the best crop management 

available.  

The next section analyzes whether index insurances can fill in the gap of the differences 

between dynamic and static strategies. 
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Regional Estimates for Precipitation Contracts 

Table 13-15 presents optimal parameters for cumulative rain fall contract which is designed 

to provide protection over the total cotton growing season. For soil 1, best strike and lambda are 

705 mm and 0.75 respectively for low risk averse producers and the corresponding premium rate 

is 0.579%. This contract doesn’t improve purchasers’ risk profile; instead, it decreases CER by 

0.1-0.2. For higher risk averse producers, best strike and lambda are 1061.6mm and 0.95 

respectively, both are large, which results in high probability of triggering indemnity and 

maximum liability, and thus the premium of the contract is high. The contract does improve high 

risk averse producers’ CER, but not very much.  

Table 13. Optimal Precipitation Contract for Cotton Production in Mitchell County Soil 1. 

soil r Max_ 
Liability 

expected_ 
rain 

strike lambda tick loaded_ 
premium

premium_rate CER_ 
change

1 1.5 291.8 1061.6 705 0.75 1.7 1.7 0.579% -0.1 
1 2 291.8 1061.6 705 0.75 1.7 1.7 0.579% -0.1 
1 2.5 291.8 1061.6 705 0.75 1.7 1.7 0.579% -0.1 
1 3 291.8 1061.6 705 0.75 1.7 1.7 0.579% -0.2 
1 3.5 291.8 1061.6 705 0.75 1.7 1.7 0.579% -0.2 
1 4 291.8 1061.6 1255 0.95 4.7 228.3 78.227% -0.1 
1 4.5 291.8 1061.6 1255 0.95 4.7 228.3 78.227% 0.7 
1 5 291.8 1061.6 1255 0.95 4.7 228.3 78.227% 1.5 
1 5.5 291.8 1061.6 1255 0.95 4.7 228.3 78.227% 2.4 
1 6 291.8 1061.6 1255 0.95 4.7 228.3 78.227% 3.3 

 

For soil 2, 3 different contracts are designed for different producers with different levels of 

risk aversions. For low risk averse producers (r=1.5), best strike is 705, with premium rate being 

0.759%. This contract doesn’t improve their risk profile. For higher risk averse producers (r=2), 

best strike is 1095, with premium rate being 35.612%, and the contract still doesn’t improve CER. 

For even higher risk averse producers (r=2.5 to 6), best contract is with strike 1115 and lambda 

0.75, which can improve their CER, although the change in CER is not very large. 

Table 14. Optimal Precipitation Contract for Cotton Production in Mitchell County Soil 2. 
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soil r Max_ 
Liability 

expected_ 
rain 

strike lambda tick loaded_ 
premium

premium_rate CER_ 
change

2 1.5 218.9 1061.6 705 0.75 1.2 1.3 0.579% -0.1 
2 2 218.9 1061.6 1095 0.75 0.8 77.9 35.612% -0.1 
2 2.5 218.9 1061.6 1105 0.75 0.8 81.5 37.228% 0.4 
2 3 218.9 1061.6 1105 0.75 0.8 81.5 37.228% 0.9 
2 3.5 218.9 1061.6 1115 0.75 0.8 84.8 38.733% 1.5 
2 4 218.9 1061.6 1115 0.75 0.8 84.8 38.733% 2.2 
2 4.5 218.9 1061.6 1115 0.75 0.8 84.8 38.733% 2.8 
2 5 218.9 1061.6 1115 0.75 0.8 84.8 38.733% 3.6 
2 5.5 218.9 1061.6 1115 0.75 0.8 84.8 38.733% 4.3 
2 6 218.9 1061.6 1115 0.75 0.8 84.8 38.733% 5.1 

 

For soil 3, 6 different contracts are designed for different producers with different levels of 

risk aversions. While the contracts don’t improve CER for low risk averse producers (r=1.5 to 

3.5), they improve CER for high risk averse producers (r=4 to 6) 

Table 15. Optimal Precipitation Contract for Cotton Production in Mitchell County Soil 3.  

soil r Max_ 
Liability 

expected_ 
rain 

strike lambda tick loaded_ 
premium

premium_rate CER_ 
change

3 1.5 218.9 1061.6 675 0.75 1.3 1.0 0.457% -1.0 
3 2 218.9 1061.6 675 0.75 1.3 1.0 0.457% -1.0 
3 2.5 218.9 1061.6 675 0.75 1.3 1.0 0.457% -1.0 
3 3 218.9 1061.6 675 0.75 1.3 1.0 0.457% -1.0 
3 3.5 218.9 1061.6 1125 0.75 0.8 87.6 40.020% -0.4 
3 4 218.9 1061.6 1135 0.75 0.8 90.4 41.285% 0.9 
3 4.5 218.9 1061.6 1145 0.75 0.8 93.1 42.528% 2.3 
3 5 218.9 1061.6 1265 0.75 0.7 130.4 59.563% 3.7 
3 5.5 218.9 1061.6 1265 0.75 0.7 130.4 59.563% 4.8 
3 6 218.9 1061.6 1275 0.75 0.7 134.1 61.256% 5.8 

 

Table 16 to 18 shows the results of optimal DSSAT yield index contract for cotton 

production in Mitchell County. For all three soil types, premium rates are around 41%, and they 

all improves producers’ CER by amount larger than the precipitation contract does. 
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Table 16. Optimal DSSAT Yield Contract for Cotton Production in Mitchell County Soil1. 

 
soil r Max_ 

Liability 
expected_

yield 
strike lambda tick loaded_ 

premium
premium_

rate 
CER_ 
change

1 1.5 291.8  4020.6  4191.0 0.9 0.7 117.8  40.376% 11.9 
1 2 291.8  4020.6  4201.0 0.9 0.7 119.9  41.081% 16.7 
1 2.5 291.8  4020.6  4201.0 0.9 0.7 119.9  41.081% 21.6 
1 3 291.8  4020.6  4211.0 0.9 0.7 121.9  41.783% 26.5 
1 3.5 291.8  4020.6  4211.0 0.9 0.7 121.9  41.783% 31.5 
1 4 291.8  4020.6  4211.0 0.9 0.7 121.9  41.783% 36.4 
1 4.5 291.8  4020.6  4211.0 0.9 0.7 121.9  41.783% 41.2 
1 5 291.8  4020.6  4211.0 0.9 0.7 121.9  41.783% 46.1 
1 5.5 291.8  4020.6  4211.0 0.9 0.7 121.9  41.783% 50.9 
1 6 291.8  4020.6  4211.0 0.9 0.7 121.9  41.783% 55.6 

Table 17. Optimal DSSAT Yield Contract for Cotton Production in Mitchell County Soil2. 

soil r Max_ 
Liability 

expected_
yield 

strike lambda tick loaded_ 
premium

premium_
rate 

CER_ 
change

2 1.5 200.6  4091.9  4282.8 0.9 0.5 82.5  41.098% 9.1  
2 2 200.6  4091.9  4292.8 0.9 0.5 83.4  41.564% 12.7 
2 2.5 200.6  4091.9  4292.8 0.9 0.5 83.4  41.564% 16.4 
2 3 200.6  4091.9  4292.8 0.9 0.5 83.4  41.564% 19.5 
2 3.5 200.6  4091.9  4292.8 0.9 0.5 83.4  41.564% 22.5 
2 4 200.6  4091.9  4292.8 0.9 0.5 83.4  41.564% 25.5 
2 4.5 200.6  4091.9  4292.8 0.9 0.5 83.4  41.564% 28.5 
2 5 200.6  4091.9  4292.8 0.9 0.5 83.4  41.564% 31.4 
2 5.5 200.6  4091.9  4292.8 0.9 0.5 83.4  41.564% 34.2 
2 6 200.6  4091.9  4292.8 0.9 0.5 83.4  41.564% 37.0 

 
Table 18. Optimal DSSAT Yield Contract for Cotton Production in Mitchell County Soil3.  

soil r Max_ 
Liability 

expected_
yield 

strike lambda tick loaded_ 
premium

premium_
rate 

CER_ 
change

3 1.5 218.9  4083.6  4262.4 0.9 0.5 89.2  40.738% 9.1  
3 2 218.9  4083.6  4262.4 0.9 0.5 89.2  40.738% 12.8 
3 2.5 218.9  4083.6  4262.4 0.9 0.5 89.2  40.738% 16.5 
3 3 218.9  4083.6  4262.4 0.9 0.5 89.2  40.738% 20.2 
3 3.5 218.9  4083.6  4262.4 0.9 0.5 89.2  40.738% 23.9 
3 4 218.9  4083.6  4262.4 0.9 0.5 89.2  40.738% 27.5 
3 4.5 218.9  4083.6  4262.4 0.9 0.5 89.2  40.738% 31.1 
3 5 218.9  4083.6  4262.4 0.9 0.5 89.2  40.738% 34.7 
3 5.5 218.9  4083.6  4262.4 0.9 0.5 89.2  40.738% 38.3 
3 6 218.9  4083.6  4262.4 0.9 0.5 89.2  40.738% 41.7 

 
However, high level of basis risk is present with DSSAT predicted yield index insurance 

because the predicted yields are not perfectly correlated with realized farm-level yield. In 

addition, since payments are based on the DSSAT county level predicted yield loss not the 

individual farmer's loss, individual crop losses may not be covered if the county yield does not 
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suffer a similar level of loss. Thus the advantage of using DSSAT yield index insurance product 

could be dwarfed by high basis risk. 

For weather derivative contract, basis risk also arises as precipitation amount measured 

at weather station is different from precipitation amount at farm level. For cotton producers in 

Mitchell County, the impact of geographical basis risk was assessed by comparing the risk 

reduction generated from index insurance contracts based on Miller and Lee weather stations.  

Table 19-21 shows the comparisons of CER among CER without contract, CER with 

contract based on its weather station data, CER with contract based on weather data in Miller 

County, and CER with contract based on weather data in Lee County. We can see that for the 

contract based on weather data measured in Miller County, the benefit of contract no longer exist; 

the contract with basis risk now decreases producers’ CER. For contract based on weather data 

measured in Lee county, comparing with CER without contract, the contract still have positive 

effect on CER, although the increase in CER is normally not as large as that for contract without 

basis risk. 

Table 19. Comparison of CER among No contract, Contract with No Basis Risk, 

Contract Based on Weather in Miller County, and Contract Based on Weather in Lee County for 

Mitchell Soil 1. 

soil r CER CER_contract_nobasis CER_contract_miller CER_contract_lee
1 1.5 1543.8 1543.8 1543.5 1545.3 
1 2 1538.2 1538.5 1537.9 1540.3 
1 2.5 1532.6 1534.0 1532.2 1535.4 
1 3 1526.9 1529.7 1526.5 1530.4 
1 3.5 1521.3 1525.4 1520.8 1525.4 
1 4 1515.7 1521.1 1515.1 1521.1 
1 4.5 1510.1 1516.8 1509.4 1516.8 
1 5 1504.6 1512.6 1503.9 1512.6 
1 5.5 1499.1 1508.3 1498.3 1508.3 
1 6 1494.3 1504.1 1492.9 1504.1 
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Table 20. Comparison of CER among No contract, Contract with No Basis Risk, 

Contract Based on Weather in Miller County, and Contract Based on Weather in Lee County for 

Mitchell Soil 2. 

soil r CER CER_contract_nobasis CER_contract_miller CER_contract_lee
2 1.5 1697.1 1698.7 1696.9 1697.7 
2 2 1692.2 1694.6 1691.9 1693.0 
2 2.5 1687.2 1690.4 1686.9 1688.4 
2 3 1682.8 1686.1 1681.9 1684.0 
2 3.5 1678.5 1681.7 1677.5 1679.6 
2 4 1674.2 1677.2 1673.2 1675.2 
2 4.5 1669.9 1672.6 1668.9 1670.7 
2 5 1665.7 1667.9 1664.7 1666.3 
2 5.5 1661.6 1663.2 1660.5 1662.2 
2 6 1657.5 1658.4 1656.5 1658.2 

 

Table 21. Comparison of CER among No contract, Contract with No Basis Risk, 

Contract Based on Weather in Miller County, and Contract Based on Weather in Lee County for 

Mitchell Soil 3. 

soil r CER CER_contract_ 
nobasis 

CER_contract_ 
miller 

CER_contract 
_lee 

3 1.5 1681.6 1683.5 1681.4 1682.8 
3 2 1676.8 1679.7 1676.6 1678.4 
3 2.5 1672.0 1675.8 1671.7 1674.1 
3 3 1667.3 1671.8 1666.9 1669.8 
3 3.5 1662.5 1667.7 1662.0 1665.5 
3 4 1657.7 1663.6 1657.2 1661.4 
3 4.5 1653.0 1659.4 1652.5 1657.4 
3 5 1648.4 1655.1 1647.8 1653.4 
3 5.5 1643.8 1650.8 1643.2 1649.3 
3 6 1641.0 1646.4 1638.6 1645.3 

 

The impact of temporal basis risk is assessed by allowing separate contracts to be 

purchased for different subperiods during the entire period. The result shows that optimal contract 

parameters doesn’t vary across different levels of risk aversion, implying that an optimal contract 

can be designed for all kinds of cotton producers. Moreover, the results show that using separate 
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insurance contracts for different time period will better improve producers’ Certainty Equivalent 

Revenue. 

Table 22. Optimal Sub-period Precipitation Contracts Parameters for Cotton Production in 

Mitchell County Soil 1 

soil r Max_Liability strike1 lamb
da1 

strike2 lamb
da2 

strike3 lambd
a3 

tick1 tick2 tick3 

1 1.5 291.84  149.2 0.85 306.9 0.95 160.9 0.85 13.0  19.0  12.1 
1 2 291.84  149.2 0.85 306.9 0.95 160.9 0.85 13.0  19.0  12.1 
1 2.5 291.84  149.2 0.85 306.9 0.95 160.9 0.85 13.0  19.0  12.1 
1 3 291.84  149.2 0.85 306.9 0.95 160.9 0.85 13.0  19.0  12.1 
1 3.5 291.84  149.2 0.85 306.9 0.95 160.9 0.85 13.0  19.0  12.1 
1 4 291.84  149.2 0.85 306.9 0.95 160.9 0.85 13.0  19.0  12.1 
1 4.5 291.84  149.2 0.85 306.9 0.95 160.9 0.85 13.0  19.0  12.1 
1 5 291.84  149.2 0.85 306.9 0.95 160.9 0.85 13.0  19.0  12.1 
1 5.5 291.84  149.2 0.85 306.9 0.95 160.9 0.85 13.0  19.0  12.1 
1 6 291.84  149.2 0.85 306.9 0.95 160.9 0.85 13.0  19.0  12.1 

 

Table 23. Optimal Sub-period Precipitation Contracts Parameters for Cotton Production in 

Mitchell County Soil 2. 

soil r Max_Liability strike1 lambd
a1 

strike2 lambd
a2 

strike3 lamb
da3 

tick1 tick2 tick3 

2 1.5 218.88  149.2 0.85 306.9 0.95 160.9 0.85 9.8  14.3  9.1  
2 2 218.88  149.2 0.85 306.9 0.95 160.9 0.85 9.8  14.3  9.1  
2 2.5 218.88  149.2 0.85 306.9 0.95 160.9 0.85 9.8  14.3  9.1  
2 3 218.88  149.2 0.85 306.9 0.95 160.9 0.85 9.8  14.3  9.1  
2 3.5 218.88  149.2 0.85 306.9 0.95 160.9 0.85 9.8  14.3  9.1  
2 4 218.88  149.2 0.85 306.9 0.95 160.9 0.85 9.8  14.3  9.1  
2 4.5 218.88  149.2 0.85 306.9 0.95 160.9 0.85 9.8  14.3  9.1  
2 5 218.88  149.2 0.85 306.9 0.95 160.9 0.85 9.8  14.3  9.1  
2 5.5 218.88  149.2 0.95 306.9 0.95 160.9 0.85 29.3  14.3  9.1  
2 6 218.88  149.2 0.95 306.9 0.95 160.9 0.85 29.3  14.3  9.1  
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Table 24. Optimal Sub-period Precipitation Contracts Parameters for Cotton Production in 

Mitchell County Soil 3. 

soil r Max_Liability strike1 lambd
a1 

strike2 lamb
da2 

strike3 lambd
a3 

tick1 tick2 tick3 

3 1.5 218.88  149.2 0.85 156.9 0.85 70.9 0.75 9.8  9.3  12.3 
3 2 218.88  149.2 0.85 156.9 0.85 40.9 0.95 9.8  9.3  107.0 
3 2.5 218.88  149.2 0.85 156.9 0.85 40.9 0.95 9.8  9.3  107.0 
3 3 218.88  149.2 0.85 156.9 0.85 40.9 0.95 9.8  9.3  107.0 
3 3.5 218.88  149.2 0.85 156.9 0.75 40.9 0.95 9.8  5.6  107.0 
3 4 218.88  149.2 0.85 156.9 0.75 40.9 0.95 9.8  5.6  107.0 
3 4.5 218.88  149.2 0.85 156.9 0.75 40.9 0.95 9.8  5.6  107.0 
3 5 218.88  149.2 0.85 156.9 0.75 40.9 0.95 9.8  5.6  107.0 
3 5.5 218.88  149.2 0.85 156.9 0.75 40.9 0.95 9.8  5.6  107.0 
3 6 218.88  149.2 0.85 156.9 0.75 40.9 0.95 9.8  5.6  107.0 

Table 25. Premiums of Optimal Sub-period Precipitation Contracts and their Impact on 

CER for Cotton Production in Mitchell County Soil 1. 

soil r 

loaded
_premi
um1 

premium_
rate1 

loaded_pr
emium2 

premium_rat
e2 

loaded_p
remium3

premium_
rate3 

CER_sub_
change 

1 1.5 113.9  39.01% 204.7  70.15% 125.0 42.82% 1.06  
1 2 113.9  39.01% 204.7  70.15% 125.0 42.82% 2.22  
1 2.5 113.9  39.01% 204.7  70.15% 125.0 42.82% 3.40  
1 3 113.9  39.01% 204.7  70.15% 125.0 42.82% 4.62  
1 3.5 113.9  39.01% 204.7  70.15% 125.0 42.82% 5.86  
1 4 113.9  39.01% 204.7  70.15% 125.0 42.82% 7.12  
1 4.5 113.9  39.01% 204.7  70.15% 125.0 42.82% 8.41  
1 5 113.9  39.01% 204.7  70.15% 125.0 42.82% 9.71  
1 5.5 113.9  39.01% 204.7  70.15% 125.0 42.82% 11.03  
1 6 113.9  39.01% 204.7  70.15% 125.0 42.82% 12.36  

Table 26. Premiums of Optimal Sub-period Precipitation Contracts and their Impact on 

CER for Cotton Production in Mitchell County Soil 2. 

soil r loaded
_premi

um1 

premium
_rate1 

loaded_pr
emium2 

premium_
rate2 

loaded_pr
emium3 

premium_
rate3 

CER_sub_ch
ange 

2 1.5 85.4  39.01% 153.5 70.15% 93.7  42.82% 0.46  
2 2 85.4  39.01% 153.5 70.15% 93.7  42.82% 1.25  
2 2.5 85.4  39.01% 153.5 70.15% 93.7  42.82% 2.08  
2 3 85.4  39.01% 153.5 70.15% 93.7  42.82% 2.95  
2 3.5 85.4  39.01% 153.5 70.15% 93.7  42.82% 3.86  
2 4 85.4  39.01% 153.5 70.15% 93.7  42.82% 4.81  
2 4.5 85.4  39.01% 153.5 70.15% 93.7  42.82% 5.80  
2 5 85.4  39.01% 153.5 70.15% 93.7  42.82% 6.82  
2 5.5 102.1  46.67% 153.5 70.15% 93.7  42.82% 7.92  
2 6 102.1  46.67% 153.5 70.15% 93.7  42.82% 9.09  
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Table 27. Premiums of Optimal Sub-period Precipitation Contracts and their Impact on 

CER for Cotton Production in Mitchell County Soil 3. 

soil r loaded
_premi

um1 

premium
_rate1 

loaded_pr
emium2 

premium_
rate2 

loaded_pr
emium3 

premium_
rate3 

CER_sub_c
hange 

3 1.5 85.4  39.01% 5.6  2.56% 12.4  5.67% (3.69) 
3 2 85.4  39.01% 5.6  2.56% 1.0  0.46% (2.32) 
3 2.5 85.4  39.01% 5.6  2.56% 1.0  0.46% (0.78) 
3 3 85.4  39.01% 5.6  2.56% 1.0  0.46% 0.81  
3 3.5 85.4  39.01% 1.0  0.46% 1.0  0.46% 2.49  
3 4 85.4  39.01% 1.0  0.46% 1.0  0.46% 4.35  
3 4.5 85.4  39.01% 1.0  0.46% 1.0  0.46% 6.26  
3 5 85.4  39.01% 1.0  0.46% 1.0  0.46% 8.23  
3 5.5 85.4  39.01% 1.0  0.46% 1.0  0.46% 9.69  
3 6 85.4  39.01% 1.0  0.46% 1.0  0.46% 11.11  

 

 Conclusions 

 Crop simulation models offer new opportunities to explore crop management strategies 

and financial instruments to reduce crop production risk. We used the DSSAT model to simulate 

yield, revenue, and irrigation cost responses to various irrigation and planting date strategies over 

10 years. Optimal crop management  strategies for cotton production in Mitchell, Miller, and 

Lee counties varies largely across different counties, but appear to be largely independent of 

risk–aversion levels.   

Based on the best crop management, index insurance products are designed to help farmers 

further reduce production risk. This study examines the feasibility of two index insurance 

products - one is weather derivative contract based on precipitation amount measured at the 

weather station; one is insurance product based on predicted yields from DSSAT. The result 

shows that Certainty Equivalent Revenue can be improved by these index insurance products, 

especially by DSSAT yield index insurance. 

The impact of geographical basis risk was assessed by comparing the risk reduction 

generated from index insurance contracts based on different weather stations. The results show 
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that the advantage of using index insurance products is reduced by high basis risk; however, even 

in the presence of basis risk, contract for cotton production in Mitchell County based on weather 

data in Lee County is still attractive compared with no-contract.  

The impact of temporal basis risk is assessed by allowing separate contracts to be 

purchased for different subperiods during the entire period. The result shows that Using separate 

insurance contracts for different time period will further improve CER for cotton producers in 

Mitchell County. 
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