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ACRE: A Revenue-Based Alternative to Price-Based 
Commodity Payment Programs 

 

 

Abstract 
 
This paper develops a stochastic model for estimating the probability density function of 

the Average Crop Revenue Election (ACRE), a revenue-based commodity support 

payment that is offered under the 2008 Farm Act as an alternative to the traditional suite 

of price-based commodity payments, that is, marketing loan benefits and counter-cyclical 

payments.  We minimize the potential for miss-specification bias in the model by using 

nonparametric and semi-nonparametric approaches as specification checks in the model. 

Our simulation results show that adding ACRE revenue payments to gross revenue 

reduced the downside risk in revenue for corn, wheat, and soybean farmers in 2009 in the 

four locations examined, with reductions ranging from 4% to 25%.   Integrating Federal 

crop insurance with ACRE lowered insurance premiums from 10% to 40%, depending on 

the crop and location.  A utility maximization approach is used to assess potential moral 

hazard effects of ACRE, and suggest little potential impact on acreage in the Heartland.    
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A Revenue-Based Alternative to the Counter-Cyclical Payment 
Program  

 

Introduction 

Interest in revenue-based commodity support is evident in the Food, Conservation and 

Energy Act of 2008 (the 2008 Farm Act), which gives eligible producers the option of 

participating in the Average Crop Revenue Election (ACRE) program rather than in the 

traditional programs. ACRE differs in important ways from traditional commodity 

programs.  The latter — that is, marketing loan benefits or counter cyclical payments — 

are triggered when market prices fall below statutory price floors (loan rates and target 

prices). These prices are fixed for the life of the Farm Act legislation (ERS, 2008). 

 In contrast, ACRE makes payments based on State gross crop revenue per acre 

(price times yield per acre) and, thus, provides a degree of yield as well as price 

protection. In particular, ACRE is designed as an income safety net that covers a portion 

of the shortfall in State-level revenue losses relative to a State level expected revenue (a 

“guarantee revenue” in the parlance of the ACRE program).  With some limitations on 

how much it can change from year-to-year, the ACRE revenue guarantee also uses recent 

market prices, rather than fixed target prices, to set the level of protection, which makes 

the program relatively flexible in being able to address contemporary market conditions.

 While a fair number of studies have been published that empirically examine the 

impacts of commodity-support on production (e.g., Sckokai and  Moro, 2006; Goodwin 

and Mishra, 2006; Anton and Le Mouel, 2004; and Hennessy, 1998), the academic 

literature is thin on examinations of the implication of the empirical distribution of 
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commodity support payments for both government policy and for producer preferences.  

 However, there are a variety of policy-relevant reasons to examine the probability 

density function of commodity support payment. For example, under the rather broad 

aegis of “income safety net”, to what extent do the ACRE payments offset the farmer’s 

downside revenue risks? To what extent does ACRE cover revenue risk that is addressed 

by Federal crop insurance? In particular, to what extent could crop insurance premiums 

be decreased if ACRE payments are considered part of farm revenue for the purposes of 

calculating actuarially correct crop insurance premiums? Since farmers are generally 

considered to be non-neutral in their risk preferences, and risk averse in particular, if 

ACRE payments reduce risk, what impacts might ACRE have on crop production?  

 The goal of this paper is to develop and estimate a stochastic model for estimating 

potential ACRE revenue support payments to corn, soybean, and wheat producers in a 

variety of locations that will be used to address policy issues raised above.  Before 

turning to the model, we provide a brief background on the ACRE program as well the as 

traditional suite of commodity support programs. 

 

Background 

The eligible producer of a covered commodity can choose to elect to receive ACRE 

revenue payments in lieu of receiving counter-cyclical payments and in exchange for a 

20-percent reduction in direct payments (a fixed annual payment) and a 30-percent 

reduction in marketing assistance loan rates, The grower can make this irrevocable 

election for the 2009-2012, 2010-2012, 2011-2012, or the 2012 crop years. 
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Average Crop Revenue Election (ACRE) is a State-based revenue guarantee for 

participants based on the 5-year State average yield and the 2-year national average price. 

ACRE provides producers with payments for a commodity when for the crop year: 1) the 

actual state revenue for the commodity is less than the revenue guarantee; and 2) the 

farmer’s actual revenue is less than the farmer’s expected revenue for the eligible crop.  

The ACRE revenue payment (denoted as ACRE) to producer i of crop j in period 

t is (leaving out the State subscript):  

1) ACREijt = ijtΦ · max{ 0, min[(0.25 · PGRtj ), (PGRtj − ASRtj )]} · )
( )
( jt

ij

YSE
YE

 · {0.85 

or 0.83 depending on the year} · ( ijA ) , 

where the ACRE Program Guarantee Revenue (PGR) for a crop for a crop year = 90% × 

(Benchmark State Yield per planted acre for the crop year) ×  (ACRE Program Guarantee 

Price for the crop year).  Actual State Revenue (ASR) for a crop for a crop year =  

(Actual State yield per planted acre) × (National Average Market Price). Acres planted to 

the crop in t is . ijA

 The Benchmark State Yield per planted acre ( )jtYSE  is the Olympic average of 

the State’s yield per planted acre for 5 most recent crop years, removing the highest and 

lowest yield from the calculation.  The ACRE Program Guarantee Price for the crop year 

is the simple average of the national average market price received by producers of the 

covered commodity or peanuts for the most recent 2 crop years. The National Average 

Market Price for the purpose of calculating Actual State Revenue is equal to the higher of 

the U.S. average cash price for the marketing year or 70 percent of crop’s marketing 

assistance loan rate. 
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 Indicator variable  equals 1 when the farm’s actual revenue for the crop is less 

than the farm’s benchmark revenue for that crop year, and 0 otherwise. The farm’s actual 

and ACRE benchmark revenues are calculated using formulas similar to the Actual State 

Revenue and ACRE Program Guarantee revenue, respectively, except that farm level 

yields are used. In addition, the farm’s ACRE benchmark revenue includes the farm’s 

Federal crop insurance premiums paid for the crop, but the ACRE program is not 

integrated with crop insurance in any other way. 

ijtΦ

Several limitations apply to the ACRE payments.  For 2010-12, PGR cannot 

increase or decrease more than 10 percent from its value the previous year.  Further, the 

total number of planted acres a producer may receive ACRE payments for may not 

exceed the total base acreage for all covered commodities and peanuts on the farm.   If 

the total number of planted acres to all covered commodities and peanuts of the producers 

on a farm exceeds the total base acreage (a fixed level of acreage for certain commodity 

payment purposes) of the farm, the producers on the farm may choose which planted 

acres to enroll in ACRE.   

Separate ACRE Program Guarantees are created for irrigated and non-irrigated 

land if a state’s planted acres are at least 25 percent irrigated and at least 25 percent non-

irrigated. Total payments to a person or legal entities are limited under ACRE.  Direct 

payments are limited per year to $40,000 less the amount of the individual’s 20 percent 

reduction in direct payments. Total ACRE revenue payments are limited pear year to 

$65,000 per person or legal entity. See ERS (2008) for additional details of ACRE. 

 

 4



 In contrast to the ACRE revenue payment, the traditional counter-cyclical 

payments (CCP) are established using a payment rate determined by shortfalls in an 

“effective” price with respect to a statutory target price, multiplied by the fixed base 

acreage and base yield, and carries over from the 2002 Farm Act legislation. In other 

words, current production of the commodity is not required for the producer to receive a 

CCP payment. The total CCP option for a producer i of crop j in year t would be 

calculated over 2009 to 2012 as: 

(1b) P-CCPijt = 0.85 · max{ 0, (TPj − (Max (NPjt, LRj)) − Dj) } · ( B
ijA  · B

ijY ),  

where TPj, LRj, and  Dj are the statutory per bushel target price, national average loan 

rate, and direct payment rate,  respectively, for a covered crop as specified in the farm 

legislation.1 For each covered crop, NPjt is a national market price (season average price 

for the marketing year), B
ijA and B

ijY  are farm-specific base acreage and base yield, 

respectively, i.e., where the latter is historic and fixed yield calculated as per government 

rules (FSA, 2006a).  While the acreage and yield values in equation (1b) are fixed, the 

payment rate itself is a function of contemporary season prices. 

For farmer i of a crop in region j in time t, the existing price-based marketing loan 

benefit, the price-based marketing loan benefit, or equivalently in terms of value, the loan 

deficiency payment, is calculated as:  

(1c) LDPijt = max{0, LLRjt − ALRjt)} · Aijt·Yijt , 

where the statutorily-set local loan rates (LLR) is the national loan rate (LR) adjusted by 

various region-specific (county or other region) and quality factors. The alternative loan 

repayment rate, or ALR, is essentially a USDA-determined market price that varies 

according to market conditions, and is adjusted to reflect quality of the product. 
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Depending on the crop, the ALR may be a county (wheat, feed grains, oilseeds), national 

(peanuts), or world (upland cotton and rice) “posted” price. The payments are applied to 

current production on each farm, which equals harvested area, A, times harvested yield, 

Y.  For farmers enrolled in ACRE, the loan rate LR is decreased by 30%. 

 From the producer’s perspective, a potential benefit, or liability, of ACRE over 

the LDP and the CCP is that the ACRE’s guarantee revenue automatically rebalances 

itself to relatively recent market prices. Therefore, it can provide payments in situations 

in which market prices are well above statutory loan rates and target prices. Of course, 

when market prices are low relative to loan rates and target prices, the ACRE can be 

expected to provide lower mean benefits than the LDP plus the CCP (albeit leaving 

differences in the fixed payments out of the analysis).  However, under current market 

prices, loan rates, and target prices, feed grain and oilseed producers have a statistically 

insignificant chance of receiving CCPs or LDPs. For these producers, the decision to 

participate in ACRE is likely to be based on the producer’s perceived trade-off between 

the 20 percent of direct payments forgone when participating in ACRE and the ACRE 

revenue payment, and not on forgone price-based support.   

  

Methodology for estimating the density function for ACRE payments 

 The only two stochastic variables that we explicitly need for calculating ACRE 

payments at the national level are realized yield and season average price, although other 

variables can usefully feed into the econometric analysis, both to reduce omitted variable 

bias, and as intercept shifting terms that can be useful for policy simulations.  For the 

simulation of payments then, we need to generate the distributions of price and yield.  
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However, the procedure for doing so is considerably complicated by the fact that price 

and yield are correlated, and hence the estimated distributions must take this correlation 

into account. We estimate the density function for payments given: 1) econometric 

estimates of the historic relationship between national price and national average yield; 2) 

estimates of the distribution of yield density for a particular base year; and 3), a bootstrap 

approach that links 1) and 2).   

 

Modeling the price-yield relationship using price and yield deviates   

Our focus is on estimating the distribution of payments for a given reference crop year t, 

given that at pre-planting time in t, season average prices and realized yield are 

stochastic.  As such, sector level modeling that separately identifies supply, demand, and 

storage is unnecessarily complex to service our needs and diverts attention away from 

focus of the paper. A convenient way to address our questions is to model prices and 

yield as percentage deviations of realized prices and yields at the end of the season from 

the expected values at the beginning of the season when planting decisions are made.   If 

one accepts that the observed distribution of percentage changes in price and yield 

between pre-planting and harvest are representative of their future distribution, then our 

econometric specification of the price-yield relationship can be reduced to one equation.   

 While the academic literature is rich with papers on price estimation for 

commodities (e.g., Goodwin, 2002, for an overview), few express prices in deviation 

form. One example that does is Lapp and Smith (1992), albeit as the difference in price 

between crop years rather than between pre-planting time and harvest within the same 

crop year. As price deviation in their paper was measured between years, yield change 
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was not included in that analysis.  Paulson and Babcock (2008) provide a rare example of 

the examination of the price-yield relationship within a season in an examination of crop 

insurance. Like them, for the purposes of estimating the relationship between price and 

yield, we re-express the historic price and yield data as proportional changes between 

expected and realized price and expected and realized yield within each period, 

respectively. However, among the differences in our approach from that in Babcock and 

Paulson is that ours uses a modeling approach that easily permits multiple explanatory 

variables, thereby decreasing the chance of misspecification of the price-yield 

relationship, and permitting sensitivity analysis with respect to parameters of policy 

interest.  

 For the model, the realized national average yield, Yt , is transformed to the yield 

deviation  according to  =  tYΔ tYΔ ( )( )
( )t

tt
YE

YEY − .  To generate a distribution for  

based on historic yield shocks, the historic yields must be detrended to reflect the 

proportional change in the state of technology between that in 2008 and that in time t, i.e., 

Yit is detrended to 2008 terms as 

2008Y

(2) ,∀ i counties, t periods, t ≠  2008. ( )( 12008 +Δ= iti
d

it YYEY )

It is convenient to specify the yield deviate as the deviation of detrended yield from 

expected yield in the base year used for detrending, which we denote as .  We 

detrend yield based on the standard practice of using a linear trend regression of Yt = f(t). 

The expected value of Yt, or E(Yt),  is calculated from the fitted trend equation.   

d
tYΔ
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 As with yield, price is transformed into deviation form, i.e., the realized price at 

harvest, Pt , is the difference between the expected and realized (harvest time) price, or 

 =  tPΔ ( )( )
( )t

tt
PE

PEP − . 

 Given the estimated trend yields as the predictions of E(Yt), we can construct 

 and estimate the relationship between d
tYΔ tPΔ  and .  In particular, we assume that  

 can only be partially explained by , and that the uncertainty in this relationship 

can be incorporated into the empirical distribution.  We do so by specifying  as  

d
tYΔ

tPΔ d
tYΔ

tPΔ

(3)  = tPΔ ( )t
d

t zYg ,Δ  + εt,   

where zt is a vector of other variables that may explain the price deviation and εt is the 

error term.  We expect that d
t

t
Yd

Pd
Δ

Δ < 0, i.e., the greater the realization of national 

average yield over the expected level, the more likely harvest time price will be lower 

than expected price.    

 

Generating the empirical distribution of payments – overview 

To generalize our empirical distribution of payments, we use a bootstrap method that 

allows for flexible right-hand-side regression modeling and for modeling interactions 

between variables. In particular, we use a paired bootstrap approach in a resampling 

methodology that involves drawing i.i.d. observations with replacement from the original 

data set (Efron, 1979; Yatchew, 1998), maintaining the pair wise relationship in each 

observation between the variables, e.g., variable values yi and xi are always kept together 

as a row.  The bootstrap data-generating mechanism is to treat the existing data set of size 

T  as a population from which G samples of size T are drawn. Equation (3) is re-estimated 
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for each of these bootstrapped data sets. Variation in estimates results from the fact that 

upon selection, each data point is replaced within the population.  We can use this 

standard bootstrap to generate a distribution of PΔ  given .    dYΔ

 However, while can directly estimate , g = 1,…,G, by substituting the G sets 

of bootstrapped coefficients and the (Tx1) vector into equation (3), to compensate 

for the limited sample size, we can increase the smoothness of the bootstrapped 

distribution of  by substituting  with yield deviations – denoted as  – that 

are generated from a random sample drawn from an estimated yield distribution using a 

kernel approach described in the next section. Doing so will allow us to estimate a set of 

price shocks associated with an arbitrarily large set of yield shocks, albeit defined by the 

actual data.   Our approach to smoothing the distribution of yield maintains the  

coefficient of variation of yield of the actual yield data.  

gtP̂Δ

Δ d
tY

PΔ d
tYΔ *dYΔ

 

Generating the distribution of yield 

Like Deng, Barnett, and Vedenov (2007) and Goodwin and Kerr (1998), we utilize the 

nonparametric kernel-based probability density function (Hardle, 1990; Silverman, 1986) 

for generating a smoother yield density than that which would be supplied by the 

bootstrap of equation (3). This function, as applied to our notation, is 

( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
= ∑

= h

Yy
K

Th
yf

d
t

d
jT

t

d
j

1

1ˆ , j = 1,…,J. This function allows us to generate values of 

from a distribution that approaches a continuous function as J approaches infinity. 

This function gives support to generating yield values over the observed range of 

dYΔ
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detrended yields, i.e., the (J x 1) vector  is drawn over the range 

{min( )…max( )}, t = 1…T, where  are the yield points for which the density 

function is estimated. The function K(.) is a Gaussian kernel (ibid.). 

dy

iyd
tY d

tY

d
nY

d

Δ

2  The optimal 

bandwidth h for smoothing the density is calculated according to equation 3.31 in 

Silverman (1986), which is a common choice for single mode densities such as those 

being evaluated here.   We simulate the yield distribution by taking N draws of yield 

values, denoted as, , from the estimated kernel density.  Given the expected (trend) 

yield for a reference year, the yield deviate  is calculated for each . 

*

*d
nY *d

nY

Yields generated from a kernel-based density function can be expected to have a 

lower standard error than the actual data given the smoothing of the density. We bring the 

standard error of the kernel generated yields back to the level of the actual data by 

assuming that any difference between the kernel yield and the actual yield is normally 

generated noise with mean zero, and add this noise to each .   This approach is 

discussed in more detail below in its application to generating farm level yields. 

*d
nY

Prices are decided based on national-level yield shocks. ACRE payments are a 

function of State level yield shocks.  County level yields are the lowest aggregation of 

yield data available from the USDA that has the same time series as the State and 

national data. We build our farm level yields off the county level.  Hence, in addition to 

simulating national yield , we simulate State ( ) and county yields ( ) using 

the same kernel approach. 

*dY *SdY *CdY

 

Imposing estimated yield correlations on simulated yield data 
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Of course, as drawn, the simulated national, State, and county yields, being i.i.d., do not 

have the same Pearson correlation matrix as the original actual yield data, even if they 

have the correct mean and variances.  The historic correlations between the national, 

State, and County level yields needs to be imposed on their simulated counterparts, but 

without changing the mean and variance of each yield vector. This is done by applying 

nonparametric Monte Carlo techniques to the three simulated yield in order to induce 

them to have the same correlation as the actual yield data.   

 Specifically, heuristic combinatorial optimization (Charmpis and Pantelli, 2004) 

is used to rearrange the generated univariate i.i.d. yield samples, in order to obtain the 

desired Pearson’s correlation between them while leaving the yield values unchanged.  

What this approach amounts to in this application is that pairs of values in  are 

randomly interchanged until abs{corr( , ) – corr( , )} achieve a minimum 

tolerance tol, and where corr( , ) is the correlation coefficient of the actual 

(historic) detrended data. Next, pairs of values in  are randomly interchanged until 

abs{corr( , ) – corr(Y ,Y )} 

*SdY

*dY *SdY dY SdY

dY

d

SdY

Cd

*CdY

*dY *CdY ≤  tol and abs{corr( , ) – corr( , )} 

 tol.  The tolerance  tol  was set equal to 0.0005 for all yield simulations, except for one 

county, for which the minimum achievable tol was 0.009. 

* YSdY *Cd SdY CdY

≤

 As an alternative to the kernel approach for generating the yield density vectors 

and imposing the historical correlations between them, we also use the block bootstrap 

approach to generating yield distributions. This approach makes minimal assumptions for 

the distribution of yield, and maintains the historical relationships between the yield 
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values, but at the cost of lower smoothness in the yield density function. We found the 

payment simulations to be relatively unaffected by the choice of approach.3 

 

Generating the farm level yield distribution 

In general, farm level yields with adequate times series and relevance to specific regions 

are not available from the USDA. One approach to developing farm level yield is infer it 

from Federal crop insurance premiums, using the assumption that the premiums are 

actuarially correct and that the difference between county and farm level yield is 

distributed normally with mean zero (Coble and Dismukes, 2008).   Another approach is 

to make use the analysis by Cooper, Langemeier, Schnitkey, and Zulauf (2009) –  herein 

denoted as CLSZ – of the longitudinal farm level data sets provided by the Kansas Farm 

Management Association and Illinois’ Farm Business and Farm Management Association 

(FBFM).  Each approach has its merits and disadvantages. The former approach covers 

more regions but only for farming units that purchase crop insurance and also assumes 

that the insurance premiums are actuarially correct, while the latter approach compares 

actual farm level yield to county yield, albeit for farmers who are long term members of 

the farm associations. We use the former to assess the integration of crop insurance with 

ACRE, thus maintaining consistency with crop insurance premiums, and the latter to 

assess the impacts of ACRE on farm revenue. 

 Looking at both 10 year and 17 year datasets of farm level data for counties with 

at least 10 farms for corn, soybeans, and wheat, CLSZ find that the difference between 

farm level yield and county level yield (where for consistency, the county level yield is 

constructed from the farm level yields, and not NASS data) is distributed normally with 
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mean zero. They also found that the relationship between the coefficient of variation of 

yield at the farm level and at the county level tends to follows a simple double log 

relationship. Hence, it becomes relatively simple to convert the detrended county level 

yield density into a detrended farm level density.  

Let   = yield for county j,  = yield for farmer i in county j, and *Cd
jY *Fd

ijY ijλ = 

 - , (we omit time subscript t for clarity). Based on this notation,  + *Fd
ijY

ij

*Cd
jY ji,∀ *Cd

jY

λ  = , and it follows that var( +*Fd
ijY *Cd

ijjY λ ) = var( ).  Since CLSZ  found for their 

data that cov( ,

*Fd
ijY

*Cd
jY ijλ ) = 0, the variance function simplifies to var( ) + var(*Cd

jY ijλ ) = 

var(Y ), or var(*Fd
ij ijλ ) = var( ) - var( ).   CLSZ found that a good rule of thumb 

for the ratio of farm level standard deviation to county level standard deviation of yield is 

1.3. We describe our application of the Coble and Dismukes approach to generating farm 

level yield in the section on insurance.  

*Fd
ijY *Cd

jY

 

Generating the empirical distribution of payments given the estimated yield distribution 

The estimated price shocks given  and the coefficient estimates from the bootstraps 

of equation (3) and are calculated as:  

*dYΔ

(4)    *
10

* ˆˆˆ dYP Δ+=Δ ββ

where is the N x 1 vector of yield shocks derived from the kernel yield distribution, 

is the (1 x G) vector of draws of the coefficient on the yield deviate from the 

regression bootstraps, and is the “grand mean”, i.e., the product of the bootstrap draws 

of the other bootstrapped coefficients times the assigned values of the explanatory 

*dYΔ

1β̂

0β̂
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variables in z. The resulting  is a (N x G) matrix, i.e., every yield shock  is 

associated with a (1 x G) distribution of price shocks. For our simulation, N = G = 1000.  

 To calculate the commodity payments and farm revenue, the  must be 

transformed back to the price per bushel, .  For a reference year, 2009 in this case, the 

simulated harvest time price per bushel is  

*P̂Δ *d
nYΔ

*P̂Δ

*P̂

5) ( ) ( )1+ˆˆ 2009*
2009

2009* Δ⋅= gngn PPEP ,  

for g = 1,…,G, n = 1,…,N.   Finally, by substituting the vectors  and into 

Equations (1a) to (1c), we generate the probability density functions of 2009 payment and 

revenue density functions as seen from the beginning of the 2009 crop year.   

*2009P̂Δ *d2009YΔ

 

Data 

Data on planted yields and acres for corn, wheat, and soybeans are supplied by the 

National Agricultural Statistics Service (NASS) of the U.S. Department of Agriculture.  

We assume that each farmer’s APH yield for the insurance and ACRE calculations is 

simply the county Olympic average yields for 2004 to 2008.   

 For each crop, we follow RMA definitions of the expected and realized prices. 

For example, for realized price Pt  for corn, we use the average of the daily October 

prices of the December CBOT corn future in period t.   For the expected value of price Pt, 

or E(Pt),  we utilize a non-naive expectation, namely the average of the daily February 

prices of the December Chicago Board of Trade corn future (CBOT abbreviation CZ) in 

period t, t = 1975,…,2007. For corn and soybeans, the value of  E(P2009) using in 

equation (5) are the same as the official RMA base prices for the RA insurance products 
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for the 2009 crop year. However, the RMA base price for the 2009 calendar year harvest 

of winter wheat was established using August and September 2008 values of the 2009 

KCBT July hard red winter wheat futures contract. This 2008 period exhibited significant 

commodity price spikes and is unlikely to reasonably reflect updated expected prices for 

the 2009 crop. Hence, we recalibrate the E(P2009) for winter wheat to $5.85, which is the 

average of end-of-week closing prices in February 2009 for  2009 KCBT July hard red 

winter wheat.   

ACRE revenue payments are calculated using the NASS season average cash 

price. We convert P2009 to this price using the basis defined as the median difference 

between Pt  and the NASS price in t over the ten years prior to 2009.  

 In addition to the yield shock YΔ , we include several other explanatory variables 

in our regression of Equation (3). We do not use these for any additional policy analysis, 

and the motivation for their inclusion is simply to reduce the potential effects of omitted 

variable bias on the yield shock coefficient and on the intercept coefficient. The dummy 

variable FarmAct takes the value of “1” for years 1996 and above (and 0 otherwise), 

reflecting the Federal government being out of the commodity storage business under 

recent Farm Acts.4   As commodity storage may be expected to have a stabilizing 

influence on futures prices (Tomek and Grey, 1970), we include the corn stocks to use 

ratio, as measured at the beginning of the crop year in order to maintain Equation (3) in 

reduced form.  As the inflation rate may impact price variability (e.g., Lapp and Smith, 

1992), we include the inflation rate (CPI-U) over the quarter immediately prior to 

planting, the idea being that a lag may exist in the impact of near term inflation on the 

commodity price, with a higher rate increasing the price shock.   

 16



 To model international linkages in a reduced form, we include deviation of actual 

yield from expected yield of corn in time t in the rest of the world, as calculated from 

FAOSTAT data. To account for the difference in the timing of seasons north and south of 

the equator, this variable is disaggregated into northern and southern hemispheres.   The 

expectation is that a negative yield shock in the rest of the world will increase the U.S. 

corn harvest time price relative to the expected price.  As exchange rate changes can be 

expected to have an impact on corn exports (Babula, Rupple, and Bessler, 1995), we 

include the percent change in the nominal exchange rate between planting time and 

harvest, where the expectation is that an increase in this value lowers the export demand 

for U.S. corn, and therefore, its price.   Several other variables are included, and are 

defined at the bottom of Table 1. 

  

Econometric results 

Table 2 provides the econometric results for a linear specification of Equation 3 for each 

crop using OLS.  We tested whether or not the error term εt is i.i.d. with mean 0 and 

variance . In particular,  we tested the regressions for evidence of heterosckedasticity 

with respect to the yield shock variable using the Breusch-Pagan Test (Greene, 2004), 

based on z = {1,

2
εσ

YΔ  , 2YΔ  }.  The test statistics of 4.04, 0.41, and 1.393 for the corn, 

wheat, and soybean regressions, respectively, were all under the critical value of 5.99 

(chi-squared, two degrees of freedom, 5 percent significance), and homosckedasticity of 

εt is not rejected.  

The coefficient on  is significant at the 1 percent level for each crop. Of the 

additional explanatory variables, stocks/use, π, Δr, LRdifft, and Acres Idledt are each 

YΔ
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significant to at least the 10 percent level in at least one of the three regressions.  A 

specification of equation (3) that is semi-nonparametric (SNP) with respect to was 

also examined, and the relationship 

YΔ

YdPd ΔΔ was found not to be statistically different 

than for the parametric specification in Table 1.5    

    

Discussion of payment simulation results 

Table 2 presents the values of the price and yield parameters used in the simulations.  The 

table also includes the average direct payment rates per acre per crop for the counties in 

which the farms are situated, but recall that these payment rates would be reduced by 20 

percent if the farmer enrolls in ACRE.  

 Table 3 summarizes the results of the ex ante stochastic analysis that predicts at 

planting time the probability density of ACRE revenue payments per acre, gross revenue 

per acre, and total gross revenue (i.e., gross revenue t plus the ACRE payment in t) given 

the distribution functions for price and yield.6  Mean payments per commodity vary as 

much as several orders of magnitude between counties, from $6.8/acre for the corn 

farmer in Butler, KS, to $29/acre for the corn farmer in Logan county, IL, for example.  

For each farmer/crop combination, the probability of not receiving a payment is high 

enough that the lower  bound of the 90% empirical confidence interval of payments is $0.  

The Logan county corn and soybean farmers had the highest probability of receiving an 

ACRE payment, at 61 and 58 percent, respectively. The Butler and Finney County corn 

farmers had the lowest probability of receiving the ACRE payments, at 22 and 24 percent 

of the time, respectively. The differences in the probability of receiving a payment are 

based more on differences in farm level standard deviations of yield and revenue between 
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the farmers than on differences in the State-farm yield correlations between the farmers. 

However, as a number of interactions between prices, national, state, and farm level 

yields determine the payment densities, it is difficult to generalize as to the causes of the 

differences in the payment densities across the farms.   

 In all cases, receipt of the ACRE revenue payments lower the farmer’s coefficient 

of variation of revenue (last column of table 3), ranging from approximately 4 percent for 

the Butler farmer to 25 percent for the Logan soybean farmer.  The decrease in the 

coefficient of variation in the last column and the coefficient of variation of gross revenue 

(the last column of part B in the table) are negatively correlated, with a correlation 

coefficient of -0.52. The ACRE payment also raised the lower 90% bound of revenue for 

all farmers (third column from end). The upper 90% bound of total gross revenue is the 

same as the upper 90% bound of gross revenue without the payment, and is not shown in 

the table.  Hence, with the double trigger, ACRE appears to address downside risk 

without contributing to upside “risk”. 

 Figure 1 graphs a portion of the density function of revenue with and without the 

ACRE payment for the Logan and Barnes County corn farmers. The graphs clearly show 

the payment to reduce some of the downside risk of the farmer. The density functions 

with and without the payments converge in the upper tails (for the Barnes farmer outside 

the revenue per acre range shown on the graph).  The Logan farmer’s revenue density 

function with or without the ACRE payment is relatively symmetric. However, the 

density function of the Barnes corn farmer exhibits a spike at the low end of the revenue 

range given the relatively significant probability that this farmer can suffer a crop failure. 

The ACRE payment removes this spike at the lower tail of revenue for this farmer. 
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 Table 4 shows the density function of pseudo-LDP and CCP payments and their 

impacts on gross revenue for corn farmers in two locations. The purpose of this exercise 

is to examine how these two payments approaches differ from ACRE in the higher 

moments of their payment density functions and in their impacts on revenue. These are 

“pseudo” payments as the loan rate and target price have to be increased over the actual 

values of $1.95 and $2.63/bu., respectively in order to produce non-zero probability of 

payments at February 2009 expected prices.   For each farmer, the loan rate and target 

price were increase to the point where the mean LDP and CCP payment were the same as 

the farmer’s ACRE revenue payment, using multiplier values noted in Table 4.  

 For the Logan county farmer, the upper bound of the 90% confidence interval of 

the CCP payments is lower than for the ACRE payment as the CCP payment rate cannot 

exceed the target price less the sum of the loan rate plus the direct payment rate. The LDP 

payment rate has no such cap, and the upper bound on LDP payments per acre is higher 

than the ACRE payment for the Logan county farmer, suggesting that this price-based 

payment can over-pay relative to a revenue-based payment for farmers in the Heartland.  

This impact is also shown in a 90% upper bound on revenue with the payment being 

higher than revenue without the payment. However, the Finney corn farmer has a lower 

price-yield correlation than the Logan farmer, and the LDP underpays relative to ACRE 

for that farmer.  For both farmers, receiving the CCP and LDP lowered the coefficient of 

variation of revenue, but not as much as did ACRE, even though the difference may not 

be dramatic for the Finney County farmer. 

 

Integration of Federal Crop Insurance with ACRE 
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We now examine to what extent crop insurance premiums could decrease if harvest time 

revenue used in the premium calculation include the ACRE revenue payment. If the 

ACRE and insurance programs where to be formally integrated in such a manner, the 

greater the percentage of the farmer’s revenue risk covered by the ACRE revenue 

payment, the lower the actuarially correct crop insurance premium would need to be.  

Given that the government subsidizes on average 59 percent of the farmer’s insurance 

premium, such an integration would likely result in Federal budgetary savings.  

 The previous section used data on difference between actual farm level yields and 

county yields to transform the county level yield density function into the farm level yield 

density function. In this section, for the sake of consistency with actual RMA insurance 

rates, we infer the difference between farm and county level yields from the RMA crop 

insurance premiums.  In our application of the Coble and Dismukes approach to backing-

out the farm level standard deviation of yield from crop insurance premiums from the 

Risk Management Agency (RMA) of the USDA, we assume that our representative 

farmers purchase revenue assurance (RA) with the base price option and 70 percent 

coverage (RMA, 2009).    In our notation, the RA indemnity payment per acre for 

producer i of crop j in period t is 

6)  = max{0, (ijtRA ( ) *7.0 Fd
ijtjt

APH
ijtjt YPYPE ⋅−⋅⋅ )}, 

where ( )jtPE  and are expected and harvest time futures prices, respectively, and 

is the actual production history for the farm.  In our simulation context, the 

insurance premium, , is actuarially correct if it is set equal to 

jtP

APH
ijtY

ijtPREM ( )ijtRAE , where 

( )ijtRAE  is mean of all outcomes of Equation (6) given our (N x G) matrix of prices and 
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(G x 1) vector of farm yields.  We assume that = + zt, where 

z~

*Fd
ijtY *Cd

jtY

( )( )**,0 Cd
jt

Fd
ijt YYN −σ .   

 Using a quasi-Newton technique, we find the value of ( )** Cd
jt

Fd
ijt YY −σ  that 

minimizes ( )( )ijtRAE−ijtPREMabs , where  is the full premium including the 

farmer paid portion and the portion subsidized by the government. The farmer paid 

premium is downloaded from the RMA website (RMA, 2009) using the price and yield 

values from Table 2, and divided by 0.41 to generate .  Generally, we find that 

ijtPREM

PREM

( )** Cd
jt

Fd
ijt YY −

ijt

σ  is higher when inferred from the RMA premiums than when calculated 

from the farm management data.  For our farmer/crop combinations, the ratio of 

( ) ( )** Cd
jt

Fd
ijt YY σσ  is on average 1.9 times higher based on the RMA data.   

 If RA was to explicitly consider ACRE revenue payments as part of harvest time 

revenue, the  from Equation (6) would be rewritten as   = max{0, ijtRA ijtRA

( ) )(7.0 *
ijt

Fd
ijtjtjt ACREYPPE +⋅−⋅⋅ APH

ijtY }. 7 Table 5 shows that integration of the two 

programs decreases the full crop insurance premium from 10% to 41% depending on the 

farm/crop combination. If we had used the farm level yield densities based on the lower 

farm to county level noise in the farm management datasets, the decreases would have 

been larger in most of the farm/crop combinations.  

 

Moral hazard implications of ACRE 

Since ACRE reduces downside revenue risk, it may have impacts on planted acres. As 

total U.S. acres planted to corn, wheat, and soybeans have been relatively stable over the 

last 20 years regardless of the agricultural policy changes occurring over the period, it 
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would be difficult to stage a convincing argument that ACRE would do much to change 

total acreage planted to these crops. But this is not to say that ACRE could motivate some 

shifting between crops, whether regionally or nationally.   This section provides a 

preliminary examination of such impacts.  As with Goodwin (2009) and Hennessy 

(1998), we assume that the farmer chooses acreage to maximize the expected value of a 

negative exponential utility function with respect to planted acreage A over our N·G = 

1,000,000 simulated price, yield, and commodity payment combinations as  

7) EU(π) = ( ) ( )[ ]∑ ⋅

=
− +−

⋅
GN

i i
A Ae

GN
i

1

1 βπλπ  

According to Hennessy (1998), the  λ and β imply a risk aversion coefficient of 

( ) ( ) ( )βλλπρ λπλπ += −− ee2 . We use the same λ = 1×10-4 and β = 1×10-5  as Goodwin 

(2009) to reflect estimated value of absolute risk aversion in the literature, with  β > 0 

implying decreasing absolute risk aversion (DARA). 

 As with Goodwin (2009), we assume a single-crop farm for tractability. 

Nonetheless, the relative magnitude of the acreage impacts of ACRE on each crop can 

still provide an indication of how the crop mix might change. Leaving out the subscripts 

denoting crop, farmer, and period, profits π are  

8) ( )Aiπ  =  ( ) B
iiii AAYPPYMTAcYP ,,,(⋅+−⋅ ) 

for each simulated price and yield pair, where c = total cost per acre and  PMYT(·) is 

government payments. With the traditional programs under 2009 expected prices, the 

probability of price-based support payments is essentially zero for corn, wheat, and 

soybeans, and  PYMT(·) is simply the direct payment rate from Table 2 times the farm’s 

bases acres, or PYMT(·) = BAdpr ⋅ .  Under ACRE, PYMT(·) = 
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{ }AAACREAdpr B
i

B ,min8.0 ⋅+⋅⋅  as the ACRE revenue payments cannot be applied to 

planted acres exceeding the farm’s base acres  BA . 

 Estimating costs per acre c is like trying to hit a moving target. Rather than 

relying on cost estimates that may be out of date, we let the model infer them.  In 

particular, we assume that the farmer’s EU maximizing choice of A under the traditional 

support programs is A = 400 acres.  Given this assumption, we find the value of c for 

each crop/location that maximizes equation (7).    Given this calibration of c, we re-

maximize (7) under the ACRE program with respect to A.  This approach gives us the 

change in acreage under ACRE relative to the traditional programs.  

 Table 6 presents the result of this simulation for 2009. For each crop/location 

combination, ACRE stimulates acreage relative to traditional support in the context of the 

EU model. Of course, these results are based on the assumption that the support payments 

are not passed through to the farmer in the form of higher rents. Nonetheless, the relative 

results between crops can still be taken as an indication of the differential effect of ACRE 

on crop mix.  For the Logan county farmer, the percent increase in planted acreage under 

ACRE relative to the traditional programs is the same for corn and soybeans. This result 

is not surprising given that farmers in this region have a comparative advantage in the 

production of both crops even under the traditional programs. As per Table 3, ACRE did 

little to reduce the coefficient of variation of the corn farmer in Butler, KS, and is not 

surprising it produced a bigger acreage effect for soybeans and wheat.  In Butler, Finney, 

and Barnes Counties, ACRE reduced the disadvantage of growing soybeans relative to 

wheat (spring wheat in the latter). For the Finney, KS, and Barnes farmers, it also 
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reduced the disadvantage of growing corn relative to wheat, and particularly so for the 

latter, which is in North Dakota.  

 As ACRE appears to have the same relative impact on planted acres for corn and 

soybeans for our farmer in Logan County, IL, which is part of the Heartland region that 

largely determines the price for corn and soybeans, and given the relatively stable total 

crop acreages in this region, it appears that ACRE does not have a strong impacts on 

prices for these crops under 2009 conditions. 

 We can also maximize EU under ACRE to find the payment pass-through in the 

form of higher rents  that would not change acreage. For the Logan County corn farmer 

in 2009, costs would have to increase by $56/acre under ACRE to induce no change in 

the EU maximizing acreage. As the increase in mean PYMT for this farmer under ACRE 

is $23.74/acre (on acres not exceeding base), the additional costs the farmer is willing to 

bear reflects a certainty equivalent benefit of ACRE.   

    

Concluding Remarks 

Our simulation results show that adding ACRE revenue payments to gross revenue 

reduced the downside risk in revenue for corn, wheat, and soybean farmers in 2009 in the 

four locations examined, with reductions ranging from 4% to 25%. The differences in the 

decrease in the coefficient of variation of revenue across the farmers was relatively large, 

suggesting the ACRE payments are sensitive to farm level yield densities, and differences 

in the correlations between prices and yields at the individual, State, and national levels 

of yield aggregation.  
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 Of course, the decrease in the coefficient of variation of revenue under ACRE is 

sensitive its program parameters. For instance, a reduction in the ACRE guarantee price 

for corn by 10% from its 2009 value (Table 2) means the reduction in the coefficient of 

total gross revenue due to the ACRE payment falls from 17% (Table 3) to 7% for the 

Logan County, IL, farmer. 

 Based on a utility maximization exercise, single crop farmers for the crop and 

location combinations examined here clearly prefer the ACRE program to the traditional 

suite of price-based support.    However, this analysis is for the 2009 crop year for an 

individual with a one period time horizon. Future analysis of farmer preferences for 

ACRE can benefit from being inter-temporal. In particular, the farmer’s decision to enroll 

in ACRE should consider market conditions over the remaining life of the 2008 Farm Act 

for two primary reasons: 1) the farmer’s enrollment decision is irrevocable through the 

rest of the 2008 Farm Act period; and 2) the ACRE program guarantee price cannot 

change more than 10 percent in either direction from the previous year.  The latter means 

that the 2009 program guarantee price determines the bounds on this price through 2012. 

 The simulation results suggest that although the ACRE payment rate is 

determined at the State-level, it does cover a significant portion of the farm-level revenue 

risk. As such, integrating this program with Federal crop insurance to explicitly account 

for the overlap in risk coverage can result in significantly reduced crop insurance 

premiums for some of the crop and location combinations examined here. However, 

pragmatic issues would need to be addressed to implement such an integration. For 

example, the insurance indemnity payment cannot be determined until after the farm’s 

ACRE revenue payment is calculated.   Of course, institutional resistance to this 
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integration cannot be discounted. Over the relatively long history of price-based support, 

it is probable that the integration of it with Federal crop insurance would have lowered 

insurance premiums – even if with likely lower saving than integration with ACRE – but 

this integration was never attempted.    
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Endnotes 

 
1 An exception to the average national loan rates for the purposes of CCPs is made for 

rice and barley, for which the Secretary of Agriculture would determine the average loan 

rates. 

2 We found the estimated density of program payments for corn to be insensitive to the 

choice between Gaussian and biweight kernels. 

3 As a supplement to the modeling results based on the kernel density for yield we 

examined alternative results for Table 3 based on generating the yield densities without 

any smoothing. In particular, the block bootstrap (Lahiri, 1999) approach is used to 

randomly resample with replacement the national, State, and county yields from the 

actual yield dataset.  Year-wise relationships among the yield values are maintained when 

resampling, thereby ensuring that the simulated dataset has the same correlation between 

the national, State, and county yields as the original data.  Farm level yield is generated 

by adding the normally distributed noise to the county level yields, using the approach 

based on the farm management data. 

4 This variable might be interpreted as the change in the weather premium after the 2006 

Farm Act.  A negative sign on its coefficient would suggest an increase in the weather 

premium, which might be expected without the government holding significant reserve 

stocks after 1996. 

5 To examine the potential for bias due to miss-specification in estimating equation (3), in 

addition to a linear parametric estimate of the equation, we also estimated the equation 

using a semi-nonparametric (SNP) econometric approach based on the Fourier 

transformation (Fenton and Gallant, 1996). The SNP regression is limited by degrees of 



                                                                                                                                                 

Y

freedom in the number of variables that can receive the SNP treatment, and as such, the 

SNP regression variables in our application are limited to Δ and its first order sine and 

cosine transformations.  Using the regression results in  a bootstrap-based test (Efron, 

1987), the hypotheses Ho: parapara YdP ΔΔd − snp
t

snp
t YdPd ΔΔ = 0 cannot be rejected at 

the 90 percent level or better for all j ≠  k. This result suggests that the parametric model 

is adequate to the task of modeling the interaction between price and yield. 

6 The explanatory variables in z are evaluated at 0 or their most recent values. 

7 For this simulation, we assume that the farm’s ACRE benchmark revenue does not 

include the farm’s Federal crop insurance premiums in order to preclude a double 

subsidy. 
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 Table 1. Parametric Regression Results for the Function Explaining   tPΔ
 
Variable Corn Soybeans Wheat  
Constant -0.231 -2.94 -0.120 -1.05 -0.039 -0.28 

tYΔ    -0.938 -3.54 -1.521 -4.18 -0.955 -3.00 
FarmAct  -0.056 -0.75 0.057 0.64 0.081 0.62 
Stocks/use   0.563 1.89 0.633 1.01 -0.520 -2.16 

SH
tYΔ   0.305 0.49 -0.372 -0.88 -0.401 -0.67 
NH

tYΔ  -0.387 -1.39 0.023 0.98 -0.003 -0.01 
π 9.372 2.08 0.155 0.03 5.109 0.56 

trΔ   -0.364 -1.37 -0.671 -2.11 -0.319 -0.84 
Ethanol uset 0.908 1.50 0.163 0.18 1.442 1.19 
LRdifft     0.473 2.23 -0.477 -0.43 -2.590 -1.95 
Acres Idledt  -0.007 -1.00          –          – 0.015 2.26 
R2 0.68        0.55  0.58  
Ln-L 30.91      24.43  17.51  
Ln-LSNPDF 31.75      24.52  18.62  

 
Notes: T-values are shown in italics.  Ln-LSNPDF is the log-likelihood value for the model that is semi-
nonparametric distribution free in . tYΔ

tYΔ  is the percentage deviation in US corn yields from the expected (trend) yield. Stocks/ use  is the ratio 
of total U.S. corn stocks at the end of the previous crop year to total utilization of U.S. corn (source: ERS).  
FarmAct equals 1 for 1996 to 2005 and 0 otherwise.  is the percentage deviation in Northern 

hemisphere corn yield (less the U.S.) from the trend yield in that world region, and  Southern 

Production  is the percent deviation in Southern hemisphere corn yield (less the U.S.) from the trend yield 
in that world region (data source: FAOSTAT).  π is the inflation rate (CPI-U) over the quarter prior to 
planting. is the percentage change in the nominal exchange rate (Euro/$) between planting and 

harvest time. Ethanol uset is fraction of U.S. corn production used to producer ethanol. LRdifft is (E(Pt)-
basist-LRt)/LRt when (E(Pt)-basis-LRt > 0, and 0 otherwise, where E(Pt) is the planting time futures price, 
basist is the rolling average basis over 10 years, and LRt is commodity loan rate. Acres Idledt is the percent 
of the acreage idled under pre-1996 Farm Acts. 

NH
tYΔ

SH
tYΔ

trΔ
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Table 2. Policy and other parameters used in the simulations (ACRE and RA crop insurance) 
 
National level parameters Corn Soybeans Wheat   
ACRE Guarantee Price, 2009 ($/bu.) $4.15 $9.73 $6.64 
Revenue Assurance base price, 2009 $4.05 $8.80 $8.77($6.20)d 
Expected price for simulation $4.05 $8.80 $5.85 

State, county, and farm specific 
parameters 

ACRE 
State 
benchmark 
yield 
(bu./acre)a 

Direct 
payment 
rate 
($/acre)b 

Farm’s 
APH 
yield 
(bu./ 
acre) 

ACRE 
State 
benchmark 
yield 
(bu/acre) a 

Direct 
payment 
rate 
($/acre) b

Farm’s 
APH 
yield 

ACRE 
State 
benchmark 
yield 
(bu/acre) a 

Direct 
payment 
rate 
($/acre) b 

Farm’s 
APH 
yield 

Logan County, Illinois  170 33 180 47 16 51               -- 33           -- 
Butler County, Kansasc  128 17 100 35 6 34 33 17 34 
Finney County, Kansasc  128 34 160 35 16 50 33 34 37 
Barnes County, North Dakota  103 18 113 31 11 31 35 18 45e 

 
Notes:    
a These ACRE yield values differ slightly from the official FSA benchmark yields.  In some cases, FSA will calculate planted acres as NASS harvested acres plus 
FSA failed acres.  However, the simulation uses yield data back to 1975, making the approach of using NASS planted acres more practical for the simulation.  
b The direct payment rate per acre for crop i in county j is (direct payment rate for crop i)*(average direct payment yield for crop i in county j). This payment rate 
per acre is then multiplied by 0.833 as direct payments are made for this percentage of base acres (for the 2009-2011 crop years). Note that ACRE enrollment 
requires a 20% reduction in the payment rates above.           
c Actual ACRE benchmark corn yields for Kansas are calculated separately for irrigated and nonirrigated corn. Since the NASS county level yield data from 
which farm level yields are built is not continuous over 1975 to 2008 for irrigated and nonirrigated acres , we do not separately identify them for this simulation 
exercise.              
d Winter wheat (Spring wheat) $/bu .             
e Spring wheat.  
Sources: USDA's Farm Services Administration, National Agricultural Statistics Service, and Risk Management Agency.      
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Table 3. Simulated ACRE payments per acre, gross revenue per acre, and total gross revenue with ACRE payments, 2009 
crop year 
 
  A. ACRE revenue payment per acre B. Gross revenue per acre   
  

C. Revenue per acre with 
ACRE payment  

Farm 
location Crop 

Mean 
($/acre) 

Upper 
bound, 
90% 
CI ($)a 

Coeffi-
cient of 
variation

Percent 
of time 
payment 
is made 

Mean 
($ 
/acre) 

Lower 
bound, 
90% CI 

Upper 
bound, 
90% 
CI 

Coeffi-
cient of 
variation

Mean 
($/acre)

Lower 
bound, 
90% 
CIb 

Coeffi-
cient of 
variation

Reduct-
ion in 
coef. of 
variation 
(%)c 

corn 29.0 108 1.24 61 667 454 885 0.20 696 518 0.17 17.21Logan, 
IL soybeans 19.9 79 1.30 58 445 340 556 0.15 464 389 0.11 24.91

corn 6.8 52 2.54 22 340 57 624 0.51 346 64 0.49 3.85Butler, 
KS soybeans 21.0 62 1.13 57 259 47 473 0.49 280 92 0.40 16.96
 wheat 10.0 42 1.48 43 198 99 300 0.31 208 121 0.26 15.66

corn 12.8 103 2.41 24 651 461 870 0.19 664 508 0.17 11.40Finney, 
KS soybeans 24.3 91 1.36 47 451 275 649 0.25 475 307 0.22 14.69
 wheat 11.6 47 1.43 45 207 89 322 0.34 219 115 0.29 16.44

corn 19.8 88 1.62 36 448 33 853 0.55 468 92 0.49 11.32Barnes, 
ND soybeans 10.9 57 1.75 34 289 150 429 0.29 300 178 0.25 14.00
 wheat 18.6 56 1.20 52 254 121 400 0.33 272 165 0.26 21.94

Notes: 
a The 90% lower bound is $0/acre in each case and hence, is not shown in the table. 
b The 90% upper bound is the same as that for gross revenue without the ACRE payment (B), and hence, is not shown in the table.    
c This is the percentage reduction in the coefficient in the of variation of revenue due to adding the ACRE payment.   
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Table 4. Simulated hypothetical price-based payments per acre and total gross revenue with the payments for corn, 2009 crop 
year 
 
 Price-based payment per acre Revenue per acre with the payment  

Farm 
location 

Mean 
($/acre) 

Upper 
tail, 
90% 
CI 

Coeffi-
cient of 
variation

Percent 
of time 
payment 
is made 

Mean 
($/acre) 

Lower 
tail, 
90% 
CI 

Upper 
tail, 
90% 
CI 

Coeffi-
cient of 
variation 

Reduction 
in the 
coefficient 
of 
variation 
(%)a 

          
I. Pseudo CCP 

Logan 28.8 103 1.27 58 695 487 899 0.19 6.92
Finney 12.7 61 2.27 34 663 495 870 0.17 9.90
          

II. Pseudo LDP 
Logan 29.6 136 1.66 44 696 482 906 0.19 3.38
Finney 12.8 80 2.31 27 664 491 870 0.17 9.03

 
Notes 
For each farm, the Pseudo-CCP (Pseudo-LDP), the target price (loan rate) of $2.63/bu. ($1.95/bu.) is increased by the amount necessary such that the mean 
payment per acre is approximately the same the mean ACRE payment. Gross revenue per acre is the same as in Table 3 and hence , not shown here.   The target 
price was increased by a factor of 1.59 and 1.48 for the Logan and Finney farmers, respectively.  The loan rate was increased by a factor of 1.83 and 1.74 for the 
Logan and Finney farmers, respectively.  
a This column is the percentage reduction in the coefficient of variation of revenue due to adding the payment.   



 
Figure 1. Probability density of revenue per acre – corn producer, 2009 crop year 
 
(a) Representative producer in Logan County, Illinois  
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(b) Representative producer in Barnes County, North Dakota 
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Table 5. Federal Insurance premium per acre without and with integration with the ACRE 
revenue payment (2009 crop year) 
 

Farm 
location Crop RMA full  

premiuma 

RMAfull  
premium if  
integrated 

with ACRE

Percent 
decrease in 
premium 

corn 23.76 15.63 34Logan, 
IL soybeans 14.56 10.07 31

corn 46.73 42.28 10Butler, 
KS soybeans 30.02 18.31 39
 wheat 32.98 25.52 23

corn 53.20 47.13 11Finney, 
KS soybeans 39.12 27.44 30
 wheat 33.76 23.69 30

corn 60.59 43.44 28Barnes, 
ND soybeans 24.32 18.73 23
 wheat 18.27 11.05 41
Notes  
a Revenue assurance with base price option, 70% coverage (source, RMA/USDA). These 
are the full premiums unsubsidized by the Federal government, i.e., (1-0.41)*farmer 
premium.  
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Table 6. Percent change in planted acreage in associated with enrollment in ACRE 
relative to the traditional support programs for the expected utility maximizing farmer. 
 

Farm 
location Crop 

Percent 
change 
in 
planted 
acreage 

   
corn 80Logan, 

IL soybeans 81

corn 8
soybeans 90

Butler, 
KS 

wheat 25

corn 64
soybeans 39

Finney, 
KS 

wheat 20

corn 143
soybeans 71

Barnes, 
ND 

wheat 38
 
Notes: 
Costs per acre are calibrated so the EU-maximizing acreage under the traditional program is 400 acres in 
each case. The farmer is assumed to have 400 base acres. The single-crop farmer is assumed to choose 
planted acres to maximize the expected value of a negative exponential utility model.  No pass-through of 
government payments into land rents is assumed.  
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